高级检索

基于形态与支挡效应的露天矿到界边坡形态优化

张禹, 刘宇, 杨洋, 杨国华, 吕文伟, 李广贺

张 禹,刘 宇,杨 洋,等. 基于形态与支挡效应的露天矿到界边坡形态优化[J]. 煤炭科学技术,2023,51(4):66−71

. DOI: 10.13199/j.cnki.cst.2021-0781
引用本文:

张 禹,刘 宇,杨 洋,等. 基于形态与支挡效应的露天矿到界边坡形态优化[J]. 煤炭科学技术,2023,51(4):66−71

. DOI: 10.13199/j.cnki.cst.2021-0781

ZHANG Yu,LIU Yu,YANG Yang,et al. Open-pit mine slope optimization with the morphology and spatial support effect[J]. Coal Science and Technology,2023,51(4):66−71

. DOI: 10.13199/j.cnki.cst.2021-0781
Citation:

ZHANG Yu,LIU Yu,YANG Yang,et al. Open-pit mine slope optimization with the morphology and spatial support effect[J]. Coal Science and Technology,2023,51(4):66−71

. DOI: 10.13199/j.cnki.cst.2021-0781

基于形态与支挡效应的露天矿到界边坡形态优化

基金项目: 

国家自然科学基金资助项目(51874160);辽宁工程技术大学学科创新团队资助项目(LNTU20TD-01)

详细信息
    作者简介:

    张禹: (1992 — ),男,辽宁铁岭人,硕士,工程师。E-mail: 20034967@chnenergy.com.cn

  • 中图分类号: TD216

Open-pit mine slope optimization with the morphology and spatial support effect

Funds: 

National Natural Science Foundation of China (51874160); Subject Innovation Team Project of Liaoning Technical University (LNTU20TD-01)

  • 摘要:

    为探究露天煤矿到界边坡的坡面形态优化设计方法,以国家能源集团神华新疆黑山露天矿南帮边坡为工程实例,应用简化Bishop法,基于边坡断面形态效应理论,设计了边坡在二维视角下不同凹凸程度的坡面形态并进行了稳定性评价与对比,得到较优设计;基于强度折减法,应用数值模拟方法仿真了较优坡面形态在边坡三维支挡作用下的形变过程,通过分析形变特性,进一步提高边坡坡面的凹凸程度得到了最优坡面形态。结果表明:二维设计条件下,受局部边坡稳定性的限制,在黑山露天矿南帮边坡+2 385 m水平以下自底周界向上依次布置两组组合台阶,可得凹凸程度较优的坡面形态,坡面的整体稳定性系数为1.344,局部稳定性系数为1.204。三维设计条件下,较优形态在内排土场与横采工作帮的三维支挡作用影响下,边坡局部与整体的稳定性均得到改善,存在进一步形态优化的空间。可在较优形态基础上,通过增设一组组合台阶的方式局部加陡+2 430 m水平以下边坡区段以取得最优坡面形态。最优形态在数值模拟边坡形变过程中,进入临界失稳前变速阶段后呈现的形变速度相对缓慢,模拟结果稳定,最终强度折减系数为1.20。最优形态在地表界与底周界不变的前提下,保障黑山露天矿边坡安全的同时可节省首采区岩石剥离量约384万m3

    Abstract:

    In order to explore the optimal design method of slope morphology of open-pit coal mine, the south slope of Heishan Open-pit Mine was taken as an engineering example. Based on the simplified Bishop method and the theory of slope morphology effect, the slope with different concave and convex degrees under the two-dimensional perspective was designed, and the stability evaluations are carried out to obtain the better slope morphology. Based on the strength reduction method, the numerical simulation method is used to simulate the deformation process of the better slope morphology under the action of three-dimensional retaining. By analyzing the deformation characteristics, the optimal slope morphology is obtained by further improving the concave and convex degree of the slope surface. The results show that the slope morphology with better concave and convex degree under the two-dimensional design conditions is obtained. Due to the limitation of local slope stability, only two groups of composite steps can be arranged from the bottom to the top below the level of + 2385 m in the southern slope. The overall stability coefficient of the slope is 1.344, and the local stability coefficient is 1.204. Under the condition of three-dimensional design, the local and overall stability of the slope is improved under the influence of the support from the internal dump and the horizontal mining working side, and there is further morphological optimization space.  On the basis of the better shape, the optimal slope shape can be obtained by adding a group of combined steps to local steepen the slope section below + 2430 m level. In the process of numerical simulation , the deformation speed presented is relatively slow after entering the variable speed stage before critical instabilityand the final strength reduction coefficient is 1.20. Under the premise that the surface boundary and bottom boundary are unchanged, the optimal  slope morphology can ensure the slope safety and save about 3.84 million cubic meters of rock stripping in the first mining area.

  • 图  1   边坡断面形态效应原理示意

    Figure  1.   Principle of slope profile effect

    图  2   部分外凸边坡形态稳定性系数计算结果

    Figure  2.   Calculation results of FS with different slope form

    图  3   各形态边坡稳定性系数计算结果

    Figure  3.   Calculation results of FS with different slope form

    图  4   +2385 m边坡模型

    Figure  4.   Mode of +2385 m slope

    图  5   边坡模型位移

    Figure  5.   Displacement of slope model

    图  6   边坡模型位移

    Figure  6.   Displacement of slope model

    表  1   岩土体物理力学指标

    Table  1   Geotechnical physical mechanics index

    岩层黏聚力/kPa摩擦角/(°)容重/(kN•m−3)弹性模量/GPa泊松比
    中砂岩8838.926.13.380.29
    452914.10.80.33
    粉砂岩824026.65.480.28
    下载: 导出CSV
  • [1] 方玉树. 边坡稳定性分析条分法最小解研究[J]. 岩土工程学报,2008,30(3):331−335.

    FANG Yushu. The lowest solution of slice method for slope stability analysis[J]. Chinese Journal of Geotechnical Engineering,2008,30(3):331−335.

    [2] 张福海,梁 喆,陈 雷. 土质边坡稳定性分析向心条分法[J]. 防灾减灾工程学报,2016,36(4):544−550.

    ZHANG Fuhua,LIANG Zhe,CHEN Lei. Arc-to-center slice method for soil slope stability analysis[J]. Journal of Disaster Prevention and Mitigation,2016,36(4):544−550.

    [3] 王 振,叶晓明,刘永新. 考虑滑坡渐进破坏的改进简布条分法[J]. 岩土力学,2018,39(2):675−682.

    WANG Zhen,YE Xiaoming,LIU Yongxin. Improved Janbu slices method considering progressive destruction in landslide[J]. Rock and Soil Mechanics,2018,39(2):675−682.

    [4] 张晓平,吴顺川,张志增,等. 含软弱夹层土样变形破坏过程细观数值模拟及分析[J]. 岩土力学,2008,29(5):1200−1205. doi: 10.3969/j.issn.1000-7598.2008.05.010

    ZHANG Xiaoping,WU Shunchuan,ZHANG Zhizeng,et al. Numerical simulation and analysis of failure process of soil with weak intercalated layer[J]. Rock and Soil Mechanics,2008,29(5):1200−1205. doi: 10.3969/j.issn.1000-7598.2008.05.010

    [5]

    XU Tao,XU Qiang,MAO Lindeng,et al. A numerical analysis of rock creep-induced slide: A case study from Jiweishan Mountain, China[J]. Environmental Earth Sciences,2014,72(6):2111−2128. doi: 10.1007/s12665-014-3119-7

    [6] HOEK E, BRAY J W, 卢世宗. 岩石边坡工程[M]. 北京: 冶金出版社, 1983: 223−232.

    HOEK E, BRAY J W, LU Shizong. Rock slope engineering [M]. Beijing: Metallurgical Press, 1983: 223−232.

