高级检索

平原煤粮主产复合区煤矿开采和耕地保护协同发展研究现状及对策

郭广礼, 李怀展, 查剑锋, 刘文锴, 胡青峰, 王方田, 陈超, 张沛沛, 张会娟, 张秋霞

郭广礼,李怀展,查剑锋,等. 平原煤粮主产复合区煤矿开采和耕地保护协同发展研究现状及对策[J]. 煤炭科学技术,2023,51(1):416−426

. DOI: 10.13199/j.cnki.cst.2022-0985
引用本文:

郭广礼,李怀展,查剑锋,等. 平原煤粮主产复合区煤矿开采和耕地保护协同发展研究现状及对策[J]. 煤炭科学技术,2023,51(1):416−426

. DOI: 10.13199/j.cnki.cst.2022-0985

GUO Guangli,LI Huaizhan,ZHA Jianfeng,et al. Research status and countermeasures of coordinated development of coal mining and cultivated land protection in the plain coal-cropland overlapped areas[J]. Coal Science and Technology,2023,51(1):416−426

. DOI: 10.13199/j.cnki.cst.2022-0985
Citation:

GUO Guangli,LI Huaizhan,ZHA Jianfeng,et al. Research status and countermeasures of coordinated development of coal mining and cultivated land protection in the plain coal-cropland overlapped areas[J]. Coal Science and Technology,2023,51(1):416−426

. DOI: 10.13199/j.cnki.cst.2022-0985

平原煤粮主产复合区煤矿开采和耕地保护协同发展研究现状及对策

基金项目: 

国家自然科学基金联合基金重点资助项目(U21A20109)

详细信息
    作者简介:

    郭广礼: (1965—),男,河北栾城人,教授,博士生导师。E-mail:guangliguo@cumt.edu.cn

    通讯作者:

    李怀展: (1990—),男,河南济源人,副教授。E-mail:lihuaizhan@cumt.edu.cn

  • 中图分类号: TD327; S157

Research status and countermeasures of coordinated development of coal mining and cultivated land protection in the plain coal-cropland overlapped areas

Funds: 

Joint Funds of the National Natural Science Foundation of China  (U21A20109)

  • 摘要:

    耕地是粮食安全的基础,煤炭是能源安全的保障。我国煤炭和耕地资源分布重合的煤粮复合区面积约占耕地总面积的42.7%,煤炭开采与耕地保护之间的矛盾十分突出。如何实现煤矿开采与耕地保护协同发展是我国煤粮复合区亟待解决的瓶颈难题。从平原煤粮复合区采动耕地损毁机理、采动耕地破坏程度评价、开采沉陷控制技术等3个方面分析了煤矿开采和耕地保护协同发展的研究现状与存在问题。在此基础上结合耕地保护面积大、变形耐忍度高等特点,提出了一种面向煤矿开采和耕地保护协同发展的源头控制与修复治理有机结合的绿色开采区域性岩层及地表变形控制技术途径,建立了相应的地表变形预测及控制设计方法,并指出了平原煤粮复合区煤矿开采和耕地保护协同发展的重点研究方向:平原煤粮复合区耕地采损驱动机制、采煤沉陷耕地防护阈值体系、面向耕地保护的煤矿绿色开采区域沉陷协调控制理论与方法,以期推动煤粮主产复合区煤矿绿色开采与耕地保护协同发展。

    Abstract:

    Cultivated land is the foundation of food security, while coal guarantees the security of the energy. The coal-cropland overlapped area accounts for approximate 42.7% of the total cultivated land area in China, making it become a prominent contradiction between the extensive mining and cultivated land protection. How to realize the coordinated development of the coal mining and the cultivated land protection is an urgent problem in coal-cropland overlapped areas. This paper analyzes the research status and existing issues of the coordinated development between mining and cultivated land protection from the following three aspects: the damage mechanism of subsidence land in plain coal-cropland overlapped areas, the damage degree evaluation of subsidence land induced by mining, the control technology for the mining subsidence. Then, considering the characteristics of the cultivated land, such as the extensive protection-needed area and the high deformation tolerance, a new technical approach of controlling regional rock strata and surface deformation in green mining is proposed by combining source control and restoration. The corresponding prediction and control design methods of surface deformation are established. Additionally, the key research directions for the coordination of coal mining and cultivated land protection in the plain coal-cropland overlapped areas are pointed out, including the driving mechanism of cultivated land damage induced by mining in the plain area, protection thresholds for the quality of the cultivated land in subsidence areas, theories and methods of the subsidence coordinated control of the green mining facing the cultivated land protection. The main objective of this paper is to promote the coordinated development of the green mining and the cultivated land protection in the plain coal-cropland overlapped areas.

