Mechanism interference critical characterization and autonomous demodulation method of solid filling hydraulic support
-
摘要:
在采充工序自驱执行过程中,能否实现机构干涉的自主解调,是固体充填液压支架能否实现智能化的基础。利用理论分析方法,以ZC5160/30/50型固体充填液压支架为例,从充填支架机构的几何及运动约束关系出发,建立了正交位姿控制指标:夯实铰点顶梁平距和夯实铰点顶梁垂距,实现了任意工况下支架后顶梁的位姿表征;分析了充填支架底卸式输送机在各工况因素作用下的运动特征,建立了正交位姿控制指标:底卸式输送机顶梁垂距和输送机顶梁平距,实现了任意工况下底卸式输送机的位姿表征;基于后顶梁和底卸式输送机的位姿控制指标进一步得出充填物料卸料过程中在煤层底板的落点位置表征指标:卸料中心距,实现了任意工况下充填物料的落点位置表征;分析了采充工序执行过程中各工序阶段机构动作与位姿调整的衔接关系和易干涉位置,基于正交位姿控制指标,利用投影法建立了任意工况下落料与典型碰撞位置的干涉临界控制方程;以夯实机构转角和夯实油缸行程表征典型工况下的干涉临界曲线,提出采用“干涉区、易干涉区、非干涉区”的三区分布特征表征干涉临界程度,并给出各干涉状态的解调路经;基于干涉临界控制方程、干涉三区分布特征和充填工序过程中机构动作与位姿调整的衔接关系,提出了干涉状态自主识别方法:利用角度传感器及行程传感器获取夯实机构的实时转角和行程,代入各易干涉位置的干涉临界方程得到处于该位置干涉临界状态的夯实机构转角或行程的理论值和干涉临界曲线,判断实际值在干涉临界曲线三区分布图上的位置即可实现干涉位置及状态的自主判别,根据干涉三区分布曲线图即可实现自主解调;基于干涉位置及干涉状态自主识别方法设计了干涉自主判别和解调算法。研究结果为充填液压支架机构位姿表征提供了新的参考指标,为机构干涉的智能避障和解调提供了基础判据,为固体智能充填的采充工序自驱执行提供了算法基础。
Abstract:Whether the self-demodulation of mechanism interference can be realized in the self-driven execution process of filling operation is the basis for the solid filling hydraulic support to achieve intelligence. Using the theoretical analysis method, taking the ZC5 160/30/50 type solid filling hydraulic support as an example, starting from the geometric and motion constraint relationship of the filling support mechanism, the orthogonal pose control index is established: the horizontal distance and vertical distance of the tamping hinge point top beam, which realizes the pose characterization of the rear top beam of the support under any working condition; The motion characteristics of the bottom-discharge conveyor of the filling support under various working condition factors were analyzed, and the orthogonal pose control index was established: the vertical distance and horizontal distance of the top beam of the bottom-discharge conveyor, which realized the pose characterization of the bottom-discharge conveyor under any working condition; Based on the pose control index of the rear top beam and the bottom-discharge conveyor, the landing position characterization index of the filling material on the coal seam floor during the discharge process is further obtained: the discharge center distance, which realizes the landing position characterization of the filling material under any working condition; the connection relationship and easy interference position of the mechanism action and pose adjustment in each stage of the filling operation process are analyzed, based on the orthogonal pose control index, the interference critical control equation of the discharge and typical collision position under any working condition is established by using the projection method; taking the tamping mechanism rotation angle and tamping cylinder stroke as the characterization of the interference critical curve under typical working conditions, it is proposed to use the three-zone distribution characteristics of “interference zone, easy interference zone, and non-interference zone” to characterize the interference critical degree, and give the demodulation path of each interference state; based on the interference critical control equation, interference three-zone distribution characteristics and the connection relationship of mechanism action and pose adjustment in the filling operation process, an interference state autonomous identification method is proposed: using angle sensor and stroke sensor to obtain the real-time rotation angle and stroke of the tamping mechanism, substituting into the interference critical equation of each easy interference position to obtain the theoretical value and interference critical curve of the tamping mechanism rotation angle or stroke in that position, judging the position of the actual value on the interference critical curve three-zone distribution diagram can realize the autonomous discrimination of interference position and state, and autonomous demodulation can be realized according to the interference three-zone distribution curve diagram; based on the interference position and interference state autonomous identification method, the interference autonomous discrimination and demodulation algorithm is designed. The research results provide new reference indicators for the pose characterization of the filling hydraulic support mechanism, provide basic criteria for the intelligent obstacle avoidance and demodulation of mechanism interference, and provide algorithm basis for the self-driven execution of the filling operation of solid intelligent filling.
