高级检索

冲击载荷下四柱支撑掩护式液压支架动态响应特征分析

曾庆良, 徐鹏辉, 孟昭胜, 万丽荣

曾庆良,徐鹏辉,孟昭胜,等. 冲击载荷下四柱支撑掩护式液压支架动态响应特征分析[J]. 煤炭科学技术,2023,51(1):437−445. DOI: 10.13199/j.cnki.cst.2022-0975
引用本文: 曾庆良,徐鹏辉,孟昭胜,等. 冲击载荷下四柱支撑掩护式液压支架动态响应特征分析[J]. 煤炭科学技术,2023,51(1):437−445. DOI: 10.13199/j.cnki.cst.2022-0975
ZENG Qingliang,XU Penghui,MENG Zhaosheng,et al. Dynamic response characteristics analysis of four column chock shield support under impact load[J]. Coal Science and Technology,2023,51(1):437−445. DOI: 10.13199/j.cnki.cst.2022-0975
Citation: ZENG Qingliang,XU Penghui,MENG Zhaosheng,et al. Dynamic response characteristics analysis of four column chock shield support under impact load[J]. Coal Science and Technology,2023,51(1):437−445. DOI: 10.13199/j.cnki.cst.2022-0975

冲击载荷下四柱支撑掩护式液压支架动态响应特征分析

基金项目: 

国家自然科学基金资助项目(51974170,52104164);山东省自然科学基金资助项目(ZR2020QE103)

详细信息
    作者简介:

    曾庆良: (1964—),男,山东高密人,教授,博士生导师,博士。E-mail:qlzeng@sdust.edu.cn

    通讯作者:

    孟昭胜: (1991—),男,山东聊城人,讲师,硕士生导师,博士。E-mail:skdmzs@163.com

  • 中图分类号: TD421

Dynamic response characteristics analysis of four column chock shield support under impact load

Funds: 

National Natural Science Foundation of China (51974170,52104164); Natural Science Foundation of Shandong Province (ZR2020QE103)

  • 摘要:

    液压支架装备通常用于采煤工作面的支护。液压支架在工作过程中承受了大量冲击载荷,导致其动态稳定性受到威胁。为研究四柱支撑掩护式支架在对称与非对称承载工况下顶梁及掩护梁承受冲击载荷时的动力学响应特征,采用动力学软件Adams以等效变刚度阻尼系统代替立柱的方法,建立了支撑掩护式支架的数值分析模型。其中,顶板压力由主动静载荷垂直施加于顶梁上方,冲击载荷垂直于顶梁及掩护梁向下施加。基于上述模型,分析了不同冲击载荷作用于支架顶梁与掩护梁时支架关键部位的动力学响应,以及偏置加载对支架稳定性的影响。随后通过设置不同立柱初撑力,讨论了液压支架在非对称支撑条件下承受冲击载荷时的动力学特性。结果表明,单一顶梁冲击载荷条件下,前立柱载荷变化系数达到1.41,对顶梁前端冲击载荷最敏感。顶梁和掩护梁同时承受冲击载荷时,支架各铰接点对于顶梁前端与掩护梁上部区域作用的冲击载荷响应更剧烈,最大载荷变化系数为0.64,极大地影响液压支架整体稳定性。支架承受横向扭矩时,偏置载荷作用于不同位置对支架承载性能的弱化效果基本一致,且偏置载荷的大小与削弱效果呈正相关。在考虑立柱不同初载比时,顶梁-掩护梁铰接点对初载比变化的敏感程度最高,且前立柱初撑力不足时将对支架承载性能形成最大削弱效应。研究结果可辅助优化支撑掩护式支架结构,改善液压支架承载可靠性。

    Abstract:

    The hydraulic support equipment is usually used to support the roof in underground mining. During this process, the support bears frequent impact load, which greatly weakens its dynamic stability. To study the dynamic response characteristics of the support, when it bears the impact load at the top beam and shield beam, the numerical model of the support is established using ADAMS and the equivalent variable stiffness damping system was used to replace the column system. An active static load is applied vertically above the top beam to simulate the roof gravity force, and the impact load is applied downward perpendicular to the top beam and shield beam. Based on the above model, the dynamic response of the key parts of the support, when different impact loads are applied to the top beam and shield beam, and the influence of offset loading on the stability of the support are analyzed. Then, when considering asymmetric bracing conditions, the dynamic characteristics of hydraulic support under impact load are discussed by setting different initial support forces. The results show that when under a single impact load, the load variation coefficient of the front column reaches 1.41, which is the most sensitive to the impact load at the front end of the top beam. When the top beam and shield beam bear the impact load at the same time, the support hinge joint response more violently to the impact load acting on the top beam end and the upper area of the shield beam, and the maximum load change coefficient is 0.64, which greatly affects the overall stability of the hydraulic support. When the support bears to lateral torque, the weakening effect of offset load acting on different positions on the bearing performance of the support is the same, and the magnitude of offset load is positively correlated with the weakening effect. When considering the different initial load ratios (ILR) of the column, it is found that the hinge joint of top beam and shield beam is the most sensitive to the change of ILR, and the insufficient initial support of the front column has the greatest weakening effect on the bearing performance of the support. The research results can help to optimize the structure of the support shield support and improve the bearing reliability of the hydraulic support.

