高级检索

榆神府矿区地下水水化学特征及形成机理

范立民, 马万超, 常波峰, 孙魁, 苗彦平, 路波, 田水豹, 杨磊

范立民,马万超,常波峰,等. 榆神府矿区地下水水化学特征及形成机理[J]. 煤炭科学技术,2023,51(1):383−394. DOI: 10.13199/j.cnki.cst.2022-1050
引用本文: 范立民,马万超,常波峰,等. 榆神府矿区地下水水化学特征及形成机理[J]. 煤炭科学技术,2023,51(1):383−394. DOI: 10.13199/j.cnki.cst.2022-1050
FAN Limin,MA Wanchao,CHANG Bofeng,et al. Hydrochemical characteristics and formation mechanism of groundwater in Yushenfu Mining Area[J]. Coal Science and Technology,2023,51(1):383−394. DOI: 10.13199/j.cnki.cst.2022-1050
Citation: FAN Limin,MA Wanchao,CHANG Bofeng,et al. Hydrochemical characteristics and formation mechanism of groundwater in Yushenfu Mining Area[J]. Coal Science and Technology,2023,51(1):383−394. DOI: 10.13199/j.cnki.cst.2022-1050

榆神府矿区地下水水化学特征及形成机理

基金项目: 

国家重点研发计划资助项目(2019YFC1805400);陕西省自然科学基础研究计划-陕煤联合基金重点资助项目(2019JLZ-03);陕西煤业化工集团有限公司2020年度重点科研资助项目(2020SMHKJ-B-J-27)

详细信息
    作者简介:

    范立民: (1965—),男,山西曲沃人,教授。E-mail:498518851@qq.com

  • 中图分类号: P641.1

Hydrochemical characteristics and formation mechanism of groundwater in Yushenfu Mining Area

Funds: 

National Key Research and Development Program of China (2019YFC1805400); Shaanxi Basic Research Program of Natural Science - Shaanxi Coal Joint Key Project (2019JLZ-03); Shaanxi Coal Industry Chemical Industry Group Co., LTD. 2020 Key Research Project (2020SMHKJ-B-J-27)

  • 摘要:

    煤矿区地下水化学特征及其形成作用对矿区地下水保护和矿井突水水源识别具有重要意义。以陕北榆神府矿区第四系松散层、白垩系洛河组、侏罗系安定组及直罗组地下水为研究对象,综合利用统计分析、Piper三线图、同位素、Gibbs图及离子比例关系等方法分析了地下水水化学特征及形成作用。结果表明:研究区地下水均为弱碱性淡水,其中第四系松散层、白垩系洛河组和侏罗系直罗组风化基岩地下水中,阳离子以Ca2+为主,阴离子以HCO3 为主,侏罗系安定组地下水中阳离子以K++Na+为主,阴离子以HCO3 为主,侏罗系直罗组正常基岩地下水中阳离子以K++Na+为主,阴离子以SO4 2−为主;各含水层地下水中TDS与主要离子相关性显著;白垩系洛河组与侏罗系直罗组正常基岩地下水中,离子空间分布差异性较大;通过同位素分析和溶滤作用分析,第四系与直罗组风化基岩含水层存在水力联系;研究区地下水主要离子形成受岩石风化控制,主要离子来源于碳酸盐、硅酸盐和硫酸盐矿物的溶解,并受到K+、Na+、Ca2+、Mg2+等阳离子交替吸附作用的影响。该研究结果可为榆神府矿区地下水资源保护和合理开发与利用等提供一定的借鉴。

    Abstract:

    The hydrochemical characteristics of groundwater in coal mining areas and its formation are of great significance to groundwater protection in mining areas and the identification of mine water inrush water sources. This paper takes the Quaternary aquifer, Cretaceous Luohe Formation, Jurassic Anding Formation and Zhiluo Formation aquifer groundwater as research objects in the Yushenfu Mining Area in northern Shaanxi. The chemical characteristics and formation of groundwater were analyzed by comprehensive use of statistical analysis, Piper's three-line diagram, isotope, Gibbs diagram and ion ratio relationship. The results show that the groundwater in this mining area is weakly alkaline fresh water. In the groundwater of quaternary, cretaceous Luohe Formation and Jurassic Zhiluo Formation (weathered bedrock), the cation is mainly Ca2+, and the anion is mainly HCO3 . In the groundwater of Jurassic Anding Formation, the cation is mainly K++Na+, and the anion is HCO3 . In the groundwater of Jurassic Zhiluo Formation (normal bedrock), the cation is mainly K++Na+, and the anion is mainly SO4 2−. TDS in the groundwater of each aquifer is significantly correlated with major ions. In the normal bedrock groundwater of the Luohe Formation and the Jurassic Zhiluo Formation, the spatial distribution of ions was quite different. Through isotope analysis and dissolution analysis, there is a hydraulic connection between the fourth series and the weathered bedrock aquifer of the Zhiluo Formation. The formation of main ions in groundwater in the study area is controlled by rock weathering, and the main ions are derived from the dissolution of carbonate, silicate, and sulfate minerals, and are affected by the alternating adsorption of K+, Na+, Ca2+, and Mg2+ cations. The results of this study can provide some reference for the protection and rational development and utilization of groundwater resources in the Yushenfu Mining Area.

  • 图  1   研究区水文地质剖面图

    Figure  1.   Hydrogeological profile of the study area

    图  2   研究区综合地层柱状图

    Figure  2.   Comprehensive stratigraphic histogram of study area

    图  3   研究区水样点位置分布

    Figure  3.   Location distribution of groundwater sample points in study area

    图  4   地下水Piper三线图

    Figure  4.   Piper tri-linear diagram of groundwater

    图  5   水样 δD-δ18O 关系

    Figure  5.   δD-δ18O of water samples from study area

    图  6   研究区地下水Gibbs图

    Figure  6.   Gibbs map of groundwater in study area

    图  7   交替吸附作用

    Figure  7.   Diagram of alternate adsorption

    图  8   脱硫酸系数

    Figure  8.   Desulfurization coefficient

    图  9   离子间比值关系

    Figure  9.   Correlation between groundwater ions

    表  1   研究区地下水水化学常规离子质量浓度统计数据

    Table  1   Statistical of main ion concentration of groundwater in study area

    水样类别pH质量浓度/(mg·L−1
    TDSK++Na+Ca2+Mg2+ClSO4 2−HCO3
    第四系 平均值 7.84 317.53 21.66 49.57 10.76 11.04 26.87 197.45
    标准差 0.26 73.00 16.96 16.79 4.34 9.56 22.94 50.17
    最小值 7.10 111.95 0.90 13.67 2.70 3.49 6.17 18.60
    最大值 8.46 535.00 96.40 103.21 24.92 56.72 105.70 308.15
    变异系数 0.03 0.23 0.78 0.34 0.40 0.87 0.85 0.25
    洛河组 平均值 8.09 370.28 74.23 40.16 7.35 15.49 83.87 192.03
    标准差 0.45 69.78 87.72 19.82 3.35 11.00 196.25 65.46
    最小值 7.60 298.40 14.85 11.22 0.49 5.19 4.12 0.00
    最大值 9.05 558.00 342.70 77.30 11.62 37.00 732.10 264.80
    变异系数 0.06 0.19 1.18 0.49 0.46 0.71 2.34 0.34
    安定组 平均值 8.01 342.00 44.05 29.60 10.86 8.33 16.08 215.56
    标准差 0.11 33.99 20.15 9.15 4.34 0.85 7.89 29.13
    最小值 7.90 281.00 26.30 13.32 5.50 7.10 4.80 177.00
    最大值 8.20 382.00 77.87 42.10 17.26 9.64 32.67 257.40
    变异系数 0.01 0.10 0.46 0.31 0.40 0.10 0.49 0.14
    直罗组 风化基岩 平均值 8.08 293.78 24.67 39.77 8.91 10.60 22.51 164.95
    标准差 0.36 89.90 36.59 11.55 4.14 21.24 38.15 37.75
    最小值 7.39 161.80 2.57 11.00 0.60 1.99 0.00 1.20
    最大值 9.10 774.00 223.70 91.20 24.41 186.10 308.00 307.36
    变异系数 0.04 0.31 1.48 0.29 0.47 2.00 1.69 0.23
    正常基岩 平均值 8.71 1 246.00 356.91 50.18 4.71 130.70 476.16 194.14
    标准差 1.13 1163.73 385.72 58.39 3.25 173.45 616.25 76.76
    最小值 7.40 281.00 9.27 0.89 0.05 4.58 5.80 0.00
    最大值 12.11 4 692.00 1 486.70 247.00 9.09 641.45 2 457.30 304.20
    变异系数 0.13 0.93 1.08 1.16 0.69 1.33 1.29 0.40
    下载: 导出CSV