    [7] 卢坤林,朱大勇. 坡面形态对边坡稳定性影响的理论与试验研究[J]. 岩石力学与工程学报,2014,33(1):35−42.

    LU Kunlin,ZHU Dayong. Theoretical and experimental study of effects of slope topography on its stability[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(1):35−42.

    [8] 马 力,李克民,韩 流,等. 平直与水平凹形边坡力学结构及稳定性对比研究[J]. 采矿与安全工程学报,2016,33(4):728−733.

    MA Li,LI Kemin,HAN Liu,et al. Comparative study on stability and mechanical structure of straight slope and horizontal concave slope[J]. Journal of Mining & Safety Engineering,2016,33(4):728−733.

    [9] 王 东,张晓敏,曹兰柱,等. 凹边坡稳定性三维极限平衡法研究与应用[J]. 中国安全科学学报,2016,26(7):91−95.

    WANG Dong,ZHANG Xiaomin,CAO Lanzhu,et al. 3D limit-equilibrium method for calculating concave slope stability and its application[J]. China Safety Science Journal,2016,26(7):91−95.

    [10] 田 宇,张 波,刘博文,等. 露天矿多软弱夹层边坡变形机理与形态优化研究[J]. 煤炭科学技术,2021,49(6):189−194.

    TIAN Yu,ZHANG Bo,LIU Bowen,et al. Study on deformation mechanism and shape optimization of multi-weak interlayer slope in open-pit mine[J]. Coal Science and Technology,2021,49(6):189−194.

    [11] 佘长超,陈 涛,韩 流,等. 冻融循环下排土场软岩边坡抗剪特性及时效性研究[J]. 煤炭科学技术,2021,49(10):50−57.

    SHE Changchao,CHEN Tao,HAN Liu,et al. Research on shear characteristics and timeliness of soft rock slope of dump under freezing-thawing cycle[J]. Coal Science and Technology,2021,49(10):50−57.

    [12] 孙 江,田 光,韩 流,等. 内排阻水对非工作帮边坡稳定性影响规律研究[J]. 煤炭科学技术,2021,49(12):186−191. doi: 10.3969/j.issn.0253-2336.2021.12.mtkxjs202112023

    SUN Jiang,TIAN Guang,HAN Liu,et al. Study on influence of water blocking of internal dumping site on stability of non-working slope[J]. Coal Science and Technology,2021,49(12):186−191. doi: 10.3969/j.issn.0253-2336.2021.12.mtkxjs202112023

    [13] 王 珍,曹兰柱. 斜交断层影响下露天煤矿顺倾层状边坡稳定性研究[J]. 煤炭科学技术,2020,48(5):69−74.

    WANG Zhen,CAO Lanzhu. Study on dip bedded slope stability of open - pit coal mine under influence of oblique fault[J]. Coal Science and Technology,2020,48(5):69−74.

    [14] 王 东,张 禹,曹兰柱,等. 露天矿边坡稳定性的断面形态效应研究[J]. 中国安全科学学报,2018,28(1):105−111.

    WANG Dong,ZHANG Yu,CAO Lanzhu. et al. Study of section shape effect on stability of open-pit slope[J]. China Safety Science Journal,2018,28(1):105−111.

    [15]

    Alan W BISHOP. The use of the slip circle in the stability analysis of earth slopes[J]. Geotechnique,1955,5(1):7−17. doi: 10.1680/geot.1955.5.1.7

    [16] 李广贺,王 东,曹兰柱. 横采内排追踪压帮高度对端帮稳定性影响研究[J]. 安全与环境学报,2019,19(1):191−195.

    LI Guanghe WANG Dong,CAO Lanzhu. Influence of the covering height on the stability of the end slope in the condition of the criss-cross-way exploitation with inner dumping[J]. Journal of Safety and Environment,2019,19(1):191−195.

    [17] 张 禹,吕文伟. 含多层级软弱互层的露天矿边坡稳定性优化[J]. 露天采矿技术,2020,35(6):80−83.