  • 图  1   高潜水位矿区地下开采导致耕地损毁

    Figure  1.   Farmland damage caused by underground mining in mine with high groundwater level

    图  2   条带开采覆岩移动与变形特征

    Figure  2.   Overlaying rock movement and deformation characteristics of strip mining

    图  3   充填开采覆岩移动与变形特征

    Figure  3.   Overlaying rock movement and deformation characteristics of backfilling mining

    图  4   等效采高计算示意

    Figure  4.   Diagram of equivalent mining height calculation

    图  5   地表沉陷动态预测模型及效果

    Figure  5.   Dynamic prediction model of surface subsidence

    图  6   面向不同目标的充填开采地表变形控制设计流程

    Figure  6.   Surface deformation control design process of backfilling mining for different goals

    图  7   面向耕地保护的煤矿开采区域沉陷协同控制方法示意

    Figure  7.   Schematic diagram of collaborative control method of regional subsidence in mining area for farmland protection

    图  8   地表移动变形叠加计算示意

    Figure  8.   Schematic diagram of superposition calculation of surface movement and deformation

    图  9   地表沉陷预计参数计算示意

    Figure  9.   Schematic diagram of calculation of surface subsidence prediction parameters

    图  10   采动影响下包气带与耕作层水/盐/变形协同作用

    Figure  10.   Synergistic effect of water / salt / deformation of unsaturated zone and tillage layer under mining influence

    表  1   开采沉陷土地损坏等级评价标准[29]

    Table  1   Evaluation criteria of cropland damage grade of mining subsidence[29]

    破坏
    等级
    损坏
    分类
    损坏程度(土壤生产力降低率)/%破坏现象评价参数
    地表下沉/
    mm
    水平变形/
    (mm·m−1)
    倾斜变形/
    (mm·m−1)
    水利设施
    状态
    轻度破坏 25 地面有轻微变形,但不影响农田耕种、林地、植被生长,
    水土流失基本上没有增加
    ≤500 ≤2.0 ≤3.0 基本完好
    中度破坏 50 地面有轻微变形,轻微影响农田耕种、林地、植被、生长,水土流失略有增加 ≤2 000 ≤6.0 ≤20.0 部分损坏
    严重破坏 75 地面塌陷破坏较严重,出现方向明显的拉裂缝,影响农田耕种,导致减产,影响林地与植被生长,水土流失有所加剧 >2 000 ≤10.0 ≤40.0 完全损坏
    完全破坏 100 地面严重塌陷破坏,出现塌方和小滑坡,农田、林地与植被破坏严重,水土流失严重,生态环境恶化 >10.0 >40.0
    下载: 导出CSV

    表  2   采煤沉陷耕地损毁等级[30]

    Table  2   Damage grade of cultivated land in coal mining subsidence[30]

    破坏
    等级
    损毁
    程度/%
    裂缝宽度/
    cm
    台阶高度/
    cm
    坡度/
    %
    潜水位埋
    深/m
    水利设施状态
    25<20<10<21.0~1.5基本完好
    5020~5010~302~50.5~1.0部分损毁
    7550~10030~805~100~0.5完全损毁
    100>100>80>10<0
    注:损毁程度用土壤生产力降低率表征。
    下载: 导出CSV

    表  3   耕地破坏程度评价因子分级

    Table  3   Classification of evaluation factors of farmland damage degree

    评价因子破坏程度鉴定评价因子值
    一般破坏严重破坏
    塌陷深度/m<2≥2
    塌陷后田面坡度/(°)<15≥15
    塌陷后浅层地下水埋深/m>0.8≤0.8
    积水情况能自流排水无法自流排水
    生产力降低情况/%<40≥40
    下载: 导出CSV
  • [1] 胡振琪,李 晶,赵艳玲. 矿产与粮食复合主产区环境质量和粮食安全的问题、成因与对策[J]. 科技导报,2006(3):21−24.