    表  2   各化学指标间相关性系数

    Table  2   Relationships among chemical indicators

        含水层 项目相关性系数 r
    TDSK++Na+Ca2+Mg2+ClSO42−HCO3
    第四系 TDS 1 0.293* 0.578** 0.344* 0.313* 0.491** 0.621**
    K++Na+ 1 −0.290 −0.189 0.617** 0.542** −0.259
    Ca2+ 1 0.494** 0.281 0.387** 0.739**
    Mg2+ 1 0.287 0.217 0.634**
    Cl 1 0.633** 0.133
    SO4 2− 1 −0.020
    HCO3 1
    洛河组 TDS 1 0.925** 0.205 −0.179 0.607* 0.815** 0.083
    K++Na+ 1 0.232 −0.193 0.687* 0.933** −0.139
    Ca2+ 1 0.487 −0.017 0.532 0.056
    Mg2+ 1 −0.031 0.059 0.078
    Cl 1 0.650* −0.626*
    SO4 2− 1 −0.214
    HCO3 1
    安定组 TDS 1 0.657 −0.366 −0.020 −0.100 0.194 0.611
    K++Na+ 1 −0.850* −0.382 −0.061 0.656 0.389
    Ca2+ 1 0.344 0.054 −0.805* 0.037
    Mg2+ 1 0.032 −0.204 0.341
    Cl 1 0.387 −0.338
    SO4 2− 1 −0.195
    HCO3 1
    直罗组 风化
    基岩
    TDS 1 0.928** 0.751** −0.207 0.747** 0.901** −0.213
    K++Na+ 1 0.570** −0.318** 0.839** 0.874** −0.376**
    Ca2+ 1 −0.297** 0.615** 0.582** −0.384**
    Mg2+ 1 −0.309** −0.253* 0.479**
    Cl 1 0.542** −0.515**
    SO4 2− 1 −0.302**
    HCO3 1
    正常
    基岩
    TDS 1 0.997** 0.605* 0.064 0.851** 0.988** 0.053
    K++Na+ 1 0.550* −0.007 0.842** 0.987** 0.024
    Ca2+ 1 0.640** 0.690** 0.559* 0.100
    Mg2+ 1 0.085 0.065 0.223
    Cl 1 0.765** 0.094
    SO4 2− 1 −0.002
    HCO3 1
    注:**在0.01水平(双侧)上显著相关;*在0.05水平(双侧)上显著相关。
    下载: 导出CSV
  • [1] 范立民. 保水采煤面临的科学问题[J]. 煤炭学报,2019,44(3):667−674. doi: 10.13225/j.cnki.jccs.2018.6051

    FAN Limin. Some scientific issues in water-preserved coal mining[J]. Journal of China Coal Society,2019,44(3):667−674. doi: 10.13225/j.cnki.jccs.2018.6051

    [2]

    FAN LM,MA XD. A review on investigation of water-preserved coal mining in western China[J]. International Journal of Coal Science & Technology,2018,5(4):411−416.

