高级检索

粉煤灰基膏体充填脱氨方法研究综述

李亚娇, 鱼郑, 鞠恺, 任武昂, 唐仁龙, 金鹏康

李亚娇,鱼 郑,鞠 恺,等. 粉煤灰基膏体充填脱氨方法研究综述[J]. 煤炭科学技术,2023,51(6):265−274

. DOI: 10.13199/j.cnki.cst.2022-0552
引用本文:

李亚娇,鱼 郑,鞠 恺,等. 粉煤灰基膏体充填脱氨方法研究综述[J]. 煤炭科学技术,2023,51(6):265−274

. DOI: 10.13199/j.cnki.cst.2022-0552

LI Yajiao,YU Zheng,JU Kai,et al. A review of fly ash-based paste filling deamination methods[J]. Coal Science and Technology,2023,51(6):265−274

. DOI: 10.13199/j.cnki.cst.2022-0552
Citation:

LI Yajiao,YU Zheng,JU Kai,et al. A review of fly ash-based paste filling deamination methods[J]. Coal Science and Technology,2023,51(6):265−274

. DOI: 10.13199/j.cnki.cst.2022-0552

粉煤灰基膏体充填脱氨方法研究综述

基金项目: 

陕西省重点研发计划资助项目(2020ZDLNY06–07);西安科技大学博士启动金资助项目(2017QDJ062)

详细信息
    作者简介:

    李亚娇: (1978—),女,辽宁大石桥人,副教授,博士。E-mail:LIYJ@xust.edu.cn

    通讯作者:

    任武昂: (1986—),男,陕西西安人,讲师,博士。E-mail:wuangren004479@xust.edu.cn

  • 中图分类号: X506

A review of fly ash-based paste filling deamination methods

Funds: 

Shaanxi Province Key Research and Development Project (2020ZDLNY06-07); Xi 'an University of Science and Technology Doctoral Program (2017QDJ062)

  • 摘要:

    在论述粉煤灰基膏体充填技术现状的基础上,进一步探讨了粉煤灰基膏体充填中氨气释放所引起的井下空气环境恶化问题。通过分析氨气产生机理,发现由于粉煤灰中吸附的NH4 HSO4和(NH4)2SO4易溶于水且会生成NH4+,其在碱性环境下会转换为NH3释放出来。研究表明,现有的粉煤灰固体中吸附氨的去除方法,如加碱法、氧化法和加热法,都可将氨去除到合适范围,满足粉煤灰正常使用。但由于加碱法与氧化法需添加药剂且后续要将脱氨处理的粉煤灰加热干燥,加热法对热源有较高要求,高昂的成本使这些方法不能在粉煤灰基膏体充填脱氨处理中广泛应用。将粉煤灰制成浆液,并借鉴污水中物理化学脱氨的基础理论,提出用吹脱法、折点加氯法和磷酸铵镁沉淀法去除浆液中氨的技术措施。其中,吹脱法脱氨效果稳定且不需额外添加药剂,折点加氯法和磷酸铵镁沉淀法理论上可将浆液中的氨完全去除,但所需加药量大,且对加药量难以控制,影响氨的去除效果以及粉煤灰的性能。通过综合比较上述脱氨方法的技术特点,结合经济评价认为用吹脱法处理粉煤灰浆液的氨氮具有较好的工程应用前景。后续研究可通过试验或模拟的方式,优化吹脱法去除粉煤灰浆液中氨的操作条件,以期获得更好的脱氨效果。此外,还需持续关注脱氨后的粉煤灰浆液所配制充填膏体的性能。

    Abstract:

    On the basis of discussing the status of fly ash-based paste filling technology, this paper further discusses the deterioration of downhole air environment caused by ammonia release in fly ash-based paste filling. By analyzing the mechanism of ammonia generation, it was found that NH4 HSO4 and (NH4)2SO4 adsorbed in fly ash are soluble in water and generate NH4+, which will be converted to NH3 and released under alkaline environment. It is studied that the existing methods for removing ammonia adsorbed in fly ash solids, such as alkali addition, oxidation and heating methods, can remove ammonia to an appropriate range and meet the normal use of fly ash. However, since the alkali addition method and the oxidation method need to add chemicals and the fly ash after deamination treatment needs to be heated and dried, the heating method has higher requirements on the heat source, and the high cost makes these methods can not be widely used in the deamination treatment of fly ash-based paste filling. The fly ash is made into slurry, and the basic theory of physical and chemical deamination in sewage is used for reference, and the technical measures to remove ammonia in slurry by stripping method, break-point chlorination method and magnesium ammonium phosphate method are proposed. Among them, the stripping method is stable and does not require additional chemicals, while the break-point chlorination method and magnesium ammonium phosphate method can theoretically remove ammonia from slurry completely, but the required dosage is large, and it is difficult to control the dosage, which affects the ammonia removal effect and the performance of fly ash. Through a comprehensive comparison of the technical characteristics of the above deamination methods, combined with the economic evaluation that the stripping method for treating fly ash slurry has good prospects for engineering applications. Subsequent studies can optimize the operating conditions for the removal of ammonia from fly ash slurry by the stripping method through experiments or simulations, with a view to obtaining better deamination results. In addition, the performance of the filled paste formulated from the deaminated fly ash slurry needs to be paid continuous attention.