  • 图  1   支撑掩护式支架数值模型

    1—顶梁; 2—掩护梁; 3—前连杆; 4—后连杆; 5—底座; 6—后立柱; 7—前立柱; a—掩护梁-前连杆铰接点; b—掩护梁-后连杆铰接点;c—顶梁-掩护梁铰接点

    Figure  1.   Numerical model of chock shield support

    图  2   立柱承载简化模型

    Figure  2.   Simplified model of column bearing

    图  3   静力学加载示意

    Figure  3.   Static loading model

    图  4   立柱系统的动态响应曲线

    Figure  4.   Dynamic response curves of column system

    图  5   载荷加载位置

    Figure  5.   Load action position diagram

    图  6   顶梁-掩护梁铰接点力变化

    Figure  6.   Force change at hinged joint between top beam and goaf shield

    图  7   前连杆铰接点力变化

    Figure  7.   Force change at hinge point of front bar

    图  8   后连杆铰接点力变化

    Figure  8.   Force change at hinge point of rear bar

    图  9   前立柱力变化

    Figure  9.   Force change of front column

    图  10   后立柱力变化

    Figure  10.   Force change of rear column

    图  11   无偏置载荷支架力学响应曲线

    Figure  11.   Mechanical response curve without offset load

    图  12   偏置载荷作用下支架力学响应曲线

    Figure  12.   Mechanical response curve under offset load

    图  13   立柱承载特性曲线

    Figure  13.   Load bearing characteristic curve of column

    图  14   立柱初载比变化时支架的承载曲线

    Figure  14.   Bearing curve of support when ILR of column changes

    表  1   立柱主要参数

    Table  1   Main parameters of column

    液压缸液压缸直径/mm液压杆直径/mm有效液柱长度/mm
    前立柱一级缸3903701 956
    二级缸2902602 006
    后立柱一级缸3353052 076
    二级缸2302102 052
    下载: 导出CSV
  • [1] 康红普,王国法,姜鹏飞,等. 煤矿千米深井围岩控制及智能开采技术构想[J]. 煤炭学报,2018,43(7):1789−1800. doi: 10.13225/j.cnki.jccs.2018.0634

    KANG Hongpu,WANG Guofa,JIANG Pengfei,et al. Conception for strata control and intelligent mining technology in deep coal mines with depth more than 1000m[J]. Journal of China Coal Society,2018,43(7):1789−1800. doi: 10.13225/j.cnki.jccs.2018.0634

    [2] 闫少宏,徐 刚,范志忠. 我国综合机械化开采50年发展历程与展望[J]. 煤炭科学技术,2021,49(11):1−9.

    YAN Shaohong,XU Gang,FAN Zhizhong. Development course and prospect of the 50 years’ comprehensive mechanized coal mining in china[J]. Coal Science and Technology,2021,49(11):1−9.

    [3]

    FRITH Russell C. A holistic examination of the load rating design of longwall shields after more than half a century of mechanised longwall mining[J]. International Journal of Mining Science and Technology,2015,25(5):687−706. doi: 10.1016/j.ijmst.2015.07.001

    [4] 王国法,庞义辉,李明忠,等. 超大采高工作面液压支架与围岩耦合作用关系[J]. 煤炭学报,2017,42(2):518−526. doi: 10.13225/j.cnki.jccs.2016.0699

    WANG Guofa,PANG Yihui,LI Mingzhong,et al. Hydraulic support and coal wall coupling relationship in ultra large height mining face[J]. Journal of China Coal Society,2017,42(2):518−526. doi: 10.13225/j.cnki.jccs.2016.0699

    [5] 潘俊锋,齐庆新,刘少虹,等. 我国煤炭深部开采冲击地压特征、类型及分源防控技术[J]. 煤炭学报,2020,45(1):111−121.