    [3] 苗耀武,叶 兰. 2020年全国煤矿水害事故分析及其防治对策[J]. 中国煤炭,2021,47(2):∶51−54.

    MIAO Yaowu,YE Lan. Analysis and prevention countermeasures of coal mine water disaster in China in 2020[J]. China Coal,2021,47(2):∶51−54.

    [4] 桂和荣, 陈陆望. 矿区地下水水文地球化学演化与识别[M]. 北京: 地质出版社, 2007.
    [5] 宫凤强,鲁金涛. 基于主成分分析与距离判别分析法的突水水源识别方法[J]. 采矿与安全工程学报,2014,31(2):236−242. doi: 10.13545/j.issn1673-3363.2014.02.012

    GONG Fengqiang,LU Jintao. Recognition method of mine water inrush sources based on the principal element analysis and distance discrimination analysis[J]. Journal of Mining & Safety Engineering,2014,31(2):236−242. doi: 10.13545/j.issn1673-3363.2014.02.012

    [6]

    XU H,WANG KB. Analysis of water-inrush for deep coal floor in a coal mine[J]. Electronic Journal of Geotechnical Engineering,2015,20(10):4189−4196.

    [7] 范立民. 保水采煤的科学内涵[J]. 煤炭学报,2017,42(1):27−35. doi: 10.13225/j.cnki.jccs.2017.5066

    FAN Limin. Scientific connotation of water-preserved mining[J]. Journal of China Coal Society,2017,42(1):27−35. doi: 10.13225/j.cnki.jccs.2017.5066

    [8] 刘春燕, 于开宁, 张 英, 等. 西宁市浅层地下水化学特征及形成机制[J/OL]. 环境科学: 1-12 [2023-01-13]. DOI: 10.13227/j.hjkx.202203297.

    LIU Chunyan, YU Kaining, ZHANG Ying, et al. Characteristics and driving mechanisms of shallow groundwater chemistry in Xining City[J/OL]. Environmental Science: 1-12 [2023-01-13]. DOI: 10.13227/j.hjkx.202203297.

    [9]

    YAN Jiaheng,CHEN Jiansheng,ZHANG Wenqing. Study on the groundwater quality and its influencing factor in Songyuan City, Northeast China, using integrated hydrogeochemical method[J]. Science of the Total Environment,2021:773.

    [10] 秦 怡,唐小惠,李艳龙,等. 枣庄市南部地下水水化学特征及其主要控制因素[J]. 安全与环境工程,2022,10:1−8. doi: 10.13578/j.cnki.issn.1671-1556.20210207

    QI Yi,TANG Xiaohui,LI Yanlong,et al. Hydrochemical characteristics and main controlling factor of the groundwater in Southern Zaozhuang City[J]. Safety and Environmental Engineering,2022,10:1−8. doi: 10.13578/j.cnki.issn.1671-1556.20210207

    [11] 张 凯,高 举,蒋斌斌,等. 煤矿地下水库水-岩相互作用机理实验研究[J]. 煤炭学报,2019,44(12):3760−3772. doi: 10.13225/j.cnki.jccs.SH19.0977

    ZHANG Kai,GAO Ju,JIANG Binbin,et al. Experimental study on the mechanism of water-rock interaction in the coal mine underground reservoir[J]. Journal of China Coal Society,2019,44(12):3760−3772. doi: 10.13225/j.cnki.jccs.SH19.0977

    [12] 韩佳明,高 举,杜 坤,等. 煤矿地下水库水体水化学特征及其成因解析[J]. 煤炭科学技术,2020,48(11):223−231. doi: 10.13199/j.cnki.cst.2020.11.028

    HAN Jiaming,GAO Ju,DU Kun,et al. Analysis of hydrochemical characteristics and formation mechanism in coal mine underground reservoir[J]. Coal Science and Technology,2020,48(11):223−231. doi: 10.13199/j.cnki.cst.2020.11.028

    [13] 孙亚军,徐智敏,李 鑫,等. 我国煤矿区矿井水污染问题及防控技术体系构建[J]. 煤田地质与勘探,2021,49(5):1−16.