    HU Zhenqi,LI Jing,ZHAO Yanling. Problems, causes and countermeasures of environmental quality and food security in the main composite producing areas of minerals and grain[J]. Science & Technology Review,2006(3):21−24.

    [2] 徐占军,赵思萌,王培周,等. 煤炭开采对“矿-农”复合区农田质量影响评价[J]. 农业工程学报,2020,36(9):273−282.

    XU Zhanjun,ZHAO Simeng,WANG Peizhou,et al. Impact of coal mining on farmland quality in "mine agriculture" complex area[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(9):273−282.

    [3] 蔡 宇,张永兴. 采矿塌陷区耕地破损评价指标体系分析[J]. 地下空间与工程学报,2012,8(5):1075−1080.

    CAI Yu,ZHANG Yongxing. Analysis of cultivated land damage evaluation index system in mining subsidence area[J]. Chinese Journal of Underground Space and Engineering,2012,8(5):1075−1080.

    [4] 卞正富. 矿区开采沉陷农用土地质量空间变化研究[J]. 中国矿业大学学报,2004,33(2):89−94.

    BIAN Zhengfu. Study on spatial change of agricultural land quality in mining subsidence[J]. International Journal of Mining Science and Technology,2004,33(2):89−94.

    [5] 白中科,师学义,周 伟,等. 人工如何支持引导生态系统自然修复[J]. 中国土地科学,2020,34(9):1−9.

    BAI Zhongke,SHI Xueyi,ZHOU Wei,et al. How to support and guide the natural restoration of ecosystem[J]. China Land Science,2020,34(9):1−9.

    [6] 肖 武,陈佳乐,笪宏志,等. 基于无人机影像的采煤沉陷区玉米生物量反演与分析[J]. 农业机械学报,2018,49(8):169−180.

    XIAO Wu,CHEN Jiale,DA Hongzhi,et al. Inversion and analysis of corn biomass in coal mining subsidence area based on UAV image[J]. Transactions of the Chinese Society of Agricultural Machinery,2018,49(8):169−180.

    [7] 肖 武,陈佳乐,赵艳玲,等. 利用无人机遥感反演高潜水位矿区沉陷地玉米叶绿素含量[J]. 煤炭学报,2019,44(1):295−306.

    XIAO Wu,CHEN Jiale,ZHAO Yanling,et al. Inversion of chlorophyll content of Maize in subsidence land of mining area with high groundwater level by UAV Remote Sensing[J]. Journal of China Coal Society,2019,44(1):295−306.

    [8]

    ZHAO Y L,ZHENG W X,WU X,et al. Rapid monitoring of reclaimed farmland effects in coal mining subsidence area using a multi-spectral UAV platform[J]. Environmental Monitoring and Assessment,2020,192(7):1−19.

    [9] 陈 朝,李妍均,邓南荣,等. 西南山区采煤塌陷对水田土壤物理性质的影响[J]. 农业工程学报,2014,30(18):276−285.

    CHEN Chao,LI Yanjun,DENG Nanrong,et al. Effect of coal mining subsidence on physical properties of paddy soil in southwest mountainous area[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(18):276−285.

    [10] 魏婷婷,胡振琪,曹远博,等. 风沙区煤炭开采对土壤物理性质和结皮的影响[J]. 水土保持通报,2015,35(2):106−110.

    WEI Tingting,HU Zhenqi,CAO Yuanbo,et al. Effects of coal mining on soil physical properties and crust in windy sand area[J]. Bulletin of Soil and Water Conservation,2015,35(2):106−110.