  • 内排土场是近水平、缓倾斜煤层露天开采的必然产物,其稳定性关系到矿山安全高效生产[1]。随着露天矿产量规模的加大,外排占地费用随之升高,为了缩短运距少占土地,降低开采成本,增大经济效益,许多露天煤矿的排弃物料不得不由外排转入内排,内排土场边坡稳定性问题日趋严重,导致发生变形及滑坡灾害频频发生[2]。如神话宝日希勒露天煤矿、霍林河北露天煤矿内排土场均发生过一定的变形或滑坡现象,给露天矿绿色高效生产带来极大的安全隐患。

    近些年来,许多专家学者对边坡稳定性影响因素展开了大量理论研究与实践探索,取得了丰硕的成果。王东等[3]通过建立断层作用下滑体的力学模型,推导出顺倾层状边坡分条稳定系数表达式,定量分析断层位置对露天矿顺倾层状边坡稳定性的影响;苏永华等[4]通过建立降雨入渗分析(LSGA)模型及该模型下边坡稳定性系数表达式来综合考虑湿润层土体含水量分布情况与饱和层内平行于坡面渗流作用对边坡稳定性的具体影响;曹兰柱等[56]采用二维刚体极限平衡与三维数值模拟相结合的方法分析了横采深部开挖角度、内排跟踪距离及断层位置对边坡稳定性的影响;周寿昌[7]结合我国露天煤矿内部排土经验以及在建露天煤矿的特点,论述了影响内排土场稳定性的排土台阶设置位置和发展方式、地质、水文地质、工程地质等因素。尽管学者们对边坡稳定性影响因素进行了大量研究,但对顺倾软弱起伏基底内排土场边坡稳定性影响因素分析较少,未达到统一的规律性认识。因此,有必要定量分析断层、边坡形态等因素对内排土场边坡稳定性影响规律,用于解决内排土场空间形态优化难题,对实现内排土场安全、高效排土具有重要意义[811]

    综上所述,以霍林河南露天矿内排土场边坡为研究对象,应用刚体极限平衡方法与数值模拟相结合的手段,就顺倾起伏基底排土场边坡稳定性及各项因素对其影响进行分析,揭示内排土场边坡变形特征,设计顺倾起伏基底内排土场边坡空间形态,为类似边坡工程的滑坡防治提供参考。

    霍林河南露天煤矿年产量为18 Mt,平均剥采比6 m3/t,年剥离量约为108 Mm3,内排空间需求量较大。内排土场基底主要由泥岩、不同粒径的砂岩、炭质泥岩、黏土、薄煤层构成。内排土场的基底倾角变化不大,通常在0°~10°,但此研究区域基底受Fd15断层影响,形成倾斜起伏内排土场基底。Fd15断层走向NW,倾角58°~75°,最大落差28 m。典型工程地质剖面如图1所示,岩土体物理力学指标见表1

    图  1  典型工程地质剖面
    Figure  1.  Geologic profile of typical engineering
    表  1  岩土体物理力学指标
    Table  1.  Physical and mechanical indexes of rock and soil
    岩石容重γ/(g·cm−3)黏聚力C/kPa内摩擦角φ/(°)弹性模量E/MPa泊松比μ
    排弃物料1.91524
    1.9020.0–27.50.030.3
    粉质黏土1.9832.016.870.250.4
    黏土1.9818.616.030.420.4
    下载: 导出CSV 
    | 显示表格

    刚体极限平衡法是当今解决工程实际问题,对边坡稳定性进行定量分析最常用的方法,其基本原理是将岩土体视为刚体,不考虑变形问题,假定滑体各分条块在某种条件下都达到极限平衡状态,将强度折减系数定义为边坡稳定的安全系数。其中简化Bishop法是边坡稳定分析考虑土条间相互作用力的圆弧滑动分析法,剩余推力法适用于任意滑面的边坡稳定性计算,基于这2 种方法开发二维刚体极限平衡计算软件定量分析内排土场边坡稳定性[1214]

    结合霍林河内排土场排土状况,确定台阶高度(24 m)、平盘宽度(40 m),选择3个排弃高度H(168 m, 216 m, 264 m),6个边坡角α(15°~20°)和6个基底倾角β(5°~10°),分别计算变化坡高H、边坡角α和基底倾角β情况时内排土场边坡稳定性,计算结果如图2图4所示。

    图  2  边坡稳定性在排弃高度168 m时的计算结果
    Figure  2.  Slope stability calculation results at discharge level 168 m
    图  3  边坡稳定性在排弃高度216 m时的计算结果
    Figure  3.  Slope stability calculation results at discharge level 216 m

    图24可知,在不同边坡高度条件下,边坡稳定性系数随着基底倾角与边坡角的增大而降低,内排土场边坡稳定性明显降低,两者全部近似成线性关系,前者基底倾角每增加1°,边坡稳定性平均降低0.035,后者边坡角每增大1°,边坡稳定性平均降低0.056,并且通过图5得出,相对于基底倾角而言,边坡稳定性系数对边坡角更加敏感(即下降梯度ΔFsαFsβ)。边坡稳定性随着边坡高度的增加而降低,同时关注下降梯度(ΔFsH)可以发现,通过降低边坡高度来提高边坡稳定性的相对效果较差。

    图  4  边坡稳定性在排弃高度264 m时的计算结果
    Figure  4.  Slope stability calculation results at discharge level 264 m
    图  5  边坡稳定性在排弃标高不同的条件下与边坡角、基底倾角的关系
    Figure  5.  Relation of slope stability with basal angle and slope angle based on different discharge level