    SUN Yajun,XU Zhimin,LI Xin,et al. Mine water drainage pollution in China’s coal mining areas and the construction of prevention and control technical system[J]. Coal Geology & Exploration,2021,49(5):1−16.

    [14] 孙亚军,张 莉,徐智敏,等. 煤矿区矿井水水质形成与演化的多场作用机制及研究进展[J]. 煤炭学报,2022,47(1):423−437. doi: 10.13225/j.cnki.jccs.YG21.1937

    SUN Yajun,ZHANG Li,XU Zhimin,et al. Multi field action mechanism and research progress of coal mine water quality formation and evolution[J]. Journal of China Coal Society,2022,47(1):423−437. doi: 10.13225/j.cnki.jccs.YG21.1937

    [15] 王甜甜,张 雁,赵 伟,等. 伊敏矿区地下水水化学特征及其形成作用分析[J]. 环境化学,2021,40(5):1480−1489. doi: 10.7524/j.issn.0254-6108.2020102203

    WANG Tiantian,ZHANG Yan,ZHAO Wei,et al. Hydrogeochemical characteristics and formation process of groundwater in Yimin mining area[J]. Environmental Chemistry,2021,40(5):1480−1489. doi: 10.7524/j.issn.0254-6108.2020102203

    [16] 虎维岳,赵春虎. 基于充水要素的矿井水害类型三线图划分方法[J]. 煤田地质与勘探,2019,47(5):1−8. doi: 10.3969/j.issn.1001-1986.2019.05.001

    HU Weiyue,ZHAO Chunhu. Trilinear chart classification method of mine water hazard type based on factors of water recharge[J]. Coal Geology & Exploration,2019,47(5):1−8. doi: 10.3969/j.issn.1001-1986.2019.05.001

    [17] 张玉卓,徐智敏,张 莉,等. 山东新巨龙煤矿区场地高TDS地下水水化学特征及成因机制[J]. 煤田地质与勘探,2021,49(5):52−62.

    ZHANG Yuzhuo,XU Zhimin,ZHANG Li,et al. Hydrochemical characteristics and genetic mechanism of high TDS groundwater in Xinjulong Coal Mine[J]. Coal Geology & Exploration,2021,49(5):52−62.

    [18] 苗霖田,夏玉成,段中会,等. 黄河中游榆神府矿区煤-岩-水-环特征及智能一体化技术[J]. 煤炭学报,2021,46(5):1521−1531. doi: 10.13225/j.cnki.jccs.st21.0216

    MIAO Lintian,XIA Yucheng,DUAN Zhonghui,et al. Coupling characteristics and intelligent integration technology of coal-overlying rock-groundwater-ecological environment in Yu-Shen-Fu mining area in the middle reaches of the Yellow River[J]. Journal of China Coal Society,2021,46(5):1521−1531. doi: 10.13225/j.cnki.jccs.st21.0216

    [19] 刘 基,高 敏,靳德武,等. 榆神矿区地表水水化学特征及其影响因素分析[J]. 煤炭科学技术,2020,48(7):354−361. doi: 10.13199/j.cnki.cst.2020.07.040

    LIU Ji,GAO Min,JIN Dewu,et al. Hydrochemical characteristics of surface water and analysis on influence factors in Yushen Mining Area[J]. Coal Science and Technology,2020,48(7):354−361. doi: 10.13199/j.cnki.cst.2020.07.040

    [20] 张蕊蕊. 鄂尔多斯盆地北部白垩系地下水水化学特征及影响因素研究[J]. 煤炭与化工,2019,42(1):57−60,64. doi: 10.19286/j.cnki.cci.2019.01.015