    [11] 王 锐,马守臣,张合兵,等. 干旱区高强度开采地表裂缝对土壤微生物学特性和植物群落的影响[J]. 环境科学研究,2016,29(9):1249−1255.

    WANG Rui,MA Shouchen,ZHANG Hebing,et al. Effects of high-intensity mining of surface cracks on soil microbiological characteristics and plant communities in arid areas[J]. Research of Environmental Sciences,2016,29(9):1249−1255.

    [12] 贾 鑫,何瑞敏,姚 海. 神东矿区采动地表裂缝对地表水的影响规律研究[J]. 煤炭科学技术,2017,45(S2):17−22.

    JIA Xin,HE Ruimin,YAO Hai. Study on the influence law of mining surface cracks on surface water in Shendong mining area[J]. Coal Science And Technology,2017,45(S2):17−22.

    [13] 张发旺,赵红梅,宋亚新,等. 神府东胜矿区采煤塌陷对水环境影响效应研究[J]. 地球学报,2007(6):521−527.

    ZHANG Fawang,ZHAO Hongmei,SONG Yaxin,et al. Effect of coal mining subsidence on water environment in Shenfu Dongsheng mining area[J]. Acta Geoscientica Sinica,2007(6):521−527.

    [14] 许传阳,马守臣,张合兵,等. 煤矿沉陷区沉陷裂缝对土壤特性和作物生长的影响[J]. 中国生态农业学报,2015,23(5):597−604.

    XU Chuanyang,MA Shouchen,ZHANG Hebing,et al. Influence of subsidence cracks in coal mine subsidence area on soil characteristics and crop growth[J]. Chinese Journal of Eco-Agriculture,2015,23(5):597−604.

    [15] 张沛沛. 煤粮复合区采煤沉陷对土壤质量的影响研究[D]. 北京: 中国矿业大学(北京), 2016.

    ZHANG Peipei. Study on the influence of coal mining subsidence on soil quality in coal grain composite area[D]. Beijing: China University of Mining and Technology (Beijing), 2016.

    [16] 宋振骐,蒋宇静. 采场顶板控制设计中几个问题的分析探讨[J]. 矿山压力,1986(1):1−9.

    SONG Zhenqi,JIANG Yujing. Analysis and discussion on several problems in stope roof control design[J]. Mine Pressure,1986(1):1−9.

    [17] 高延法,黄万朋,刘国磊. 覆岩导水裂缝与岩层拉伸变形量的关系研究[J]. 采矿与安全工程学报,2012,29(3):301−306.

    GAO Yanfa,HUANG Wanpeng,LIU Guolei. Study on the relationship between water conducting cracks in overburden and tensile deformation of rock stratum[J]. Journal of Mining and Safety Engineering,2012,29(3):301−306.

    [18] 黄庆享,韩金博. 浅埋近距离煤层开采裂隙演化机理研究[J]. 采矿与安全工程学报,2019,36(4):706−711.

    HUANG Qingxiang,HAN Jinbo. Study on fracture evolution mechanism of shallow and close seam mining[J]. Journal of Mining and Safety Engineering,2019,36(4):706−711.

    [19]

    PENG Syd S. Surface subsidence engineering: theory and practice[M]. Boca Raton: CRC Press, 2020.

    [20] 郭文兵,赵高博,白二虎. 煤矿高强度长壁开采覆岩破坏充分采动及其判据[J]. 煤炭学报,2020,45(11):3657−3666.

    GUO Wenbing,ZHAO Gaobo,BAI Erhu. Full mining of overburden failure in high-strength longwall mining and its criterion[J]. Journal of Chinese Coal Society,2020,45(11):3657−3666.

    [21]

    TRIPATHI N,SINGH RS,SINGH JS. Impact of post-mining subsidence on nitrogen transformation in southern tropical dry deciduous forest, India[J]. Environmental Research,2009,109:258−266. doi: 10.1016/j.envres.2008.10.009

    [22]

    BARTSCH David, RUNKLE James, HICKS Ray, et al. , Impacts of longwall mining on hydrology, soil moisture, and tree health in Belmont country, Ohio. [C]//24th International Conference on Ground Control in Mining, Morgantown: 2005.