-
-
表 1 机构位姿控制指标及表征对象
Table 1 Position and attitude control index and characterization object of mechanism
指标 表达式 表征对象 ① 输送机顶梁平距 $ {L_{\rm{s}}} = {l_2} + {h_y} + g\sin\, \delta $ 输送机位姿 ② 输送机顶梁垂距 $ {L_{\rm{g}}} = {l_3} + {l_4} + g\cos\, \delta $ ③ 夯实铰点顶梁垂距 $ {H_{\rm{d}}} = H\cos \gamma - {L_h}\sin\, \gamma $ 后顶梁位姿 ④ 夯实铰点顶梁平距 $ {L_{\rm{d}}} = {L_h}\sec \gamma + {H_d}\tan\, \gamma $ ⑤ 卸料中心距 ${a_{\rm{z} } } = {H_{\rm{c}}} + {H_z}\tan\; \beta$ 物料落点位置 表 2 干涉临界典型工况参数取值
Table 2 Parameter values of interference critical typical working conditions
工况参数 h/mm β/(°) γ/(°) hy/mm 落料干涉 4500 −15、0、15 5 800 输送机底部 −15、0、15 800 输送机后侧 −15、0、15 200 表 3 干涉自主识别与解调算法仿真试验结果
Table 3 Simulation test results of interference self-recognition and demodulation algorithm
夯实角试验值$\theta '$/(°) 夯实行程试验值
${h_{\rm{s}}}'$/mm夯实行程临界值
${h_{\rm{s}}}$/mm干涉三区分布 模拟工序
阶段识别干涉状态 卸料 输送机底部
(夯实机构伸出)输送机后侧
(夯实机构收回)27.73 800 786.64 干涉区 干涉区 干涉区 卸料前准备 卸料干涉 600 易干涉区 易干涉区 易干涉区 正常卸料 23.02 1400 1 328.95 干涉区 干涉区 易干涉区 循环夯实
(伸出)输送机底部干涉 1200 干涉区 易干涉区 干涉区 正常伸出夯实 24.47 1500 1 427.53 干涉区 干涉区 易干涉区 循环夯实
(收回)收回过程易干涉 1350 干涉区 干涉区 干涉区 输送机后侧干涉 20 2105 — 干涉区 易干涉区 非干涉区 循环夯实
(往复)正常循环夯实 -
[1] 周跃进,张吉雄,聂守江,等. 充填采煤液压支架受力分析与运动学仿真研究[J]. 中国矿业大学学报,2012,41(3):366−370. ZHOU Yuejin,ZHANG Jixiong,NIE Shoujiang,et al. Force analysis and kinematics simulation research of hydraulic support in filling mining[J]. Journal of China University of Mining and Technology,2012,41(3):366−370.
[2] 张 强. 固体充填体与液压支架协同控顶机理研究[D]. 徐州: 中国矿业大学, 2015: 60–95. ZHANG Qiang. Research on synergistic roof control mechanism of solid backfill and hydraulic support [D]. Xuzhou: China University of Mining and Technology, 2015: 60–95.
[3] 张 强,杨 康,张吉雄,等. 固体充填开采直接顶位态控制机制及工程案例[J]. 中国矿业大学学报,2022,51(1):35−45. doi: 10.3969/j.issn.1000-1964.2022.1.zgkydxxb202201004 ZHANG Qiang,YANG Kang,ZHANG Jixiong,et al. Immediate roof control mechanism in solid backfill mining method and its engineering case[J]. Journal of China University of Mining and Technology,2022,51(1):35−45. doi: 10.3969/j.issn.1000-1964.2022.1.zgkydxxb202201004
[4] 张 强,武中亚,杜二宝,等. 充填采煤液压支架工作阻力设计方法研究[J]. 采矿与安全工程学报,2020,37(1):118−127. ZHANG Qiang,WU Zhongya,DU Erbao,et al. Research on working resistance design method of hydraulic support in backfill mining[J]. Journal of Mining and Safety Engineering,2020,37(1):118−127.
