Research on filtering methane with spatial reticular stucture in coal seam roof fracture zone
-
摘要:
煤层顶板裂隙带对提高抽采瓦斯浓度起到的滤纯作用被普遍认可,裂隙带高位钻孔瓦斯抽采技术也已被广泛应用于回采工作面瓦斯防治。为研究滤纯甲烷作用机理,采用理论分析与CT扫描实验相结合的方法研究了煤层顶板裂隙带内裂隙的空间网状结构,指出:在回采工作面采空区上方的垮落带、裂隙带至弯曲下沉带存在着大量的采动造成的宏观裂隙和微观裂隙,裂隙几何尺寸逐渐变小,形成巨大空间网状结构;垮落带与裂隙带下部的宏观裂隙因CH4强扩散性造成靠近上部瓦斯浓度较高,裂隙带中上部微观裂隙网类似巨厚滤膜,通过黏性流和Knudsen扩散滤纯作用,起到进一步提高CH4浓度的效果。研究结论在富县党家河煤矿进行了工程试验,结果表明:在煤层顶板以上垂直高度16~18 m的裂隙带上部为最佳滤纯CH4区间,瓦斯抽采体积分数普遍在50%以上,最高达73%,验证了煤层顶板裂隙带空间网状结构滤纯CH4的正确性。研究成果对高位抽采钻孔布置、矿井瓦斯高效抽采与利用具有一定的指导意义。
Abstract:The filtration and purification effect of the seam roof fracture zone on improving the concentration of gas drainage is generally recognized. Gas drainage technology of high-level borehole in fracture zone has also been widely used in gas prevention and control of mining face.In order to study the mechanism of gas filtration and purification, the spatial network structure formed in the fracture zone of coal seam roof is studied by combining theoretical analysis with CT scanning verification experiment. The results show that: there are a large number of macroscopic and microscopic fractures caused by mining in the caving zone, fracture zone and bending subsidence zone above the goaf of the mining face; the geometric size of the fractures gradually decreases, presenting a huge spatial reticular structure; the macroscopic fractures in the caving zone and the lower part of the fracture zone have a higher concentration of gas near the upper part due to the strong diffusion of CH4, and the microscopic fracture net in the middle and upper part of the fracture zone is similar to a huge thick filter membrane,which further inproves the CH4 concentration through viscous flow and Knudsen diffusion filtration.The engineering test results of dangjiahe coal mine in Fuxian show that the upper of the fracture zone with a vertical height of 16-18 m above the roof of the coal seam is the best filtration space of CH4, and the gas drainage concentration is generally above 50%, up to 73%. It is verified that the spatial reticular structure of the coal seam roof fracture zone is correct to filter and purify CH4. The research results have certain guiding significance for the arrangement of high-level drainage boreholes and the efficient drainage and utilization of mine gas.
-
-
表 1 采空区多元混合气体物理参数
Table 1 Physical parameters of multi-component gas mixture in goaf area
气体成分 分子量/(g·mol−1) 动力黏度/
(10−6 Pa·s)分子
直径/
nm平均自由程/ (10−9 m) 密度/
(g·L−1)CH4 16 11.067 0.414 52.4 0.716 CO2 44 14.932 0.33 82.5 1.997 N2 28 17.805 0.304 97.2 1.251 O2 32 20.55 0.346 75 1.429 注:平均自由程在T=293 K,P=1.013×10−5时取值。 -
[1] 张 培,王文才. 高瓦斯特厚煤层首采工作面瓦斯涌出分布特征研究[J]. 科学技术与工程,2017,17(2):176−180. ZHANG Pei,WANG Wencai. Research on gas emission and distribution of the first face in high gas and thick seam[J]. Science Technology and Engineering,2017,17(2):176−180.
[2] 李晓泉. 采空区高位钻场与高抽巷瓦斯抽放方法对比及实例分析[J]. 煤矿安全,2011,42(5):122−125. LI Xiaoquan. Comparison and case analysis of high-level drilling sites in goaf areas and high-pumping alley gas pumping methods[J]. Safety in Coal Mines,2011,42(5):122−125.