    [23] 毕银丽,伍 越,张 健,等. 采用 HYDRUS 模拟采煤沉陷地裂缝区土壤水盐运移规律[J]. 煤炭学报,2020,45(1):360−367.

    BI Yinli,WU Yue,ZHANG Jian,et al. Hydrous is used to simulate the law of soil water and salt transport in the ground fissure area of coal mining subsidence[J]. Journal of Chinese Coal Society,2020,45(1):360−367.

    [24] 陈秋计. 开采沉陷附加坡度对耕地资源的影响研究[J]. 矿业研究与开发,2014,34(1):73−75.

    CHEN Qiuji. Study on the influence of mining subsidence additional slope on cultivated land resources[J]. Mining Research and Development,2014,34(1):73−75.

    [25] 郑南山,胡振琪,顾和和. 煤矿开采沉陷对耕地永续利用的影响分析[J]. 煤矿环境保护,1998(1):18−21.

    ZHENG Nanshan,HU Zhenqi,GU Hehe. Analysis on the impact of coal mining subsidence on the sustainable utilization of cultivated land[J]. Coal Mine Environmental Protection,1998(1):18−21.

    [26] 顾和和,胡振琪,刘德辉,等. 开采沉陷对耕地生产力影响的定量评价[J]. 中国矿业大学学报,1998,27(4):84−87.

    GU Hehe,HU Zhenqi,LIU Dehui,HU Feng. Quantitative evaluation of the impact of mining subsidence on cultivated land productivity[J]. Journal of China University of Mining and Technology,1998,27(4):84−87.

    [27] 彭苏萍,毕银丽. 黄河流域煤矿区生态环境修复关键技术与战略思考[J]. 煤炭学报,2020,45(4):1211−1221.

    PENG Suping,BI Yinli. Key technologies and strategic thinking of ecological environment restoration in coal mining areas of the Yellow River Basin[J]. Journal of Chinese Coal Society,2020,45(4):1211−1221.

    [28] 张宏贞,查剑峰,殷铁成. 开采沉陷对耕地的损害指标理论分析[J]. 金属矿山,2007(10):116−118.

    ZHANG Hongzhen,ZHA Jianfeng,YING Tiecheng. Theoretical analysis of damage index of mining subsidence to cultivated land[J]. Metal Mine,2007(10):116−118.

    [29] 王 刚,郭广礼,李 伶. 矿区土地的破坏机理与治理措施研究[J]. 安徽农业科学,2011,39(11):6765−6767.

    WANG Gang,GUO Guangli,LI Ling. Study on damage mechanism and treatment measures of land in mining area[J]. Journal of Anhui Agricultural Sciences,2011,39(11):6765−6767.

    [30] 李树志. 我国采煤沉陷土地损毁及其复垦技术现状与展望[J]. 煤炭科学技术,2014,42(1):93−97.

    LI Shuzhi. Current situation and Prospect of coal mining subsidence land damage and its reclamation technology in China[J]. Coal Science and Technology,2014,42(1):93−97.

    [31] 张欣欣,田惠文,毕如田. 矿区耕地整治潜力评价与整治分区[J]. 农业工程学报,2020,36(16):249−258.

    ZHANG Xinxin,TIAN Huiwen,BI Rutian. Farmland consolidation potential evaluation and consolidation zoning in mining areas[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(16):249−258.

    [32] 戴华阳,郭俊廷,阎跃观,等. “采−充−留”协调开采技术原理与应用[J]. 煤炭学报,2014,39(8):1602−1610.

    DAI Huayang,GUO Junting,YAN Yueguan,et al. Principle and application of subsidence control technology of mining coordinately mixed with backfilling and keeping[J]. Journal of China Coal Society,2014,39(8):1602−1610.

    [33] 郭惟嘉,王海龙,刘增平. 深井宽条带开采煤柱稳定性及地表移动特征研究[J]. 采矿与安全工程学报,2015,32(3):369−375.