    基底形态是影响内排土场稳定性的重要因素之一,而基底断层的相对位置显著改变了排土场基底形态,进而影响排土场边坡稳定性[1517]

    在之前研究排土场边坡的3个影响因素(边坡高度、边坡角、基底倾角)的基础上,固定边坡高度H=216 m,边坡角α=20°,基底倾角β=5°和断层倾角60°,单独对基底断层与排土场边坡的相对空间位置关系对内排土场边坡稳定性的影响展开研究,分别计算改变断层落差h(20 m, 30 m, 40 m)和断层与内排土场边坡坡底线水平距离L(100 m, 150 m, 200 m, 250 m, 300 m, 350 m)条件下边坡稳定性,计算结果如图6所示。

    图  6  变化断层落差与相对位置条件下内排土场边坡稳定性计算结果
    Figure  6.  Calculation results of stability of internal dump slope under varying fault drop and relative position

    通过图6可知,内排土场边坡被断层切分为上下两部分,对于上部边坡而言,边坡潜在滑坡模式为沿着基底滑动,然后切穿排土场,下部边坡潜在滑坡模式为切层–顺层滑动。随着排土场推进距离的逐渐增加,边坡潜在滑移位置会发生改变,从上部边坡沿下盘基底切层–顺层滑动转变为从下部边坡沿上盘基底切层–顺层滑动。通过表2中的数据得出,边坡稳定性随着断层落差的增加先降低后升高,随着断层相对坡脚距离L的增加先升高后降低。据此得出,在边坡高度216 m、边坡角20°、基底倾角5°的情况下,断层落差为30 m时,稳定性系数最低。

    表  2  不同空间位置断层的边坡稳定性计算结果
    Table  2.  Calculation results of slope stability in different spatial positions of faults.
    L/m 不同边坡高度下h/m
    100 150 200 250 300 350
    20 1.35 1.36 1.38 1.3 1.29 1.283
    30 1.34 1.34 1.36 1.29 1.29 1.28
    40 1.34 1.35 1.37 1.39 1.3 1.29
    下载: 导出CSV 
    | 显示表格

    根据中国矿业大学编制的《霍林河南露天矿开采程序的优化研究》报告确定霍林河南矿内排标高为+926 m,台阶高度24 m。内排土场边坡稳定性分析时,选取了1个工程位置设计内排土场沿煤层底板推进不同距离时内排土场极限边坡形态,使得内排土场边坡达到极限位置状态时仍然能够保持稳定。

    内排土场基底被正断层Fd15切断,断层与上下盘交线落差23.66 m,断层倾角55.09°,断层倾向与边坡倾向一致。基底被断层切断成上下2部分,上部分基底倾角5°~6.3°,变化较小,下部分基底倾角9.28°。剖面排土场形态设计至推进距离300 m处。排土场边坡形态从紧邻断层位置处开始向前推进300 m距离时结束。分别设计各阶段排土台阶高度、平盘宽度以及边坡角,使其满足安全储备系数。剖面发展至不同工程位置极限边坡形态结果如图7所示。

    图  7  剖面发展至不同工程位置的极限边坡形态
    Figure  7.  Profile slope shape in different propelling position

    内排土场边坡从边坡紧邻断层位置开始,推进至不同工程位置时各个阶段参数见表3,使边坡形态达到极限状态,满足安全储备系数,此时内排土场边坡推进至不同工程位置内排空间最大,实现经济效益最大化。在顺倾起伏基底排土场向前发展过程中,边坡稳定性系数呈先增大后减小的规律。通过图8可知,在此剖面推进过程中,保持边坡稳定性系数近似不变,Fs≈1.20,随推进距离增加边坡角呈先增大后减小的规律,此时验证了顺倾起伏基底内排土场向前发展过程中边坡稳定性随断层相对坡脚距离的增加先增大后减小的规律。

    表  3  剖面发展至不同工程位置的内排土场边坡参数
    Table  3.  Profile of the dump slope developed from different sections to different engineering locations
    推进位置台阶数量最后一个台阶高度/m平盘宽度/m边坡角/(°)稳定性系数
    边坡紧邻断层826.392921.781.21
    L=100 m832.62921.971.21
    L=150 m916.582921.241.21
    L=200 m924.75+812水平及以下38 m20.421.20
    +812水平以上29 m
    L=250 m932.38+812水平及以下40 m20.381.215
    +812水平以上29 m
    L=300 m1015.59+812水平及以下37 m19.901.214
    +812水平以上29 m
    下载: 导出CSV 
    | 显示表格
    图  8  剖面发展至不同工程位置的边坡角
    Figure  8.  Profile slope angle in different propelling position

    刚体极限平衡法最大缺点是计算精度粗糙,过程复杂,并且在计算过程中未考虑岩土体内部应力–应变关系,无法深入分析边坡岩土体内部变形的破坏过程[18]。因此,对于复杂的变形破坏机制,采用数值模拟方法进行计算得出的结果更符合实际[19]。FLAC3D程序的基本原理是拉格朗日差分法,采用了显示拉格朗日算法和混合–离散分区技术,能够非常准确的模拟材料的塑性破坏和流动,非常适合解决岩土工程中经常遇到的大变形[20]。基于此,本节采用大型岩土分析软件FLAC3D,研究霍林河南露天矿内排土场不同断层与边坡空间位置时边坡的稳定性和滑坡模式,为了降低网格划分对计算结果的影响,统一建立高300 m、宽20 m、长1 000 m的数值预设模型。以0作为两侧水平位移,即水平约束为边界条件,将铅垂位移与底部水平位移设为0,采用底部边界固定的方式进行分析,以重力加载作为模型加载方式,同时,模型坡面及顶部均采用自由面。推进不同位置时内土场边坡最大位移云图如图9所示。

