高级检索

淮南低−中灰煤典型有害元素的分布、赋存特征及地质成因

Distribution, occurrence characteristics and geological origin of typical hazardous elements in low-medium ash coal of Huainan coalfield

  • 摘要: 随着我省煤炭资源的不断开发与加工利用,煤中典型有害元素的存在势必对当下煤炭资源的高效、清洁利用产生负面影响。在淮南煤田以往煤中典型有害元素大量数据分析的基础上,以淮南煤田主采煤层(13-1煤、11-2煤、8煤、6煤、4煤和1煤)为研究对象,采用电感耦合等离子体质谱(ICP-MS)、原子荧光光谱(AFS)、逐级化学提取和聚类分析等手段,综合分析了淮南煤田煤中典型有害元素赋存特征及地质成因,研究结果表明:①淮南煤田煤中典型有害元素Cr、Co、Se和Pb为“轻度富集”,Hg元素为“高度富集”,其余元素均处于“正常范围”;②淮南煤田煤中 As元素含量高值区主要位于煤田西部;Hg元素高值区位于煤田东部,其次西部;其余8个元素(Cr、Mn、Co、Ni、Se、Cd、Sb和Pb)含量均在淮南潘集地区(尤其是潘三煤矿附近)较高。经分析,潘集—朱集地区的后期岩浆热液作用可能是导致该地区煤中Cr, Mn, Co, Ni, Se, Cd, Sb, Pb等有害元素相对富集的主要原因;③Hg的赋存状态中含有较多的离子交换态,岩浆热液作用带来的无机组分可能对Hg元素的富集程度影响较小;成岩后期岩浆热液侵入活动对As的影响不明显,煤中As元素含量较低可能与成煤植物中As元素含量较低有关。

     

    Abstract: With the continuous development, processing and utilization of coal resources in our province, the existence of typical harmful elements in coal is bound to have a negative impact on the efficient and clean utilization of coal resources. Based on the mass data analysis of typical hazardous elements in coal of Huainan coalfield, taking the main coal seams (No.13-1, No.11-2, No.8, No.6, No.4 and No.1) as the research objects, the occurrence characteristics and geological genesis of typical hazardous elements were comprehensively analyzed by the means of ICP-MS, AFS, stepwise chemical extraction and cluster analysis. The results were as follows: ① Typical hazardous elements Cr, Co, Se and Pb in coal of Huainan coalfield are “lightly enriched”, Hg is “highly enriched” and other elements are in “normal range”; ② The high value area of As element content in Huainan coalfield was mainly located in the west of coalfield; the high value region of Hg element was located in the east of coalfield, followed by the west; the remaining eight elements (Cr, Mn, Co, Ni, Se, Cd, Sb and Pb) were all higher in coal of Panji mining area of Huainan coalfield (especially near Pansan coal mine). The late magmatic hydrothermal process in Panji-Zhuji region may be the main reason for the relative enrichment of hazardous elements such as Cr, Mn, Co, Ni, Se, Cd, Sb and Pb. ③ There were many ion-exchange States in the occurrence state of Hg, and the inorganic components brought by magmatic hydrothermal action may have little influence on the enrichment degree of Hg element. The magmatic hydrothermal intrusion in the late diagenesis period had no obvious influence on As, and the low content of As in coal may be related to the low content of As in coal-forming plants.

     

/

返回文章
返回