高级检索

大倾角大采高采场塑性区分布及主控因素分析

张浩, 伍永平, 解盘石

张 浩,伍永平,解盘石. 大倾角大采高采场塑性区分布及主控因素分析[J]. 煤炭科学技术,2023,51(9):55−64

. DOI: 10.13199/j.cnki.cst.2022-0949
引用本文:

张 浩,伍永平,解盘石. 大倾角大采高采场塑性区分布及主控因素分析[J]. 煤炭科学技术,2023,51(9):55−64

. DOI: 10.13199/j.cnki.cst.2022-0949

ZHANG Hao,WU Yongping,XIE Panshi. Plastic zone distribution and main controlling factors analysis of large mining height face in steeply dipping coal seam[J]. Coal Science and Technology,2023,51(9):55−64

. DOI: 10.13199/j.cnki.cst.2022-0949
Citation:

ZHANG Hao,WU Yongping,XIE Panshi. Plastic zone distribution and main controlling factors analysis of large mining height face in steeply dipping coal seam[J]. Coal Science and Technology,2023,51(9):55−64

. DOI: 10.13199/j.cnki.cst.2022-0949

大倾角大采高采场塑性区分布及主控因素分析

基金项目: 

国家自然科学基金资助项目(52104147,51774230)

详细信息
    作者简介:

    张浩: (1990—),男,陕西汉中人,助理工程师,硕士研究生。E-mail:645115474@qq.com

  • 中图分类号: TD323

Plastic zone distribution and main controlling factors analysis of large mining height face in steeply dipping coal seam

Funds: 

National Natural Science Foundation of China(52104147,51774230)

  • 摘要:

    大倾角大采高工作面煤壁临空高度大,自由运移空间广,自稳平衡性差,煤壁在工作面内并非独体,其会与围岩及支架等介体组成承载结构,且采动行为间密切联动,倾角效应极易促使煤壁所处应力环境异化,诱使其响应行为复杂化,增加煤壁及围岩稳定性控制难度,制约工作面安全高效生产。为解决大倾角大采高工作面煤壁稳定性控制难题,综合采用理论分析、数值计算法进行研究。研究得出大倾角煤层大采高工作面塑性区内应力呈指数曲线状递增,煤壁邻域存在非对称拱状残余应力影响区,塑性区广度分区异化,广度由大到小依次为上部、中部、下部,分布形态呈梯级拱状,塑性区内煤体会重复性承压,并会随塑性区扩展增强;采高增大,煤壁邻域残余支承压力降低,煤壁前方煤体承压强度、位移幅度及受扰动范围均会增加;倾角效应下煤壁应力及运移分区式发展,其中,应力由大到小依次为下部、上部、中部,位移由大到小依次为中部、上部、下部,此外,伪斜布置下工作面倾角会诱使煤壁失稳模式转换,伪斜角大时,工作面倾角小,支承压力压缩分力作用增强,主要发生外凸片落式破坏,反之,则为采动应力及煤体自重倾向分力耦合性侧压下滑移失稳。综合分析可知,倾角及采高耦合作用下煤壁采动性状区域异化,且由于工作面中部、上部应力卸荷、运移量均较大,故此两域应为大倾角大采高工作面煤壁失稳重点防控区。

    Abstract:

    Coal wall of large mining height face in steeply dipping coal seam has large free height, wide free movement space and poor self-stabilization balance, coal wall is not an isolated body in the face, it can form a load-bearing structure with the surrounding rock, supports and other mediators, and the mining behavior is closely linked. The dip angle effect can easily promote the dissimilation of the coal wall bearing environment, complicate its response behavior, increase the difficulty of coal wall and surrounding rock stability control, and restrict the safe and efficient production of the face. In order to solve the problem of coal wall stability control of large mining height face in steeply dipping coal seam, theoretical analysis and numerical calculation are comprehensively used for research. The stress in the plastic zone of large mining height face in steeply dipping coal seam increases exponentially, there is an asymmetric arch residual stress influence zone in the vicinity of the coal wall, the plastic zone breadth is dissimilated in different regions, and the  width from large to small is the upper, middle and lower part, and the distribution pattern is in the shape of stepped arch, coal in the plastic zone bears repeated pressure, and will be enhanced with the expansion of plastic zone. As the mining height increases, the residual abutment pressure near the coal wall decreases, the compressive strength, displacement value and disturbed range of the coal in front of the coal wall will increase. The stress and transport of the coal wall under the dip angle effect develop in a zonal manner, in which the stress distribution is lower> upper> middle, while for the displacement is middle> upper> lower. In addition, the working face inclination under the oblique angle will lead to the transformation of the coal wall instability mode, when the oblique angle is large, the dip angle of face is small, the compression component of abutment pressure is enhanced, and the external convex spalling mainly occurs. On the contrary, it’s the sliding instability under the coupling of mining stress and self weight. The comprehensive analysis shows that the coal wall mining behavior is regionally heterogeneous under the coupling effect of dip angle and mining height, and because the stress unloading and migration in the middle and upper part of the face are larger, therefore the two regions should be the key prevention and control areas for coal wall instability of large mining height face in steeply dipping panel.