[3] 郭明杰,郭文兵,袁瑞甫,等. 基于采动裂隙区域分布特征的定向钻孔空间位置研究[J]. 采矿与安全工程学报,2022,39(4):1−10. GUO Mingjie,GUO Wenbing,YUAN Ruifu,et al. Spatial location determination of directional boreholes based on regional distribution characteristics of mining-induced overburden fractures[J]. Journal of Mining & Safety Engineering,2022,39(4):1−10.
[4] 袁 亮,郭 华,沈宝堂,等. 低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J]. 煤炭学报,2011,36(3):357−365. YUAN Liang,GUO Hua,SHEN Baotang,et al. Circular overlying zone at longwall panel for efficient methane capture of mutiple coal seams with low permeability[J]. Journal of China Coal Society,2011,36(3):357−365.
[5] 胡彬强. 高位钻孔优势抽采区分布规律研究[J]. 工矿自动化,2019,45(7):102−108. HU Binqiang. Research on distribution law of dominant gas extraction area of high-level borehole[J]. Journal of Mine Automation,2019,45(7):102−108.
[6] 钱鸣高,许家林. 覆岩采动裂隙分布的“O”形圈特征研究[J]. 煤炭学报,1998,23(5):20−23. QIAN Minggao,XU Jialin. Study on the characteristics of "O"-shaped circles in the distribution of fractures in overburden mining[J]. Journal of China Coal Society,1998,23(5):20−23.
[7] 刘泽功,袁 亮,戴广龙,等. 开采煤层顶板环形裂隙圈内走向长钻孔法抽放瓦斯研究[J]. 中国工程科学,2004,6(5):32−38. LIU Zegong,YUAN Liang,DAI Guanglong,et al. Study on the Extraction of Gas by Long Drilling Method in the Annular Fracture Circle of The Roof Plate of Mining Coal Seam[J]. Chinese Journal of Engineering Science,2004,6(5):32−38.
[8] 张明杰,张庆堂,马 耕. 单一弱透气性厚煤层高位抽放技术的应用研究[J]. 煤炭科学技术,2003,31(12):80−82. ZHANG Mingjie,ZHANG Qingtang,MA Geng. Application and research on high level gas drainage technology in single poor penetration thick seam[J]. Coal Science and Technology,2003,31(12):80−82.
[9] 薛海腾,李希建,梁道富,等. 长距离定向钻孔瓦斯抽采技术在青龙煤矿的应用[J]. 工矿自动化,2020,46(2):34−38. XUE Haiteng,LI Xijian,LIANG Daofu,et al. Application of long-distance directional drilling gas drainage technology in Qinglong Coal Mine[J]. Industry and Mine Automation,2020,46(2):34−38.
[10] 侯国培,郭昆明,岳茂庄,等. 高位定向长钻孔瓦斯抽采技术应用[J]. 煤炭工程,2019,51(1):64−67. HOU Guopei,GUO Kunming,YUE Maozhuang,et al. Application of gas drainage technology in high-level directional long drilling hole[J]. Coal Engineering,2019,51(1):64−67.
[11] 林海飞,杨二豪,夏保庆,等. 高瓦斯综采工作面定向钻孔代替尾巷抽采瓦斯技术[J]. 煤炭科学技术,2020,48(1):136−143. LIN Haifei,YANG Erhao,XIA Baoqing,et al. Directional drilling replacing tailgate gas drainage technology in gassy fully-mechanized coal mining face[J]. Coal Science and Technology,2020,48(1):136−143.
[12] 李彦明. 基于高位定向长钻孔的上隅角瓦斯治理研究[J]. 煤炭科学技术,2018,46(1):215−218. doi: 10.13199/j.cnki.cst.2018.01.030 LI Yanming. Upper corner gas control based on high level directional long borehole[J]. Coal Science and Technology,2018,46(1):215−218. doi: 10.13199/j.cnki.cst.2018.01.030
[13] 钱鸣高,许家林. 煤炭开采与岩层运动[J]. 煤炭学报,2019,44(4):973−984. QIAN Minggao,XU Jialin. Behaviors of strata movement in coal mining[J]. Journal of China Coal Society,2019,44(4):973−984.