    图  9  剖面发展至不同工程位置位移
    Figure  9.  Displacement nephogram in different propelling position

    通过图9可知,边坡体内部各点的位移分布规律,断层、基底弱层与边坡面所包络形成的潜在滑体与滑床之间有明显位移,尤其当断层与边坡面相距较近时更为明显,上部岩体位移以下沉为主,下部岩体位移以水平为主,表明滑坡是由于上部岩体在自身重力下发生滑移,进而挤压下部岩体沿基底弱层向临空面滑移而发生的推动式滑坡。对比发展至不同工程位置时边坡的位移云图可知,断层距离坡脚150~200 m时,边坡滑移位置发生改变。推进距离小于150 m时,以上部剪切圆弧为侧界面–底板基底弱层为底界面相结合的组合滑动,大于200 m时,基底弱层的部分区域形成了塑性贯通,此时边坡的滑坡模式是以下部剪切圆弧为侧界面–底板基底弱层为底界面的组合滑动。随着内排土场继续向前推进,断层对内排土场边坡稳定性的影响逐渐降低,断层效应逐渐消失。

    1) 顺倾软弱起伏基底内排土场边坡稳定性分析应兼顾边坡形态、断层等多重因素;其稳定性与边坡高度、边坡角、基底倾角呈负相关,与断层落差呈先降低后升高、与断层相对坡脚距离L呈先升高后降低关系。

    2) 内排土场边坡滑坡模式随排土工程向前发展,由上部边坡沿下盘基底弱层切层–顺层滑动转变为从下部边坡沿上盘基底弱层切层–顺层滑动。

    3) 霍林河南露天矿内排土场边坡高度216 m、边坡角20°、基底倾角5°的工况下,断层落差为30 m时,其稳定性系数最小。

    4) 霍林河南露天矿内排土场在跨过断层初期,向前推进150 m后,应自下向上逐渐增加平盘宽度,减小边坡角,使边坡成折线形,增大本阶段内排空间,实现露天矿高效安全生产。

  • 图  1   2015—2019年我国粉煤灰产量与利用情况

    Figure  1.   Production and utilization of fly ash in China, 2015—2019

    图  2   膏体NH3释放示意

    CA—膏体中NH3的浓度;Ci—气液两相界面中NH3的浓度;Pi—气液两相界面中NH3的分压;PB—空气中NH3的分压

    Figure  2.   Schematic of paste NH3 release

    图  3   含氨粉煤灰脱氨及膏体制备流程

    Figure  3.   Ammonia-containing fly ash deamination and paste preparation process

    图  4   水溶液中氨存在形态与pH关系

    Figure  4.   Relationship between the form of ammonia present in aqueous solution and pH

    图  5   粉煤灰浆液质量浓度与pH关系

    Figure  5.   Fly ash slurry mass concentration versus pH

    表  1   粉煤灰固体干法/半干法脱氨

    Table  1   Solid fly ash deamination methods

    方法优点缺点
    加碱法[8,35-36,38] 成本低,脱氨效过较好,可将粉煤灰中的总氨含量降低到100×10−6以下 使用碱会产生额外的费用,粉煤灰需干燥处理,成本较高
    氧化法[39-40] 试剂的使用量少,投资小,维护成本低,脱氨效率可达95% 粉煤灰需干燥处理,成本较高,若次氯酸钙过量可能会对粉煤灰性能造成影响
    加热法[8,42-43] 对粉煤灰特性影响较小,不需要额外药剂,粉煤灰不需干燥,氨的去除率可达90% 必须在反应器中配备完善的系统,防止粉煤灰结块沉积,并需要加热消耗能源,处理成本高
    下载: 导出CSV

    表  2   粉煤灰浆液湿法脱氨

    Table  2   Fly ash slurry deammoniation methods

    方法优点缺点
    吹脱法[33,4447] 工艺流程简单,效果稳定有效,吹脱出的氨气可被回收利用 吹脱效率与停留时间、气液比正相关,要短时间内达到较好的吹脱效果,需要承担较高的运行成本\
    折点加氯法[4852] 反应速度快,脱氮效果稳定,理论上可以把氨氮完全去除 加氯量大,成本高,并且对加氯量难以准确控制,产生的余氯和酸可能对粉煤灰性能造成影响
    磷酸铵镁沉淀法[5355] 操作简单,受温度影响小,投资成本较低 药剂需要量较大,成本较高,产生的磷酸铵镁可能对粉煤灰性能造成影响
    下载: 导出CSV

    表  3   不同方法脱氨成本

    Table  3   Cost of deammoniation by different methods

    方法处理条件药剂费
    /(元·t−1)
    电费
    /(元·t−1)
    水费
    /(元·t−1)
    总运行成本/(元·t−1)
    加碱法需加入10 kg氢氧化钙和20 kg水,持续搅拌后加热干燥[8]6.80093.4150.082100.300
    氧化法需加入1.22 kg次氯酸钙和20 kg 水,持续搅拌后加热干燥[61]4.88091.1400.08296.102
    吹脱法需加入666.67 kg水,曝气量为1 800 m3/h,持续曝气10.32510.325
    注:氢氧化钙价格为680元/t,次氯酸钙价格为4000元/t,工业用水价格为4.1元/t,电费为0.35元/(kW·h)。
    下载: 导出CSV
  • [1] 刘建功,李新旺,何 团. 我国煤矿充填开采应用现状与发展[J]. 煤炭学报,2020,45(1):141−150.