  • 图  1   煤层柱状

    Figure  1.   Coal seam histogram

    图  2   数值模型

    Figure  2.   Numerical model

    图  3   大倾角大采高工作面走向塑性区演变

    Figure  3.   Evolution of strike plastic zone of large mining height face in steeply dipping coal seam

    图  4   煤体应力分析模型

    Figure  4.   Coal stress analysis model

    图  5   煤壁前方应力分布

    Figure  5.   Stress distribution in front of rib

    图  6   大倾角大采高工作面围岩应力

    Figure  6.   Surrounding rock stress of large mining height face in steeply dipping coal seam

    图  7   大倾角大采高工作面倾向煤壁前方塑性区演变

    Figure  7.   Tendency evolution of plastic zone in front of coal wall of large mining height face in steeply dipping coal seam

    图  8   不同工况下支承压力及塑性区变化曲线

    Figure  8.   Variation curves of abutment pressure and plastic zone under different mining conditions

    图  9   不同采高煤体应力及位移曲线

    Figure  9.   Stress and displacement curves of coal with different mining heights

    图  10   采高对煤壁稳定性影响效能

    Figure  10.   Effectiveness of mining height on coal wall stability

    图  11   大倾角大采高工作面煤壁力学行为分布规律

    Figure  11.   Distribution law of rib mechanical behavior of large mining height face in steeply dipping coal seam

    图  12   大倾角大采高工作面变伪斜角煤壁失稳特征

    Figure  12.   Instability characteristics of rib of large mining height face in steeply dipping under variable pseudo angle

    表  1   煤岩力学参数

    Table  1   Mechanical parameters of coal and rock

    岩性弹性模量/
    GPa
    泊松比抗拉强度/
    MPa
    黏聚力/
    MPa
    炭质泥岩20.351.10.8
    5号煤10.300.80.6
    灰白色含粗砾砂岩20.261.10.8
    灰白色中砂岩1.20.310.91.0
    灰黑色粉砂岩140.242.01.8
    下载: 导出CSV

    表  2   不同顶板状态工作面矿压实测统计

    Table  2   Mine pressure measurement statics of face with different roof conditions

    支架
    编号
    最大阻力/kN平均阻力/kN周期来压步距/m
    坚硬
    顶板
    弱化
    顶板
    坚硬
    顶板
    弱化
    顶板
    坚硬
    顶板
    弱化
    顶板
    476 9406 5475 0594 558188
    337 4036 8554 9684 558188
    95 9405 4004 1913 742188
    下载: 导出CSV
  • [1] 华新祝,谢广祥. 大采高综采工作面煤壁片帮机理及控制技术[J]. 煤炭科学技术,2008,36(9):1−3.

    HUA Xinzhu,XIE Guangxiang. Coal wall spalling mechanism and control technology of fully mechanized high cutting longwall coal wall mining face[J]. Coal Science and Technology,2008,36(9):1−3.

    [2] 伍永平. 大倾角煤层开采“R-S-F”系统动力学控制基础研究[M]. 西安: 陕西科学技术出版社, 2003.
    [3] 伍永平. “顶板−支护−底板”系统动态稳定性控制模式[J]. 煤炭学报,2007,32(4):341−346.

    WU Yongping. Controlling pattern for dynamic stability of system “Roof-Support-Floor”[J]. Journal of China Coal Society,2007,32(4):341−346.

    [4] 解盘石,伍永平,王红伟,等. 大倾角煤层大采高综采围岩运移及支架相互作用规律[J]. 采矿与安全工程学报,2015,32(1):14−19.

    XIE Panshi,WU Yongping,WANG Hongwei,et al. Interaction characteristics between strata movement and support system around large mining height fully-mechanized face in steeply inclined seam[J]. Journal of Mining & Safety Engineering,2015,32(1):14−19.