[14] 黄庆享,韩金博. 浅埋近距离煤层开采裂隙演化机理研究[J]. 采矿与安全工程学报,2019,36(4):706−711. HUANG Qingxiang,HAN Jinbo. Study on fracture evolution mechanism of shallow-buried close coal seam mining[J]. Journal of Mining & Safety Engineering,2019,36(4):706−711.
[15] 钱鸣高, 缪协兴, 许家林, 等. 岩层控制的关键层理论[M]. 徐州: 中国矿业大学出版社, 2003: 2-3. QIAN Minggao, MIU Xiexing, XU Jialin, et al. Critical layer theory of rock formation control[M]. Xuzhou: China University of Mining and Technology Press, 2003: 2-3.
[16] 杨艳国,吴庆伟,石亚军,等. 某煤矿导水裂隙带发育高度计算[J]. 科技导报,2014,32(3):34−38. doi: 10.3981/j.issn.1000-7857.2014.03.004 YANG Yanguo,WU Qingwei,SHI Yajun,et al. Calculation on the height of water flowing fractured zone in a coal mine[J]. Science & Technology Review,2014,32(3):34−38. doi: 10.3981/j.issn.1000-7857.2014.03.004
[17] 尹光志,李 星,韩佩博,等. 三维采动应力条件下覆岩裂隙演化规律试验研究[J]. 煤炭学报,2016,41(2):406−413. doi: 10.13225/j.cnki.jccs.2015.0344 YIN Guangzhi,LI Xing,HAN Peibo,et al. Experimental study on overburden strata fracture evolution law in three dimensional mine-induced stress conditions[J]. Journal of China Coal Society,2016,41(2):406−413. doi: 10.13225/j.cnki.jccs.2015.0344
[18] 李树刚,石平五,钱鸣高. 覆岩采动裂隙椭抛带动态分布特征研究[J]. 矿山压力与顶板管理,1999(S1):44−46. LI Shugang,SHI Pingwu,QIAN Minggao. Study on dynamic distribution characteristics of fractured oval throwing belt in rock cover mining[J]. Journal of Mining & Safety Engineering,1999(S1):44−46.
[19] 赵毅鑫,令春伟,刘 斌,等. 浅埋超大采高工作面覆岩裂隙演化及能量耗散规律研究[J]. 采矿与安全工程学报,2021,38(1):9−18,30. ZHAO Yixin,LING Chunwei,LIU Bin,et al. Fracture evolution and energy dissipation of overlying strata in shallow-buried underground mining with ultra-high working face[J]. Journal of Mining & Safety Engineering,2021,38(1):9−18,30.
[20] 宗传欣,丁晓斌,南江普,等. 膜法VOCs气体分离技术研究进展[J]. 膜科学与技术,2020,40(1):284−293. ZONG Chuanxin,DING Xiaobin,NAN Jiangpu,et al. Research progress of membrane baced removal of volatile organic compounds[J]. Membrane Science and Technology,2020,40(1):284−293.
[21] 王 湛, 周 翀. 膜分离技术基础[M]. 北京: 化学工业出版社, 2006: 278−280. WANG Zhan, ZHOU Chong. Fundamentals of membrane separation technology[M]. Beijing: Chemical Industry Press, 2006: 278−280.
[22] WAY J D,ROBERTS D L. Hollow fiber inorganic membranes for gas separations[J]. Separation Science,1992,27(1):29−41. doi: 10.1080/01496399208018863
-
期刊类型引用(3)
1. 杨宏飞,王海军,吴艳,解鹏,韩珂,董敏涛. 青龙寺煤矿煤层特征综合研究. 能源与环保. 2024(07): 105-110 . 百度学术
2. 李亚军,王海军,解鹏,吴艳,尹家宽,韩珂. 青龙寺煤矿5~(-2)煤层夹矸特征. 陕西煤炭. 2024(09): 105-108+145 . 百度学术
3. 解鹏,王海军,尹家宽,吴艳,李亚军,韩珂. 青龙寺煤矿顶板隐蔽致灾因素特征分析. 中国矿业. 2023(S2): 229-236 . 百度学术
其他类型引用(0)