    LIU Jiangong,LI Xinwang,HE Tuan. Application status and prospect of backfill mining in Chinese coal mines[J]. Journal of China Coal Society,2020,45(1):141−150.

    [2] 钱鸣高,许家林,缪协兴. 煤矿绿色开采技术[J]. 中国矿业大学学报,2003(4):5−10.

    QIAN Minggao,XU Jialin,MIAO Xiexing. Green technique in coal mining[J]. Journal of China University of Mining & Technology,2003(4):5−10.

    [3] 刘 音,王 凯,郭 皓,等. 含氨粉煤灰对充填膏体性能影响试验研究[J]. 煤炭工程,2020,52(10):149−153.

    LIU Yin,WANG Kai,GUO Hao,et al. Experimental study on the effect of ammonia in fly ash on the filling paste performance[J]. Coal Engineering,2020,52(10):149−153.

    [4] 朱小文. 燃煤发电厂SCR脱硝技术原理及催化剂的选择[J]. 环境科学与技术,2006(9):98−99,121.

    ZHU Xiaowen. Technical principle of SCR denitrification and selection of catalyst for coal-burning power plant[J]. Environmental Science & Technology,2006(9):98−99,121.

    [5] 姜大维,孔祥鹏,衣贺昌,等. 燃煤电厂烟气脱硝氨逃逸的试验研究及应用[J]. 电站系统工程,2014,30(2):63−64.

    JIANG Dawei,KONG Xiangpeng,YI Hechang,et al. Experimental study and application of ammonia escape in flue gas DeNOx system[J]. Power System Engineering,2014,30(2):63−64.

    [6]

    SCHREIFELS J J,WANG S,HAO J. Design and operational considerations for selective catalytic reduction technologies at coal-fired boilers[J]. Frontiers in Energy,2012,6(1):98−105. doi: 10.1007/s11708-012-0171-4

    [7]

    ZHOU C,ZHANG L,DENG Y,et al. Research progress on ammonium bisulfate formation and control in the process of selective catalytic reduction[J]. Environmental Progress & Sustainable Energy,2016,35(6):1664−1672.

    [8] 唐 潇,徐仁博,马云龙,等. 钙基碱对粉煤灰中氨脱附影响的试验研究[J]. 洁净煤技术,2022,28(2):152−159.

    TANG Xiao,XU Renbo,MA Yunlong,et al. Effect of calcium base alkali on ammonia desorption in fly ash[J]. Clean Coal Technology,2022,28(2):152−159.

    [9]

    YIN B,KANG T,KANG J,et al. Investigation of the hydration kinetics and microstructure formation mechanism of fresh fly ash cemented filling materials based on hydration heat and volume resistivity characteristics[J]. Applied Clay Science,2018,166:146−158. doi: 10.1016/j.clay.2018.09.019

    [10] 张 鹏,高 谦,王有团,等. 粉煤灰掺量对泵送膏体充填料浆的抗离析性能影响规律[J]. 中国有色金属学报,2022,32(1):302−312.

    ZHANG Peng,GAO Qian,WANG Youtuan,et al. Effect of fly ash content on anti segregation performance of pumped paste filling slurry[J]. The Chinese Journal of Nonferrous Metals,2022,32(1):302−312.

    [11]

    YANG J,YANG B,YU M. Pressure study on pipe transportation associated with cemented coal gangue fly-ash backfill slurry[J]. Applied Sciences,2019,9(3):512. doi: 10.3390/app9030512

    [12] 环境保护部. 2017年全国大、中城市固体废物污染环境防治年报[R]. 2018.
    [13] 孙 敏,唐 莹,郝亚婷,等. 红枫湖水源地附近粉煤灰堆积场重金属存在形态及静态淋溶规律[J]. 环境化学,2021,40(3):678−686.

    SUN Min,TANG Ying,HAO Yating,et al. Heavy metal existence and static leaching rules in fly ash accumulation field near Hongfeng Lake watersource[J]. Environmental Chemistry,2021,40(3):678−686.

    [14] 陈爱玖,李 超,段爱萍,等. 磨细粉煤灰制备粉煤灰水泥的强度分析[J]. 混凝土,2020(1):64−68. doi: 10.3969/j.issn.1002-3550.2020.01.015

    CHEN Aijiu,LI Chao,DUAN Aiping,et al. Strength of cement containing ground fly ash[J]. Concrete,2020(1):64−68. doi: 10.3969/j.issn.1002-3550.2020.01.015

    [15] 杨 杨,王亦聪,高 凡,等. 基于温度–应力试验的粉煤灰混凝土抗裂性能[J]. 硅酸盐学报,2019,47(8):1101−1108.

    YANG Yang,WANG Yicong,GAO fan,et al. Cracking Resistance of fly ash concrete studied with temperature-stress Tests[J]. Journal of the Chinese Ceramic Society,2019,47(8):1101−1108.