    [5] 郝海金,张 勇. 大采高开采工作面煤壁稳定性性随机分析[J]. 辽宁工程技术大学学报,2005,2(4):489−491.

    HAO Haijin,ZHANG Yong. Stability analysis of coal wall in full-seam cutting workface with fully-mechanized in thick seam[J]. Journal of Liaoning Technical University,2005,2(4):489−491.

    [6] 尹希文,闫少红,安 宇. 大采高综采面煤壁片帮特征分析与应用[J]. 采矿与安全工程学报,2008,25(2):222−225.

    YIN Xiwen,YAN Shaohong,AN Yu. Characters of the rib spalling in fully mechanized caving face with great mining height[J]. Journal of Mining & Safety Engineering,2008,25(2):222−225.

    [7] 徐 兵. 大采高工作面煤壁片帮冒顶控制技术[J]. 辽宁工程技术大学学报(自然科学版), 2011, 30(6): 826−829.

    XU Bing. Large working rib fall control technology [J]. Journal of Liaoning Technical University (Nature Science), 2011, 30(6): 826−829.

    [8] 胡国伟,靳钟铭. 基于FLAC3D模拟的大采高采场支承压力分布规律研究[J]. 山西煤炭,2006,26(6):10−12.

    HU Guowei,JIN Zhongming. Research on distribution laws of abutment pressure in large mining height workface by FLAC3D simulation[J]. Shanxi Coal,2006,26(6):10−12.

    [9] 闫少宏. 大采高综放开采煤壁片帮冒顶机理与控制途径研究[J]. 煤矿开采,2008,13(4):5−8.

    YAN Shaohong. Research on side and roof falling mechanism and control approaching in full mechanized caving mining with large mining height[J]. Coal Mining Technology,2008,13(4):5−8.

    [10] 方新秋,何 杰,李海潮. 软煤综放面煤壁片帮机理及防治研究[J]. 中国矿业大学学报,2009,38(5):640−644.

    FANG Xinqiu,HE Jie,LI Haichao. A study of the rib fall mechanism in soft coal and its control at a fully-mechanized top-coal caving face[J]. Journal of China University of Mining & Technology,2009,38(5):640−644.

    [11] 袁 永,屠世浩,马小涛,等. “三软”大采高综采面煤壁稳定性及其控制研究[J]. 采矿与安全工程学报,2012,29(1):21−25.

    YUAN Yong,TU Shihao,MA Xiaotao,et al. Coal wall stability of fully mechanized working face with great mining height in“three-soft”coal seam and its control technology[J]. Journal of Mining & Safety Engineering,2012,29(1):21−25.

    [12] 杨敬轩,刘长友,吴锋锋,等. 煤层硬夹矸对大采高综采工作面煤壁稳定性影响机理研究[J]. 采矿与安全工程学报,2013,30(6):856−862.

    YANG Jingxuan,LIU Changyou,WU Fengfeng,et al. The research on the coal wall stability mechanism in larger height coal seam with a stratum of gangue[J]. Journal of Mining & Safety Engineering,2013,30(6):856−862.

    [13] 杨 科,何 祥,刘 帅,等. 近距离采空区下大倾角“三软”厚煤层综采片帮机理与控制[J]. 采矿安全与工程学报,2016,33(4):611−617.

    YANG Ke,HE Xiang,LIU Shuai,et al. Rib spalling mechanism and control with fully mechanized longwall mining in large inclination “three-soft” thick coal seam under closed distance mined gob[J]. Journal of Mining & Safety Engineering,2016,33(4):611−617.

    [14] 伍永平,张 浩,解盘石,等. 大倾角大采高工作面煤壁应力分布及变形特征研究[J]. 煤炭工程,2016,48(6):87−90.

    WU Yongping,ZHANG Hao,XIE Panshi,et al. Study on coal wall stress distribution and deformation features of high cutting face in steeply dipping seam[J]. Coal Engineering,2016,48(6):87−90.

    [15] 张 浩,伍永平. 大倾角煤层长壁大采高采场煤壁片帮机制[J]. 采矿与安全工程学报,2019,36(2):332−337.

    ZHANG Hao,WU Yongping. Coal wall caving mechanism of longwall large mining height stope in steeply dipping coal seams[J]. Journal of Mining & Safety Engineering,2019,36(2):332−337.

    [16] 解盘石,伍永平. 大倾角煤层长壁大采高开采煤壁片帮机理及防控 技术[J]. 煤炭工程,2015,47(1):74−77.