    PAN Junfeng,QI Qingxin,LIU Shaohong,et al. Characteristics, types and prevention and control technology of rock burst in deep coal mining in China[J]. Journal of China Coal Society,2020,45(1):111−121.

    [6] 谢云跃,孟昭胜,曾庆良,等. 深井冲击载荷下液压支架底板比压分布特性[J]. 煤炭学报,2020,45(3):982−989. doi: 10.13225/j.cnki.jccs.SJ19.1541

    XIE Yunyue,MENG Zhaosheng,ZENG Qingliang,et al. Analysis of distribution characteristics of study on floor specific pressure of hydraulic support for deep mining based on impact loading[J]. Journal of China Coal Society,2020,45(3):982−989. doi: 10.13225/j.cnki.jccs.SJ19.1541

    [7] 王国法,张金虎,徐亚军,等. 深井厚煤层长工作面支护应力特性及分区协同控制技术[J]. 煤炭学报,2021,46(3):763−773.

    WANG Guofa,ZHANG Jinhu,XU Yajun,et al. Supporting stress characteristics and zonal cooperative control technology of long working face in deep thick coal seam[J]. Journal of China Coal Society,2021,46(3):763−773.

    [8] 潘立友,唐 鹏,周脉来,等. 悬顶结构巷道冲击地压防控研究[J]. 煤炭科学技术,2022,50(4):42−48. doi: 10.13199/j.cnki.cst.2020-1267

    PAN Liyou,TANG Peng,ZHOU Mailai,et al. Research on prevention and control of rock burst in entry with suspended roof structure[J]. Coal Science and Technology,2022,50(4):42−48. doi: 10.13199/j.cnki.cst.2020-1267

    [9]

    WANG Xuewen,YANG Zhaojian,FENG Jiling,et al. Stress analysis and stability analysis on doubly -telescopic prop of hydraulic support[J]. Engineering Failure Analysis,2013,32:274−282.

    [10] 徐亚军,王国法,刘业献. 两柱掩护式液压支架承载特性及其适应性研究[J]. 煤炭学报,2016,41(8):2113−2120. doi: 10.13225/j.cnki.jccs.2015.1833

    XU Yajun,WANG Guofa,LIU Xianye. Supporting property and adaptability of 2-leg powered support[J]. Journal of China Coal Society,2016,41(8):2113−2120. doi: 10.13225/j.cnki.jccs.2015.1833

    [11] 孟昭胜,曾庆良,万丽荣,等. 掩护式液压支架顶梁承载特性及其适应性研究[J]. 煤炭学报,2018,43(4):1162−1170.

    MENG Zhaosheng,ZENG Qingliang,WAN Lirong,et al. Supporting performance and canopy adaptability of shield support[J]. Journal of China Coal Society,2018,43(4):1162−1170.

    [12] 张德生,任怀伟,何 明,等. 两柱掩护式液压支架内外加载支护对比试验研究[J]. 煤炭科学技术,2019,47(11):135−142.

    ZHANG Desheng,REN Huaiwei,HE Ming,et al. Experimental study on supporting status of internal and external loading of two-legs shielded hydraulic support[J]. Coal Science and Technology,2019,47(11):135−142.

    [13] 梁利闯,田嘉劲,郑 辉,等. 冲击载荷作用下液压支架的力传递分析[J]. 煤炭学报,2015,40(11):2522−2527. doi: 10.13225/j.cnki.jccs.2015.7021

    LIANG Lichuang,TIAN Jiajin,ZHENG Hui,et al. A study on force transmission in a hydraulic support under impact loading on its canopy beam[J]. Journal of China Coal Society,2015,40(11):2522−2527. doi: 10.13225/j.cnki.jccs.2015.7021

    [14] 曾庆良,杨春祥,刘 鹏,等. 不同顶板压力作用下特大采高液压支架受力分析[J]. 煤炭技术,2018,37(4):187−189.

    ZENG Qingliang,YANG Chunxiang,LIU Peng,et al. Stress analysis of hydraulic powered support for ultra high mining under different roof pressure[J]. Coal Technology,2018,37(4):187−189.

    [15]

    REN Huaiwei,ZHANG Desheng,GONG Shixin,et al. Dynamic impact experiment and response characteristics analysis for 1: 2 reduced-scale model of hydraulic support[J]. International Journal of Mining Science and Technology,2021,31(3):347−356. doi: 10.1016/j.ijmst.2021.03.004

    [16]

    WAN Lirong,WANG Jiantao,ZENG Qingliang,et al. Vibration response analysis of the tail beam of hydraulic support impacted by coal gangue particles with different shapes[J]. ACS Omega,2022,7(4):3656−3670. doi: 10.1021/acsomega.1c06279

    [17] 张志军,顾克秋,张鑫磊. 液压缸刚度有限元计算方法[J]. 火炮发射与控制学报,2016,37(1):55−58,73.

