高级检索

煤储层水文地质特征及其煤层气开发意义研究综述

赵馨悦, 韦波, 袁亮, 葛燕燕, 胡永, 李鑫, 王毛毛, 贾超, 玛依拉·艾山, 田继军

赵馨悦,韦 波,袁 亮,等. 煤储层水文地质特征及其煤层气开发意义研究综述[J]. 煤炭科学技术,2023,51(4):105−117

. DOI: 10.13199/j.cnki.cst.2022-1367
引用本文:

赵馨悦,韦 波,袁 亮,等. 煤储层水文地质特征及其煤层气开发意义研究综述[J]. 煤炭科学技术,2023,51(4):105−117

. DOI: 10.13199/j.cnki.cst.2022-1367

ZHAO Xinyue,WEI Bo,YUAN Liang,et al. Hydrological characters of coal reservoir and their significances on coalbed methane development: A review[J]. Coal Science and Technology,2023,51(4):105−117

. DOI: 10.13199/j.cnki.cst.2022-1367
Citation:

ZHAO Xinyue,WEI Bo,YUAN Liang,et al. Hydrological characters of coal reservoir and their significances on coalbed methane development: A review[J]. Coal Science and Technology,2023,51(4):105−117

. DOI: 10.13199/j.cnki.cst.2022-1367

煤储层水文地质特征及其煤层气开发意义研究综述

基金项目: 

国家自然科学基金资助项目(42062012)

详细信息
    作者简介:

    赵馨悦: (1996—),女,新疆克拉玛依人,硕士研究生。E-mail: XJUxinyue28@163.com

    通讯作者:

    李鑫: (1990—),男,山西晋城人,副教授,博士研究生。E-mail: lixinwaxj@xju.edu.cn

  • 中图分类号: P592

Hydrological characters of coal reservoir and their significances on coalbed methane development: A review

Funds: 

National Natural Science Foundation of China (42062012)

  • 摘要:

    我国煤层气资源开发具有广阔的前景,煤储层水的演化过程及其在煤层气开发过程中的运移规律对煤层气的富集和产能有重要影响。文章阐明了煤储层水的组成、性质、来源及同位素年代学研究进展;分析了煤储层水运移过程中压降漏斗的扩展规律和井间干扰机理,探讨了煤储层水运移过程中可能造成的储层伤害,并根据煤储层水的演化过程及其在煤层气开发中的运移规律,对煤层气开发提出几点建议。研究总结表明:①煤储层水来源于原始沉积水、渗入水、深成水以及成岩水,原始沉积水的钠氯系数 (rNa+/rCl)< 0.5,肖勒系数IBE>0.129,矿化度>10 000 mg/L;渗入水则与原始沉积水相反,深层水的δD介于−80‰~+40‰,δ18O介于+7‰~+9.5‰,成岩水δD介于−65‰~−20‰,δ18O介于+5‰~+25‰;②煤储层水地球化学特征对煤层气的富集、开发有重要指示意义,煤层气高含气区通常具有钠氯系数、脱硫系数、镁钙系数小,变质程度高的特点,低含气区反之;③煤储层水运移过程中形成的压降漏斗以及井间干扰有利于提高煤层气井产量,我国煤层气井大多采用矩形或菱形井网部署,最优井距通常在250~400 m;④煤储层水运移会引起水锁伤害、水敏伤害及速敏伤害等,通过实施合理排采强度、开展井网优化以及向入井流体中加入防水锁剂和煤粉分散剂方式等降低储层伤害。研究成果可为提高我国煤层气勘探效率和产量提供一定的理论依据。

    Abstract:

    The development of coalbed methane resources in China has broad prospects, and the evolution process of coalbed water and its transportation law has important impacts on coalbed methane production capacity. This paper clarifies the composition, properties, sources and isotopic chronology of coal reservoir water, analyzes the expansion law of the pressure drop funnel and the inter-well interference mechanism during the water transport process, discusses the reservoir damage that may be caused by the water transport during drainage, and puts forward several suggestions for coalbed methane development according to the evolution of coal reservoir water and its transport and migration law during production. The results show that: (1) coal reservoir water is originated from primary sedimentary water, infiltration water, deep-forming water and diagenetic water, and the sodium-chlorine coefficient (rNa+/rCl), Scholler coefficient (IBE), and mineralization degree of the original sedimentary water is<0.5, >0.129, and >10000 mg/L, respectively; corresponding values of infiltration water are the opposite of these relations; theδD andδ18O of deep-forming water is ranged from −80‰ to+40‰ and +7‰ to +9.5 ‰, respectively; theδD andδ18O of diagenetic water is ranged from −65‰ to −20‰ and +5‰ to+25‰, respectively; (2) the geochemical characteristics of coal reservoir water have important indicative significances for the enrichment and development of coalbed methane, and the high gas-containing areas of coalbed methane usually have the characteristics of low sodium-chlorine coefficient, low desulfurization coefficient, low magnesium-calcium coefficient, and high degree of metamorphism, correspondingly, the low gas-containing areas have the opposite characters; (3) the pressure drop funnel propagation during coal reservoir water transport and migration and the interference between wells are conducive to improve the coalbed methane production, and most of the coalbed methane wells in China are deployed by rectangular or diamond-shaped well networks, and the optimal well space is usually ranged between 250m and 400m; (4) the water transport of coal reservoirs can cause pulverized coal to block the formation, water lock damage, water sensitive damage, and velocity sensitive damage. To reduce reservoir damage, implementing reasonable drainage strength, optimizing the well network, and adding waterproof locking agent and pulverized coal dispersant to the incoming fluid are suggested. The research results can provide a certain theoretical basis for improving the exploration efficiency and coalbed methane yield in China.

  • 图  1   与煤颗粒有关的水的形态[9-10]

    Figure  1.   Morphology of water associated with coal particles[9-10]

    图  2   我国不同煤阶煤储层束缚水饱和度[17-21]

    Figure  2.   Confined water saturation in different coal reservoirs of different coal grades in China[17-21]

    图  3   不同来源水的δD-δ18O关系

    Figure  3.   Relationship between δD-δ18O of coalbed water originated from different sources

    图  4   煤层气产出机理及生产阶段示意[53]

    Figure  4.   Schematic of coal-bed methane production mechanism and production stage[53]

    图  5   压降传播示意[56]

    Figure  5.   Schematic of pressure drop propagation[56]

    图  6   压降传播与排采时间的关系[62]

    Figure  6.   Relationship between pressure drop propagation and discharge time[62]

    图  7   多井排采时形成的压降示意[63]

    Figure  7.   Schematic of pressure drop formed during multi-well discharge[63]

    表  1   煤层水组成分类

    Table  1   Classification of coal-bed water composition

    研究者分类结果分类依据
    高洪烈[11]自由水和吸附水煤的变质程度、煤阶和煤的裂隙发育状况等
    NORINAGA等[12]可冻结水和不可冻结水煤层水的凝结特性
    傅雪海等[1]自由水和束缚水煤层孔隙结构
    ZIMMERMANN等[9]
    Seehra等[10]
    重力水、吸附水、毛细水和粒间水煤层孔隙结构
    唐文蛟等[7]自由水、束缚水、不冻水煤层水的凝结特性
    HAN等[13]重力水、毛细水、吸附水煤层孔隙结构
    李夏伟[14]微小孔中的束缚水与可动水和大中孔中的束缚水与可动水煤层孔隙结构
    苗雅楠[8]自由水、束缚水、生成水煤岩孔隙热演化过程
    SUN等[15]自由水、束缚水煤层孔隙和裂缝的形状、大小和成因
    下载: 导出CSV

    表  2   不同水地球化学特征总结

    Table  2   Summary of different water geochemical characteristics

    水类型 原始沉积水渗入水深成水成岩水
    钠氯系数<0.5>0.5
    肖勒系数>0.129<0.129
    矿化度>10 000 mg/L<1 000 mg/L较高较低
    下载: 导出CSV

    表  3   不同水氢氧同位素组成变化范围 [32]

    Table  3   Variation range of hydroisotope composition of different waters[32]

    水类型δD/‰δ18O/‰备注
    渗入水<−400~+10−60~0
    比较标准:
    SMOWδD=8δ18O+10‰
    沉积水−50~−5−4.5~+3
    成岩水−65~−20+5~+25
    深成水−80~+40+7~+9.5
    下载: 导出CSV

    表  4   国内主要煤层气田矩形井网开发情况

    Table  4   Development of well networks in major coal-bed methane fields in China

    盆地埋深/m井网类型井距/(m×m)采收率/%
    鄂尔多斯盆地[71-72]矩形350×30051.20
    800矩形350×35051.70
    沁水盆地[73]500以浅矩形350×30063.42
    500~
    1 000
    矩形300×25047.94
    1 000以深矩形250×25043.20
    准噶尔盆地[74]520~
    1 250
    矩形250×300
    比德-三塘盆地 [75]600以浅矩形300×25045.31
    下载: 导出CSV
  • [1] 傅雪海, 秦 勇, 韦重韬. 煤层气地质学[M]. 徐州: 中国矿业大学出版社, 2007.