    XIE Panshi,WU Yongping. Mechanism and control methods of rib spalling in steeply dipping thick seams in fully-mechanized longwall mining with large mining height[J]. Coal Engineering,2015,47(1):74−77.

    [17] 罗生虎,伍永平,刘孔智,等. 大倾角大采高综采工作面煤壁非对称受载失稳特征[J]. 煤炭学报,2018,43(7):1829−1836.

    LUO Shenghu,WU Yongping,LIU Kongzhi,et al. Asymmetric load and instability characteristics of coal wall at large mining height fully-mechanized face in steeply dipping thick seam[J]. Journal of China Coal Society,2018,43(7):1829−1836.

    [18] 殷帅峰,何富连,王玉怀,等. 大采高复合煤壁非同步片帮分层弱化机制的试验研究[J]. 中国矿业大学学报,2019,48(4):750−759.

    YIN Shuaifeng,HE Fulian,WANG Yuhuai,et al. An experimental study of layered weakening mechanism to nonsynchronous spalling from composite rib with large mining height[J]. Journal of China University of Mining & Technology,2019,48(4):750−759.

    [19] 杨 科,刘 帅,唐春安,等. 多关键层跨煤组远程被保护层煤壁片帮机理及防治[J]. 煤炭学报,2019,44(9):2611−2621.

    YANG Ke,LIU Shuai,TANG Chunan,et al. Mechanism and prevention of coal seam rib spalling in remote protected layer across coal group[J]. Journal of China Coal Society,2019,44(9):2611−2621.

    [20] 杨 科,刘文杰,李志华,等. 厚硬顶板下大倾角软煤开采灾变机制与防控技术[J]. 煤炭科学技术,2021,49(2):12−20.

    YANG Ke,LIU Wenjie,LI Zhihua,et al. Catastrophe mechanism and prevention and control technology on soft coal mining with large inclination angle under thick and hard roof[J]. Coal Science and Technology,2021,49(2):12−20.

    [21] 王红伟,伍永平,焦建强,等. 大倾角煤层大采高工作面倾角对煤壁片帮的影响机制[J]. 采矿与安全工程学报,2019,36(4):728−752.

    WANG Hongwei,WU Yongping,JIAO Jianqiang,et al. Study on effect of dip angle on coal wall spalling of working face with great mining height in steeply inclined coal seam[J]. Journal of Mining & Safety Engineering,2019,36(4):728−752.

    [22] 李 立,于 雷,张世青,等. 大采高大倾角工作面煤壁片帮机理分析[J]. 煤炭工程,2020,52(12):102−107.

    LI Li,YU Lei,ZHANG Shiqing,et al. Spalling mechanism of coal wall in large-angle and high-cutting coal mining face[J]. Coal Engineering,2020,52(12):102−107.

    [23] 熊 钰,孔德中,杨胜利等. 大倾角工作面煤壁稳定性的云模型综合辨识[J]. 中国安全科学学报,2022,32(3):144−151.

    XIONG Yu,KONG Dezhong,YANG Shengli,et al. Cloud model identification of coal face stability in steeply inclined working faces[J]. China Safety Science Journal,2022,32(3):144−151.

    [24] 李平恩, 殷有泉. Drucker-Prager准则在拉剪区的修正[J]. 岩石力学与工程学报, 2010, 29(S1): 3029−3033.

    LI Pingen, YIN Youquan. Modification of Drucker- Prager criterion in tensile shear region [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3029−3033.

    [25] 张 浩. 大倾角煤层长壁大采高综采工作面煤壁稳定性分析[D]. 西安: 西安科技大学, 2016.

    ZHANG Hao. Coal face stability of longwall large mining height fully-mechanized panel in steeply dipping coal seam[D]. Xi’an: Xi’an University of Science and Technology, 2016.

  • 期刊类型引用(3)

    1. 曹现刚,段雍,王国法,赵江滨,任怀伟,赵福媛,杨鑫,张鑫媛,樊红卫,薛旭升,李曼. 煤矿设备全寿命周期健康管理与智能维护研究综述. 煤炭学报. 2025(01): 694-714 . 百度学术
    2. 业巧云. 采煤机螺旋滚筒工作性能优化分析. 山东煤炭科技. 2024(07): 93-97 . 百度学术
    3. 宋羽. 中厚煤层大功率采煤机摇臂壳体力学分析. 机械管理开发. 2024(11): 28-30 . 百度学术

    其他类型引用(0)

图(12)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-12-14
  • 网络出版日期:  2023-07-10
  • 刊出日期:  2023-09-18

目录

    /

    返回文章
    返回