[5] 张 强,张吉雄,邰 阳,等. 充填采煤液压支架夯实离顶距影响因素研究[J]. 中国矿业大学学报,2014,43(5):757−764. ZHANG Qiang,ZHANG Jixiong,TAI Yang,et al. Study of factors influencing the gap between backfill hydraulic support and roof[J]. Journal of China University of Mining and Technology,2014,43(5):757−764.
[6] 张 强,张吉雄,邰 阳,等. 充填采煤液压支架充填特性理论研究及工程实践[J]. 采矿与安全工程学报,2014,31(6):845−851. ZHANG Qiang,ZHANG Jixiong,TAI Yang,et al. Theoretical research and engineering practice on backfilling characteristics of hydraulic support in backfilling mining[J]. Journal of Mining and Safety Engineering,2014,31(6):845−851.
[7] 张 强,张吉雄,巨 峰,等. 固体充填采煤充实率设计与控制理论研究[J]. 煤炭学报,2014,39(1):64−71. doi: 10.13225/j.cnki.jccs.2013.1239 ZHANG Qiang,ZHANG Jixiong,JU Feng,et al. Backfill body’s compression ratio design and control theory research in solid backfill coal mining[J]. Journal of China Coal Society,2014,39(1):64−71. doi: 10.13225/j.cnki.jccs.2013.1239
[8] 张 强,张吉雄,吴晓刚,等. 固体充填采煤液压支架合理夯实离顶距研究[J]. 煤炭学报,2013,38(8):1325−1330. ZHANG Qiang,ZHANG Jixiong,WU Xiaogang,et al. Roof gap rationality research of backfilling-coal mining hydraulic support[J]. Journal of China Coal Society,2013,38(8):1325−1330.
[9] 杨姝航. 充填液压支架后顶梁性能分析及多目标优化设计[D]. 阜新: 辽宁工程技术大学, 2019: 32–43. YANG Shuhang. Performance analysis and multi-objective optimization design of top beam after filling hydraulic support [D]. Fuxin: Liaoning Technical University, 2019: 32–43.
[10] 马 婧. 干式充填液压支架结构设计与加载试验方式研究[D]. 邯郸: 河北工程大学, 2020: 62–73. MA Jing. Research on structural design and loadingtest method of dry-fill hydraulic support [D]. Handan: Hebei University of Engineering, 2020: 62–73.
[11] 唐 琨. 充填综采液压支架底座强度分析及其结构优化[D]. 徐州: 中国矿业大学, 2014: 50–74. TANG Kun. Strength Analysis and structure optimization for foundation of hydraulic support in filling mining [D]. Xuzhou: China University of Mining and Technology, 2014: 50–74.
[12] 路兰勇. ZC6000/18/38型综采充填液压支架关键技术研究 [D]. 北京: 中国矿业大学(北京), 2013: 21–44. LU Lanyong. Research on key technologies of ZC6000/18/38 fully-mechanized hydraulic support for filling [D]. Beijing: China University of Mining and Technology-Beijing, 2013: 21–44.
[13] 高 昊. 充填支架吊挂刮板输送机主要部件结构及力学特性研究[D]. 阜新: 辽宁工程技术大学, 2016: 22–34. GAO Hao. Mechanics properties research and structure on the main partof hanging scraper conveyor of solid backfill hydraulic support [D]. Fuxin: Liaoning Technical University, 2016: 22–34.
[14] 王晓峰,万宏凤,孙跃军. 固体充填刮板输送机卸料口控制机构的优化设计[J]. 煤矿机械,2016,37(10):119−121. WANG Xiaofeng,WAN Hongfeng,SUN Yuejun,et al. Optimization design of discharge port control mechanism of solid backfilling scraper conveyor[J]. Coal Mine Machinery,2016,37(10):119−121.
[15] 张东升,袁 帅,袁 智,等. 固体充填液压支架吊挂刮板输送机仿真研究[J]. 机械传动,2017,41(10):140−145. ZHANG Dongsheng,YUAN Shuai,YUAN Zhi,et al. Simulation research of the solid filling hydraulic support hangs scraper conveyor[J]. Journal of Mechanical Transmission,2017,41(10):140−145.
[16] 曾晓腾. 充填开采液压支架性能分析与姿态监控技术研究[D]. 北京: 中国矿业大学(北京), 2020: 43–67. ZENG Xiaoteng. Research on Performance Analysis and Attitude Monitoring Technology of Hydraulic Support for Filling Mining [D]. Beijing: China University of Mining and Technolo-gy-Beijing, 2020: 43–67.