    ZHANG Rui. Hydrochemical characteristics and influencing factors of cretaceous groundwater in the northern Ordos Basin[J]. Coal and Chemical Industry,2019,42(1):57−60,64. doi: 10.19286/j.cnki.cci.2019.01.015

    [21] 仵拨云,卞惠瑛,彭 捷,等. 西部生态环境脆弱区地下水水化学特征分析[J]. 人民黄河,2019,41(1):65−69. doi: 10.3969/j.issn.1000-1379.2019.01.015

    WU Boyun,BIAN Huiying,PENG Jie,et al. Hydrochemical characteristics analysis of groundwater in the Western Eco-Enviroment Fragility Area[J]. Yellow River,2019,41(1):65−69. doi: 10.3969/j.issn.1000-1379.2019.01.015

    [22] 汪集旸,陈建生,陆宝宏,等. 同位素水文学的若干回顾与展望[J]. 河海大学学报(自然科学版),2015,43(5):406−413.

    WANG Jiyang,CHEN Jiansheng,LU Baohong,et al. Review and prospect of isotope hydrology[J]. Journal of Hohai University (Natural Sciences),2015,43(5):406−413.

    [23] 侯光才, 张茂省, 刘 方, 等. 鄂尔多斯盆地地下水勘查研究[M]. 北京: 地质出版社, 2008.
    [24] 胡春华,童 乐,万齐远,等. 环鄱阳湖浅层地下水水化学特征的时空变化[J]. 环境化学,2013,32(6):974−979. doi: 10.7524/j.issn.0254-6108.2013.06.009

    HU Chunhua,TONG Le,WAN Qiyuan,et al. Spatial and temporal variation of shallow groundwater chemical characteristics around Poyang Lake[J]. Environmental Chemistry,2013,32(6):974−979. doi: 10.7524/j.issn.0254-6108.2013.06.009

    [25] 郭巧玲,熊新芝,姜景瑞. 窟野河流域地表水-地下水的水化学特征[J]. 环境化学,2016,35(7):1372−1380. doi: 10.7524/j.issn.0254-6108.2016.07.2015110301

    GUO Qiaoling,XIONG Xinzhi,JIANG Jingrui. Hydrochemical characteristics of surface and ground water in the Kuye River Basin[J]. Environmental Chemistry,2016,35(7):1372−1380. doi: 10.7524/j.issn.0254-6108.2016.07.2015110301

    [26]

    HUANG X J,WANG G C,LIANG X Y,et al. Hydrochemical and stable isotope (δD and δ18O) characteristics of groundwater and hydrogeochemical processes in the Ningtiaota Coalfield, Northwest China[J]. Mine Water and the Environment,2018,37(1):119−136. doi: 10.1007/s10230-017-0477-x

    [27]

    WANG L H,DONG Y H,XIE Y Q,et al. Distinct groundwater recharge sources and geochemical evolution of two adjacent sub-basins in the lower Shule River Basin, northwest China[J]. Hydrogeology Journal,2016,24(8):1967−1979. doi: 10.1007/s10040-016-1456-1

    [28] 郭小娇, 王慧玮, 石建省, 等. 白洋淀湿地地下水系统水化学变化特征及演化模式[J]. 地质学报, 2022, 96(2): 656-672.

    GUO Xiaojiao, WANG Huiwei, SHI Jiansheng, et al. Hydrochemical characteristics and evolution pattern of groundwater system in Baiyangdian wetland, North China Plain[J]. Acta Geologica Sinica, 96(2): 656-672.

    [29] 刘凯旋,刘启蒙,柴辉婵,等. 孙疃矿区地下水化学特征及其控制因素研究[J]. 煤炭工程,2019,51(4):74−79.

    LIU Kaixuan,LIU Qimeng,CHAI Huichan,et al. Chemical characteristics and control factors of groundwater in Suntuan Coal Mine[J]. Coal Enginering,2019,51(4):74−79.