    GUO Weijia,WANG Hailong,LIU Zengping. Coal pillar stability and surface movement characteristics of deep wide strip pillar mining[J]. Journal of Mining & Safety Engineering,2015,32(3):369−375.

    [34] 查剑锋,郭广礼,刘元旭,等. 矸石变形非线性及其对岩层移动的影响[J]. 煤炭学报,2009,34(8):1071−1075.

    ZHA Jianfeng,GUO Guangli,LIU Yuanxu,et al. The nonlinear features of waste deformation and its impaction on strata movement[J]. Journal of China Coal Society,2009,34(8):1071−1075.

    [35] 王志强,郭晓菲,高 运,等. 华丰煤矿覆岩离层注浆减沉技术研究[J]. 岩石力学与工程学报,2009,34(8):1071−1075.

    WANG Zhiqiang,GUO Xiaofei,GAO Yun,et al. Study of grounding technology of ovverburden-separation to reduce ground subsidence in Huafeng coal ming[J]. Chinese Journal of Rock Mechanics and Engineering,2009,34(8):1071−1075.

    [36]

    LI H Z,GUO G L. Surface subsidence control mechanism and effect evaluation of gangue-backfilling mining: a case study in China[J]. Geofluids,2018:2785739.

    [37]

    ZHU X J,GUO G L,ZHA J F,et al. Surface dynamic subsidence prediction model of solid backfill mining[J]. Environmental Earth Sciences,2016,75(12):1−9.

    [38]

    GUO Q B,GUO G L,LV X,et al. Strata movement and surface subsidence prediction model of dense solid backfilling mining[J]. Environmental Earth Sciences,2016,75(21):1−11.

    [39] 郭文兵. 深部大采宽条带开采地表移动的预计[J]. 煤炭学报,2008,33(4):368−372.

    GUO Wenbing. Surface movement predicting problem of deep strip pillar mining[J]. Journal of China Coal Society,2008,33(4):368−372.

    [40] 刘义新,戴华阳,郭文兵. 巨厚松散层下深部宽条带开采地表移动规律[J]. 采矿与安全工程学报,2009,26(3):336−340.

    LIU Yixin,DAI Huayang,GUO Wenbing. Surface movement laws of deep wide strip-pillar mining under thick alluvium[J]. Journal of Mining & Safety Engineering,2009,26(3):336−340.

    [41] 郭增长,谢和平,王金庄. 条带开采保留煤柱宽度和采出宽度与地表变形的关系[J]. 湘潭矿业学院学报,2003,18(2):13−17.

    GUO Zengzhang,XIE Heping,WANG Jinzhuang. The relationship of the coal pillar width and the with the surface deformation caused by strip extraction[J]. Journal of Hunan University of Science & Technology(Natural Science Edition),2003,18(2):13−17.

    [42] 郭文兵,邓喀中,邹友峰. 条带开采地表移动参数研究[J]. 煤炭学报,2005,30(2):182−186.

    GUO Wenbing,DENG Kazhong,ZOU Youfeng. Research on surface movement parameters of strip-partial mining[J]. Journal of China Coal Society,2005,30(2):182−186.

    [43] 滕 浩. 覆岩隔离注浆充填压实区形成机制研究[D]. 徐州: 中国矿业大学, 2017.

    TENG Hao. Formation mechanism of compacting area in the gob with grouting into overburden of isolated panels during longwall mining [D]. Xuzhou: China University of Mining & Technology, 2017.

    [44] 许家林,倪建明,轩大洋,等. 覆岩隔离注浆充填不迁村采煤技术[J]. 煤炭科学技术,2015,43(12):8−11.

    XU Jialin,NI Jianming,XUAN Dayang,et al. Coal mining technology without village relocation by isolated grout injection into overburden[J]. Coal Science and Technology,2015,43(12):8−11.

    [45] 张吉雄,缪协兴,郭广礼. 矸石(固体废物)直接充填采煤技术发展现状[J]. 采矿与安全工程学报,2009,26(4):395−401.