[17] 任怀伟,李帅帅,李 勰,等. 液压支架顶梁位姿调控仿真分析[J]. 工矿自动化,2019,45(10):11−16. REN Huaiwei,LI Shuaishuai,LI Xie,et al. Simulation analysis of roof beam position and attitude control of hydraulic support[J]. Journal of Mine Automation,2019,45(10):11−16.
[18] 周 凯,任怀伟,华宏星,等. 基于油缸压力的液压支架姿态及受载反演[J]. 采矿与岩层控制工程学报,2017,22(5):36−40. ZHOU Kai,REN Huaiwei,HUA Hongxing,et al. Loading inversion and hydraulic support pose based on cylinder pressure[J]. Journal of Mining And Strata Control Engineering,2017,22(5):36−40.
[19] 赵立胜,宋光婕. 基于PLC的固体充填液压支架自动控制系统[J]. 电声技术,2019,43(7):53−54. ZHAO Lisheng,SONG Guangjie. Automatic control system of solid filling hydraulic support based on PLC[J]. Audio Engineering,2019,43(7):53−54.
[20] 焦山林,刘建功,郑强强,等. 矿用固体充填液压支架控制系统[J]. 煤矿机械,2015,36(2):236−238. JIAO Shanlin,LIU Jiangong,ZHENG Qiangqiang,et al. Control system of mine solid backfilling hydraulic support[J]. Coal Mine Machinery,2015,36(2):236−238.
[21] 赵立胜. 固体充填液压支架自动控制系统研究[D]. 邯郸: 河北工程大学, 2020: 25–47. ZHAO Lisheng. Research on automatic control system of solid filling hydraulic support [D]. Handan: Hebei University of Engineering, 2020: 25–47.
[22] 张 强, 王云搏, 张吉雄, 等. 煤矿固体智能充填开采方法研究[J]. 煤炭学报, 2021, 47(7): 1–10. ZHANG Qiang, WANG Yunbo, ZHANG Jixiong, et al. Research on intelligent solid backfilling mining method in coal mine [J]. Journal of China Coal Society, 2021, 47(7): 1–10.
[23] 张 强,刘 勇,张吉雄,等. 固体智能充填自主夯实过程机构干涉影响因素与调控方法[J]. 煤炭学报,2022,47(3):1043−1054. ZHANG Qiang,LIU Yong,ZHANG Jixiong,et al. Influencing factors and control method of mechanism interference in autonomous compaction process of intelligent solid backfilling technology[J]. Journal of China Coal Society,2022,47(3):1043−1054.
[24] 杨印朝,王云搏,张 强,等. 固体智能充填机械自主夯实过程机构干涉判别与调控研究[J]. 采矿与安全工程学报,2022,39(5):921−929. YANG Yinchao,WANG Yunbo,ZHANG Qiang,et al. Mechanism of interference discrimination and adjustment in the mechanical independent compaction process of intelligent solid backfilling method[J]. Journal of Mining and Safety Engineering,2022,39(5):921−929.
[25] 钱鸣高,何富连,李全生,等. 综采工作面端面顶板控制[J]. 煤炭科学技术,1992(1):41−46, 59. QIAN Minggao,HE Fulian,LI Quansheng,et al. Roof of head face control in fully mechanized mining face[J]. Coal Science and Technology,1992(1):41−46, 59.
-
期刊类型引用(4)
1. 问永忠,贾澎涛,夏敏高,张龙刚,王伟峰. 基于改进YOLOv8n的井下人员多目标检测. 工矿自动化. 2025(01): 31-37+77 . 百度学术
2. 董芳凯,赵美卿,黄伟龙. 煤矿井下暗光环境人员行为检测研究. 工矿自动化. 2025(01): 21-30+144 . 百度学术
3. 王轶玮,李晓宇,翁智,白凤山. 基于改进Zero-DCE模型的矿井低照度图像增强方法. 工矿自动化. 2025(02): 57-64+99 . 百度学术
4. 樊红卫,张超,刘金鹏,闫昕山,任跃武,王荣泉,李琳. 一种基于改进DeblurGAN-v2的煤矿带式输送机图像去运动模糊方法. 煤炭学报. 2024(S2): 1234-1247 . 百度学术
其他类型引用(1)