    [30]

    LI P Y,TIAN R,LIU R. Solute geochemistry and multivariate analysis of water quality in the Guohua Phosphorite Mine, Guizhou Province, China[J]. Exposure and Health,2019,11(2):81−94. doi: 10.1007/s12403-018-0277-y

    [31] 汪子涛,刘启蒙,刘 瑜. 淮南煤田地下水水化学空间分布及其形成作用[J]. 煤田地质与勘探,2019,47(5):40−47. doi: 10.3969/j.issn.1001-1986.2019.05.006

    WANG Zitao,LIU Qimeng,LIU Yu. Spatial distribution and formation of groundwater hydrochemistry in Huainan coalfield[J]. Coal Geology & Exploration,2019,47(5):40−47. doi: 10.3969/j.issn.1001-1986.2019.05.006

    [32] 孔晓乐,杨永辉,曹 博,等. 永定河上游地表水-地下水水化学特征及其成因分析[J]. 环境科学,2021,42(9):4202−4210. doi: 10.13227/j.hjkx.202012227

    KONG Xiaole,YANG Yonghui,CAO Bo,et al. Hydrochemical characteristics and factors of surface water and groundwater in the upper Yongding River Basin[J]. Environmental Chemistry,2021,42(9):4202−4210. doi: 10.13227/j.hjkx.202012227

  • 期刊类型引用(10)

    1. 苏现波,丁锐,赵伟仲,严德天,李瑞明,王一兵,王海超,黄胜海,周艺璇,王小明,伏海蛟. 准南低质煤层气原位提质增量研究. 煤炭学报. 2025(01): 532-545 . 百度学术
    2. 林海涛,李玲,唐淑玲,田文广,李杰,孟芹. 二连盆地富气凹陷低阶煤煤层气成因及成藏机制. 煤田地质与勘探. 2024(02): 60-69 . 百度学术
    3. 李勇,郭涛,刘欣妍,彭苏萍. 中国低煤阶煤层气资源潜力及发展方向. 石油与天然气地质. 2024(06): 1537-1554 . 百度学术
    4. 简阔,傅雪海,夏大平,冯睿智,李咪,吉小峰. 我国次生生物成因煤层气研究进展. 煤矿安全. 2023(04): 11-21 . 百度学术
    5. 张娜,伏海蛟,刘玲,杨曙光,王刚,李跃国,王佳伟,杨昊宇. 米泉低阶煤煤层气中CO_2异常赋存特征与成因. 新疆地质. 2023(02): 240-245 . 百度学术
    6. 吴兆剑,韩效忠,李紫楠,胡航,来强. 准噶尔盆地中生代“下煤上铀”地层结构的沉积机理. 煤炭科学技术. 2023(12): 52-64 . 本站查看
    7. 唐淑玲,汤达祯,孙斌,陶树,张泰源,蒲一帆,张奥博,支元昊. 富(含)CO_2煤层气多源多阶成因研究进展及勘探开发启示. 煤田地质与勘探. 2022(03): 58-68 . 百度学术
    8. 刘忠,张继东,鲁秀芹,穆福元,张聪,陈美瑾,邹雨时,赵洋,钟小刚. 煤岩二次暂堵压裂裂缝扩展规律试验研究. 煤炭科学技术. 2022(06): 254-259 . 本站查看
    9. 姜延航,白刚,周西华,王玉玺,付天予,胡坤. 煤吸附CH_4体积测试与分析. 煤炭科学技术. 2022(12): 144-152 . 本站查看
    10. 涂志民,王兴刚,车延前,张士钊,李鹏,曹志雄. 三塘湖盆地低阶煤煤层气成藏主控因素. 新疆石油地质. 2021(06): 683-689 . 百度学术

    其他类型引用(5)

图(9)  /  表(2)
计量
  • 文章访问数:  240
  • HTML全文浏览量:  11
  • PDF下载量:  440
  • 被引次数: 15
出版历程
  • 收稿日期:  2022-07-04
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-01-29

目录

    /

    返回文章
    返回