    [16]

    YAO Z T, JI X S, SARKER P K, et al. A comprehensive review on the applications of coal fly ash[J]. Earth-Science Reviews, 2015, 141.

    [17] 殷小琳,成 晨,丁国栋,等. 含钙废弃物对盐碱土改良和胡枝子生长影响[J]. 中国水土保持科学(中英文),2020,18(6):115−122.

    YIN Xiaolin,CHENG Chen,DING Guodong,et al. Improvement and effects of calcium-containing wastes on saline-alkali soil and growth of Lespedeza bicolor Turcz[J]. Science of Soil and Water Conservation,2020,18(6):115−122.

    [18] 孙克刚,张子武,焦 有,等. 粉煤灰磁化肥对杂交水稻效应研究[J]. 土壤通报,2001(5):225−22.

    SUN Kegang,ZHANG Ziwu,JIAO You,et al. Effect of magnetized fly – ash compound fertilizer on rice growth[J]. Chinese Journal of Soil Science,2001(5):225−22.

    [19] 李文清, 邹 萍. 粉煤灰吸附废水中重金属的研究现状与进展[J/OL]. 工业水处理:1-15[2022-04-07].DOI: 10.19965/j.cnki.iwt.2021-0698

    LI Wenqing, ZOU Ping. Research status and progress of fly ash adsorption of heavy metals in wastewater [J / OL] Industrial Water Treatment: 1-15 [2022-04-07] DOI:10.19965/j.cnki. iwt. 2021-0698.

    [20] 谢承昊,高立华,湛文龙,等. 微波场下粉煤灰/电石渣负载Na2O协同脱硫脱硝[J]. 环境工程,2022,40(2):81−87.

    XIE Chenghao,GAO Lihua,ZHAN Wenlong,et al. Experimental study on simultaneous denitration and desulfurization by fly ash and carbide slag supported Na2O under microwave field[J]. Environmental Engineering,2022,40(2):81−87.

    [21] 高志娟,王相人. 煤粉炉粉煤灰提取氧化铝活化技术研究进展[J]. 无机盐工业,2021,53(2):24−27.

    GAO Zhijuan,WANG Xiangren. Research progress in alumina activation technology from pulverized-coal fly ash[J]. Inorganic Chemicals Industry,2021,53(2):24−27.

    [22] 张小东,赵飞燕. 粉煤灰中镓提取与净化技术的研究[J]. 煤炭技术,2018,37(11):336−339.

    ZHANG Xiaodong,ZHAO Feiyan. Study on extraction and purification technology of gallium in Fly Ash[J]. Coal Technology,2018,37(11):336−339.

    [23] 谢和平, 吴立新, 郑德志, 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(7): 1949–1960.

    XIE Heping, WU Lixin, ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in, 2025 [J]. Journal of China Coal Society, 2019, 44(7): 1949–196.

    [24] 钱鸣高,许家林. 煤炭工业发展面临几个问题的讨论[J]. 采矿与安全工程学报,2006,23(2):127−132.

    QIAN Minggao,XU Jialin. Discussi on of Several Issues Concerning the Development of Coal Industry in China[J]. Journal of Mining & Safety Engineering,2006,23(2):127−132.

    [25] 戴华阳. 岩层与地表移动变形量的时空关系及描述方法[J]. 煤炭学报, 2018, 43(S2): 450–459.

    DAI Huayang. Mining subsidence variables and their time-space relationship description [J] Journal of China Coal Society, 2018, 43(S2): 450–459.

    [26] 孙希奎. “三下”采煤膏体充填开采技术研究[J]. 煤炭科学技术,2021,49(1):218−224.

    SUN Xikui. Research on paste backfilling mining technology of coal mining under buildings,water bodies and railways[J]. Coal Science and Technology,2021,49(1):218−224.

    [27] 任 昂,冯国瑞,郭育霞,等. 粉煤灰对煤矿充填膏体性能的影响[J]. 煤炭学报,2014,39(12):2374−2380.

    REN Ang,FENG Guorui,GUO Yuxia,et al. Influence on performance of coal mine filling paste with fly ash[J]. Journal of China Coal Society,2014,39(12):2374−2380.

    [28] 余伟健,万 幸,刘芳芳,等. 红土膏体充填材料及其物理特性试验研究[J]. 煤炭科学技术,2021,49(2):61−68.

    YU Weijian,WAN Xing,LIU Fangfang,et al. Experimental study on red clay paste backfilling material and its physical characteristics[J]. Coal Science and Technology,2021,49(2):61−68.

    [29] 梁彦波,孔 贺,王昌祥,等. 粉煤灰膏体充填置换条带煤柱强度研究[J]. 矿业研究与开发,2019,39(7):84−87.

    LING Yanbo,KONG He,WANG Changxiang,et al. Study on the strength of fly ash paste filling replacing strip pillar[J]. Mining Research and Development,2019,39(7):84−87.

    [30] 尹 博,康天合,康健婷,等. 粉煤灰膏体充填材料水化动力过程与水化机制[J]. 岩石力学与工程学报,2018,37(S2):4384−4394.

    YIN Bo,KANG Tianhe,KANG Jianting,et al. The research of the hydration kinetics process and hydration mechanismof fly ash paste filling materials[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(S2):4384−4394.

    [31] 何荣军,熊云威,陈玉涛,等. 粉煤灰膏体充填主要参数对上覆岩层控制的模拟研究与比较分析[J]. 矿业安全与环保,2018,45(3):16−19.