    ZHANG Jixiong,MIAO Xiexing,GUO Guangli. Development status of backfilling technology using raw waste in coal mining[J]. Journal of Mining & Safety Engineering,2009,26(4):395−401.

    [46] 冯光明,王成真,李凤凯,等. 超高水材料袋式充填开采研究[J]. 采矿与安全工程学报,2011,28(4):602−607.

    FENG Guangming,WANG Chengzhen,LI Fengkai,et al. Research on bag-type filling mining with super-high-water material[J]. Journal of Mining & Safety Engineering,2011,28(4):602−607.

    [47] 周华强,侯朝炯,孙希奎,等. 固体废物膏体充填不迁村采煤[J]. 中国矿业大学学报,2004(2):30−34.

    ZHOU Huaqiang,HOU Chaojiong,SUN Xikui,et al. Solid waste paste filling for none-village-relocation coal mining[J]. Journal of China University of Mining & Technology,2004(2):30−34.

    [48] 郭广礼,缪协兴,查剑锋,等. 长壁工作面矸石充填开采沉陷控制效果的初步分析[J]. 中国科技论文在线,2008(11):805−809.

    GUO Guangli,MIU Xiexing,ZHA Jianfeng,et al. Preliminary analysis of the effect of controlling mining subsidence with waste stow for long wall workface[J]. China Sciencepaper,2008(11):805−809.

    [49] 张吉雄,李 剑,安泰龙,黄艳利. 矸石充填综采覆岩关键层变形特征研究[J]. 煤炭学报,2010,35(3):357−362.

    ZHANG Jixiong,LI Jian,AN Tailong,HUANG Yanli. Deformation characteristic of key stratum overburden by raw waste backfilling with fully-mechanized coal mining technology[J]. Journal of China Coal Society,2010,35(3):357−362.

    [50] 查剑锋. 矸石充填开采沉陷控制基础问题研究[D]. 徐州: 中国矿业大学, 2008.

    ZHA Jianfeng. Study on the foundational problems of mining subsidence controlled in waste stow[D]. Xuzhou: China University of Mining & Technology, 2008.

    [51] 王磊. 固体密实充填开采岩层移动机理及变形预测研究[D]. 徐州: 中国矿业大学, 2012.

    WANG Lei. Study on strata movement mechanism and deformation prediction of coal mining with solid waste compacted filling[D]. Xuzhou: China University of Mining & Technology, 2012.

    [52]

    GUO G L,ZHU X J,ZHA J F,et al. Subsidence prediction method based on equivalent mining height theory for solid backfilling mining[J]. Transactions of Nonferrous Metals Society of China,2014,24(10):3302−3308. doi: 10.1016/S1003-6326(14)63470-1

    [53] 郭广礼,郭凯凯,张国建,等. 深部带状充填开采复合承载体变形特征研究[J]. 采矿与安全工程学报,2020,37(1):101−109.

    GUO Guangli,GUO Kaikai,ZHANG Guojian,et al. Research on deformation characteristics of coupled coal-backfills bearing in deep backfilling mining[J]. Journal of Mining & Safety Engineering,2020,37(1):101−109.

    [54] 朱晓峻. 带状充填开采岩层移动机理研究[D]. 徐州: 中国矿业大学, 2016.

    ZHU Xiaojun. Study on strata movement mechanism in backfill-strip mining[D]. Xuzhou: China University of Mining & Technology, 2016.

    [55] 邓喀中, 谭志祥, 姜 岩, 等. 变形监测及沉陷工程学[M]. 徐州: 中国矿业大学出版社, 2014.

    DENG Kazhong, TAN Zhixiang, JIANG Yan, et al. Deformation monitoring and subsidence engineering[M]. Xuzhou: China University of Mining and Technology Press, 2014.

  • 期刊类型引用(1)

    1. 王琳,王楠,沈峰满. 惰气熔融-红外吸收/热导法同时测定无烟煤中氮和氢. 分析测试技术与仪器. 2024(01): 39-46 . 百度学术

    其他类型引用(0)

图(10)  /  表(3)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  13
  • PDF下载量:  164
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-06-25
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-01-29

目录

    /

    返回文章
    返回