    ZHANG Zhijun,GU Keqiu,ZHANG Xinlei. Finite element method to calculate hydraulic cylinder stiffness[J]. Journal of Gun Launch and Control,2016,37(1):55−58,73.

    [18] 徐 伟. 冲击载荷下液压支架立柱的受载特性研究[J]. 煤矿机械,2021,42(2):63−66.

    XU Wei. Study on load characteristics of hydraulic support column under impact load[J]. Coal Mine Machinery,2021,42(2):63−66.

    [19] 赵忠辉,姜金球,王 勇,等. 立柱在冲击动载荷作用下的动应力及冲击力分析[J]. 煤矿机械,2010,31(8):118−119. doi: 10.3969/j.issn.1003-0794.2010.08.051

    ZHAO Zhonghui,JIANG Jinqiu,WANG Yong,et al. Impacting dynamic stress and impacting force analysis of hydraulic column[J]. Coal Mine Machinery,2010,31(8):118−119. doi: 10.3969/j.issn.1003-0794.2010.08.051

    [20] 万丽荣,刘 鹏,孟昭胜,等. 特大采高液压支架底板比压分析研究[J]. 山东科技大学学报(自然科学版),2018,37(5):34−39.

    WAN Lirong,LIU Peng,MENG Zhaosheng,et al. Analysis of floor pressure of hydraulic powered support for ultra high mining[J]. Journal of Shandong University of Science and Technology(Natural Science),2018,37(5):34−39.

    [21]

    ZENG Qingliang,MENG Zhaosheng,WAN Lirong,et al. Analysis on force transmission characteristics of twolegged shield support under impact loading[J]. Shock and Vibration,2018(10):1−10.

  • 期刊类型引用(12)

    1. 李晓涛. 煤矿液压支架顶梁的耐久性分析及结构优化. 自动化应用. 2025(01): 83-85 . 百度学术
    2. 袁成健,田莹,贾安昊,范春永,周锋. 爆炸载荷作用下纯水支架稳定性仿真研究. 煤矿机械. 2025(03): 202-207 . 百度学术
    3. 杜锦丰,张永辉,侯宇栋,白焱镖. 煤矿综采工作面液压支架研究综述. 内蒙古煤炭经济. 2025(01): 5-8 . 百度学术
    4. 康健,张博成,杨逾. 基于贝叶斯-响应面法的煤矿开挖过程中不同含水状态岩体力学参数分析. 河南科学. 2024(03): 313-320 . 百度学术
    5. 伍永平,杜玉乾,解盘石,王红伟,胡博胜,闫壮壮,王同,胡涛. 大倾角煤层伪俯斜工作面平行四边形液压支架结构设计与运动响应. 煤炭科学技术. 2024(04): 314-325 . 本站查看
    6. 郭涛. 基于模拟仿真的煤矿液压支架结构优化改进研究. 自动化应用. 2024(16): 193-195 . 百度学术
    7. 柴蓉霞,姜潇远,王秦生,于正洋,龙雪,刘军. 基于能量分配原理的煤矿机械冲击行为研究及装置设计. 中国机械工程. 2024(09): 1584-1596 . 百度学术
    8. 曾庆良,班新亮,孟昭胜,万丽荣,雷小万. 基于Unity3D的工作面液压支架群组空间支护姿态数字孪生重构方法. 煤炭科学技术. 2024(11): 74-88 . 本站查看
    9. 史艳兵. ZY9000/45/22D型液压支架顶梁结构优化研究. 机械管理开发. 2024(12): 160-162 . 百度学术
    10. 卢璐凯,孟昭胜,雷小万,胡雨龙. 掘进临时支护支架设计及静载特性分析. 煤炭工程. 2024(12): 213-219 . 百度学术
    11. 牛飞,牛进忠. 考虑疲劳寿命的液压支架掩护梁结构优化改进研究. 自动化应用. 2023(16): 190-192 . 百度学术
    12. 刘世明. 大采高液压支架掩护梁的模拟仿真与结构改进. 自动化应用. 2023(20): 176-178 . 百度学术

    其他类型引用(2)

图(14)  /  表(1)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  11
  • PDF下载量:  121
  • 被引次数: 14
出版历程
  • 收稿日期:  2022-06-24
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-01-29

目录

    /

    返回文章
    返回