    HE Rongjun,XIONG Yunwei,CHEN Yutao,et al. Simulation study and comparative analysis of overlying strata control by main parameters of fly ash paste filling[J]. Mining Safety & Environmental Protection,2018,45(3):16−19.

    [32] 张思佳,吴 葵,纪国晋,等. 掺脱硝粉煤灰混凝土中的氨气释放规律研究[J]. 水利水电技术,2020,51(10):202−208.

    ZHANG Sijia,WU Kui,JI Guojin,et al. Study on law of ammonia releasing from concrete mixed with denitrated fly ash[J]. Water Resources and Hydropower Engineering,2020,51(10):202−208.

    [33] 刘铁军,王光华,李文兵,等. 温度对氨吹脱工艺中氨扩散传质的影响[J]. 武汉科技大学学报,2012,35(6):422−426.

    LIU Tiejun,WANG Guanghua,LI Wenbing,et al. Effect of temperature on ammonia diffusion mass transfer in air-stripping technology[J]. Journal of Wuhan University of Science and Technology,2012,35(6):422−426.

    [34]

    SHOU L,HAYES J,CHENG W,et al. Characterization of ammonia gas release from concrete added with ammoniated fly ash[J]. Air Quality, Atmosphere & Health,2014,7(4):505−503.

    [35]

    GASIOROWSKI A S, JR H J F . Method for removing ammonia from ammonia contaminated fly ash [P]. Australia: AU3497600, 2000-09-14.

    [36]

    GASIOROWSKI A S ,JR. H J F . Method for removing ammonia from ammonia contaminated fly ash [P]. WO0050123, 2000-08-31.

    [37]

    BITTNER J, GASIOROWSKI S, HRACH F. Removing ammonia from fly ash[C]//Proceedings of International Ash Utilization Symposium, The University of Kentucky, Center for Applied Energy Research, Lexington, USA. 2001: 15-24.

    [38]

    GAO Y,CHEN X,FUJISAKI G,et al. Dry and semi-dry methods for removal of ammonia from pulverized fuel combustion fly ash[J]. Energy & fuels,2002,16(6):1398−1404.

    [39]

    MAZUR M,JANDA T,ŻUKOWSKI W. Chemical and thermal methods for removing ammonia from fly ashes[J]. Czasopismo Techniczne,2017,10(6):31−50.

    [40]

    KASTNER J R,MILLER J,KOLAR P,et al. Catalytic ozonation of ammonia using biomass char and wood fly ash[J]. Chemosphere,2009,75(6):739−744.

    [41]

    LIU K W,CHEN T L. Studies on the thermal decomposition of ammonium sulfate[J]. Chemical Research and Application,2002,14(6):737−738,765.

    [42]

    CONN R, SARUBAC N, LEVY E. Removing ammonia from fly ash, “Lehigh energy update”[J]. The Journal of The Minerals, Metals & Materials Society, 2001, 53(9): 4.

    [43]

    IZABELLA M,SYLWESTER K,WALDEMAR G. Ammonia desorption from fly ash[J]. E3S Web of Conferences,2019,82:01012. doi: 10.1051/e3sconf/20198201012

    [44] 甘怀斌,胡兆吉,高 涛. 吹脱法处理高浓度氨氮废水的气液传质特性[J]. 南昌大学学报(工科版),2019,41(3):215−220.

    GAN Huaibin,HU Zhaoji,GAO Tao. Mass transfer characteristics of high concentration ammonia nitrogen wastewater treated by air stripping[J]. Journal of Nanchang University(Engineering & Technology),2019,41(3):215−220.

    [45] 张 琳,李子富,张 扬,等. 吹脱法回收源分离尿液中氨氮的试验研究[J]. 环境工程,2014,32(3):38−42.

    ZHANG Lin,LI Zifu,ZHANG Yang,et al. Nitrogen Recovery from Source-Separated Urine by Air Stripping[J]. Environmental Engineering,2014,32(3):38−42.

    [46] 周伟博,伊学农,施 柳,等. 吹脱联合MAP法处理高氨氮废水的研究[J]. 中国给水排水,2014,30(21):110−113.

    ZHOU Weibo,YI Xuenong,SHI Liu,et al. Treatment of High-concentration Ammonia Nitrogen Paraquat[J]. China Water & Wastewater,2014,30(21):110−113.

    [47] 胡筱敏,鹿钦礼,刘 龙,等. 油页岩干馏废水吹脱脱氮的影响因素分析[J]. 环境工程,2019,37(9):103−107.

    HU Xiaomin,LU Qinli,LIU Long,et al. Influencing factors of blow-off denitrification for oil shale dry distillation wastewater[J]. Environmental Engineering,2019,37(9):103−107.

    [48]

    REHAB K,MOHAMED A,NABIL A J,et al. Chlorination breakpoint with nitrite in wastewater treatment: A full factorial design experiments[J]. Journal of Environmental Chemical Engineering,2021,9(1):104903.

    [49] 白雁冰. 折点加氯法脱氨氮后余氯的脱除[J]. 环境科学与管理,2008(11):102−108.

    BAI Yanbing. Degradation chlorine after break-point coloration to degradation NHg-N[J]. Environmental Science and Management,2008(11):102−108.

    [50] 岳 楠, 周康根, 董舒宇, 等. 次氯酸钠氧化去除废水中氨氮的研究[J]. 应用化工, 2015, 44(4): 602–604,610.