    ZHANG Yu,LYU Wenwei. Optimization of slope stability of open-pit mine with multi-level weak interlayer[J]. Opencast Mining Technology,2020,35(6):80−83.

    [18] 赵红泽,邵志奔,杜海瑞,等. 露天矿背斜区内排土场边坡基底处理方式优选研究[J]. 煤炭科学技术,2021,49(2):77−84.

    ZHAO Hongze,SHAO Zhiben,DU Hairui,et al. Study on optimization of treatment methods for inclined basement of inner dump slope in anticline area of open-pit mine[J]. Coal Science and Technology,2021,49(2):77−84.

    [19] 张 萌,刘宏磊,乔文光,等. 排土场稳定性影响因素显著性研究[J]. 中国安全科学学报,2021,31(2):69−75. doi: 10.16265/j.cnki.issn1003-3033.2021.02.010

    ZHANG Meng,LIU Honglei,QIAO Wenguang,et al. Significant research on influencing factors of dump stability[J]. China Safety Science Journal,2021,31(2):69−75. doi: 10.16265/j.cnki.issn1003-3033.2021.02.010

    [20] 曹兰柱,黄浩轩,王 东,等. 胜利东二露天矿南帮滑坡区压煤回采边坡稳定性研究[J]. 煤炭科学技术,2019,47(10):81−87. doi: 10.13199/j.cnki.cst.2019.10.009

    CAO Lanzhu,HUANG Haoxuan,WANG Dong,et al. Research on slope stability of coal recovery on landslide area underlying southern slope in Shengli No. 2 East Open-pit Mine[J]. Coal Science and Technology,2019,47(10):81−87. doi: 10.13199/j.cnki.cst.2019.10.009

  • 期刊类型引用(10)

    1. 宋大钊,赵丹,纪润清,康忠全,王孟霞,罗思宇,何生全. 不同硬度煤样微观表面力学性质差异性研究. 晋控科学技术. 2024(02): 1-7 . 百度学术
    2. 牛艳奇,陈泰龙,胡相捧,商德勇,李占平,薛卓. 基于双量化评价指标的千米深井大采高液压支架适应性分析. 采矿与岩层控制工程学报. 2024(05): 119-131 . 百度学术
    3. 耿铭,孙静. 厚硬顶板悬顶致灾机理及切顶控制技术研究. 工矿自动化. 2024(11): 132-141 . 百度学术
    4. 康智斌. 大采高工作面坚硬顶板致灾防控技术研究. 煤. 2023(03): 53-57 . 百度学术
    5. 解盘石,吴少港,罗生虎,伍永平,陈建杰. 大倾角大采高开采支架动载失稳机理及控制. 煤炭科学技术. 2023(02): 58-71 . 本站查看
    6. 郭靖. 厚煤层疏水风化损伤规律及微爆破治理片帮技术. 矿业安全与环保. 2023(02): 109-113 . 百度学术
    7. 张浩,伍永平,解盘石. 大倾角大采高采场塑性区分布及主控因素分析. 煤炭科学技术. 2023(09): 55-64 . 本站查看
    8. 杨艺,谷雷. 大倾角煤层软岩底板破坏滑移规律及控制研究. 煤炭技术. 2022(06): 22-25 . 百度学术
    9. 刘程,李志华,杨科,池小楼,周鹏,赵士虎. 大倾角智能开采工作面矿压显现相似模拟研究. 矿业研究与开发. 2022(07): 86-91 . 百度学术
    10. 时昌鹏. 坚硬顶板大倾角软煤综采安全技术探析. 江西煤炭科技. 2021(04): 4-6 . 百度学术

    其他类型引用(4)

图(6)  /  表(1)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  13
  • PDF下载量:  44
  • 被引次数: 14
出版历程
  • 收稿日期:  2022-07-07
  • 网络出版日期:  2023-05-11
  • 刊出日期:  2023-04-29

目录

    /

    返回文章
    返回