    YUE Nan, ZHOU Kanggen, DONG Shuyu, et al. Removal of ammonia-nitrogen from wastewater by sodium hypochlorite oxidization [J]. Applied Chemical Industry, 2015, 44(4): 602–604,610.

    [51] 胡大龙,王正江,杨万荣,等. 折点加氯对脱硫废水中氨氮去除工艺优化[J]. 工业水处理,2021,41(6):227−231.

    HU Dalong,WANG Zhengjiang,YANG Wanrong,et al. Process optimization of removal of ammonia nitrogen from FGD wastewater by break-point chlorination[J]. Industrial Water Treatment,2021,41(6):227−231.

    [52] 李婵君,贺剑明. 折点加氯法处理深度处理低氨氮废水[J]. 广东化工,2013,40(20):43−44.

    LI Chanjun,HE Jianming. Break point chlorination advanced treatment of low ammonia water[J]. Guangdong Chemical Industry,2013,40(20):43−44.

    [53] 薛 丹,曹红梅,王 璟,等. 火电厂脱硫废水氨氮去除工艺试验研究[J]. 工业水处理,2018,38(8):28−32.

    XUE Dan,CAO Hongmei,WANG Jing,et al. Experimental research on the ammonia nitrogen removing process from desulfurization wastewater in a thermal power plant[J]. Industrial Water Treatment,2018,38(8):28−32.

    [54]

    RAMESH K,SANKHA C,PARIMAL P. Membrane-integrated physico-chemical treatment of coke-oven wastewater: transport modelling and economic evaluation[J]. Environmental science and pollution research international,2015,22(8):6010−6123. doi: 10.1007/s11356-014-3787-6

    [55] 张学会,韩 祥,刘 燕. 磷酸铵镁沉淀法处理高氨氮脱硫废水药剂成本分析[J]. 中氮肥,2020,214(4):55−57.

    ZHANG Xuexue,HAN Xiang,LIU Yan. Reagent cost analysis of ammonium magnesium phosphate precipitation method for treating high ammonia nitrogen desulfurization wastewater[J]. M–Sized Nitrogenous Fertilizer Progress,2020,214(4):55−57.

    [56]

    RAHMAN M M,SALLEH M A M,RASHID U,et al. Production of slow release crystal fertilizer from wastewaters through struvite crystallization: a review[J]. Arabian Journal of Chemistry,2014,7(1):139−155. doi: 10.1016/j.arabjc.2013.10.007

    [57] 林亲铁,刘国光,尹光彩,等. 磷酸铵镁法回收污泥浓缩液中氮磷的影响因素研究[J]. 环境工程学报,2010,4(9):2029−2032.

    LIN Qintie,LIU Guoguang,YIN Guangcai,et al. Nitrogen and phosphorus recovery via magnesium ammonium phosphate sedimentation from sludge concentrated liquor[J]. Chinese Journal of Environmental Engineering,2010,4(9):2029−2032.

    [58] 汤 琪,罗固源,季铁军,等. 磷酸铵镁同时脱氮除磷技术研究[J]. 环境科学与技术,2008,31(2):1−5.

    TANG Qi,LUO Guyuan,JI Tiejun,et al. Simultaneous removal of nitrogen and phosphorus by magnesium ammonium phosphate process[J]. Environmental Science & Technology,2008,31(2):1−5.

    [59] 徐志高,黄 倩,张建东,等. 化学沉淀法处理高浓度氨氮废水的工艺研究[J]. 工业水处理,2010,30(6):31−34. doi: 10.11894/1005-829x.2010.30(6).31

    XU Zhigao,HUANG Qian,ZHANG Jiandong,et al. Study on the treatment of wastewater with highly concentrated ammonia-nitrogen by chemical precipitation[J]. Industrial water treatment,2010,30(6):31−34. doi: 10.11894/1005-829x.2010.30(6).31

    [60]

    HUANG H,XIAO D,ZHANG Q,et al. Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources[J]. Journal of Environmental Management,2014,145:191−198.

    [61] 唐潇,徐仁博,张发捷,等. SCR脱硝氨转化、吸附及飞灰氨脱除技术研究现状[J]. 洁净煤技术,2022,28(4):75−85.

    TANG Xiao,XU Renbo,ZHANG fajie,et al. Research status of ammonia conversion, adsorption during SCR reaction and its removal from fly ash[J]. Clean Coal Technology,2022,28(4):75−85.

  • 期刊类型引用(3)

    1. 王学文,王孝亭,谢嘉成,王雪松,李娟莉,李婷,李素华,刘曙光. 综采工作面XR技术发展综述:从虚拟3D可视化到数字孪生的演化. 绿色矿山. 2024(01): 75-84 . 百度学术
    2. 李济军. 浅析智能化综采技术在开采含夹矸中厚煤层的应用. 煤. 2024(09): 51-54 . 百度学术
    3. 刘双勇,刘维洲,赵永刚,闫俊宇,郁彦彬,尹海丽,吴孟武. 工业元宇宙技术在高压铸造岛全生命周期中的应用研究. 特种铸造及有色合金. 2024(11): 1489-1497 . 百度学术

    其他类型引用(0)

图(5)  /  表(3)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  29
  • PDF下载量:  31
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-05-07
  • 录用日期:  2022-06-08
  • 网络出版日期:  2023-05-30
  • 刊出日期:  2023-06-21

目录

/

返回文章
返回