    FU Xuehai, QIN Yong , WEI Chongtao. Geology of coal-bed methane[M]. Xuzhou: China University of Mining and Technology Press, 2007.

    [2]

    MENG Y J,TANG D Z,XU H,et al. Division of coalbed methane desorption stages and its significance[J]. Petroleum Exploration and Development Online,2014,41(5):671−677. doi: 10.1016/S1876-3804(14)60080-X

    [3] 卫明明,琚宜文. 沁水盆地南部煤层气田产出水地球化学特征及其来源[J]. 煤炭学报,2015,40(3):629−635.

    WEI Mingming,JU Yiwen. Geochemical characteristics and sources of water produced in coalbed methane field in southern Qinshui Basin[J]. Journal of China Coal Society,2015,40(3):629−635.

    [4]

    KAISER W R ,HAMILTON D S,SCOTT A R, et al. Geological and hydrological controls on theproducibility of coalbed methane[J]. Journal of the GeologicalSociety,1994,151(3):417−420.

    [5]

    AYERS W B. Coalbed gas systems, resources, and production and a review of contrasting cases from the San Juan and Powder River Basins[J]. AAPG Bulletin,2002,86:1853−1890.

    [6]

    SCOTT A R. Hydrogeologic factors affecting gas contentdistribution in coal beds[J]. International Journal of Coal Geology,2002,50(14):363−287.

    [7] 唐文蛟,张守玉,董建勋,等. 褐煤中水分存在形式的实验研究[J]. 煤炭转化,2015,38(1):5−9,22. doi: 10.3969/j.issn.1004-4248.2015.01.002

    TANG Wenjiao,ZHANG Shouyu,Dong Jianxun,et al. Experimental study on the presence of moisture in lignite[J]. Coal Conversion,2015,38(1):5−9,22. doi: 10.3969/j.issn.1004-4248.2015.01.002

    [8] 苗雅楠. 煤层气藏气水赋存方式及产气机理研究[D]. 北京: 中国石油大学(北京), 2019.

    MIAO Yanan. Study on gas-water storage mode and gas production mechanism of coal-bed methane reservoir[D]. Beijing: China University of Petroleum(Beijing), 2019.

    [9]

    ZIMMERMANN E,NIEMANN DELIUS C. Microwave beneficiation of brown coal[J]. Górnictwo I Geoinzynieria,2007,31(2):627−633.

    [10]

    SEEHRA M S, KALRA A, MANIVANNA A. Dewatering of fine coal slurries by selective heating with microwave[J]. Fuel, 2007, 86(5) 86: 829−834.

    [11] 高洪烈. 论煤层气与地下水[J]. 中国煤田地质,1998(4):45−48.

    GAO Honglie. On coal-bed methane and groundwater[J]. Coal Geology of China,1998(4):45−48.

    [12]

    NORINAGA K,KUMAGAI H,HAYASHI J,et al. Classi-fication of water sorbed in coal on the basis of congelation characteristics[J]. Energy & Fuels,1998,12(3):574−579.

    [13]

    JIN H,ZhAO Z Y,XIAO G L,et al. Influence of coal-seam water on coalbed methane production: a review[J]. Chemistry and Technology of Fuels and Oils,2015,51(2):201−221.

    [14] 李夏伟,刘大锰,蔡益栋,等. 高煤级煤储层含水性特征及其对吸附能力的影响[J]. 地学前缘,2018,25(4):237−244.

    LI Xiawei,LIU Dameng,MENG Caiyi,et al. Aqueous characteristics of high-grade coal reservoirs and their influence on adsorption capacity[J]. Earth Science Frontiers,2018,25(4):237−244.

    [15]

    SUN Y,ZHAI C,XU J Z,et al. A method for accurate characterisation of the pore structure of a coal mass based on two-dimensional nuclear magnetic resonance T1-T2[J]. Fuel,2020,262:263−278.

    [16] 李传亮,彭朝阳. 煤层气的开采机理研究[J]. 岩性油气藏,2011,23(4):9−11,19. doi: 10.3969/j.issn.1673-8926.2011.04.002

    LI Chuanling,PENG Chaoyang. Study on the mining mechanism of coal-bed methane[J]. Lithological Reservoirs,2011,23(4):9−11,19. doi: 10.3969/j.issn.1673-8926.2011.04.002

    [17] 李可心. 临兴西深部煤层气储层特征及气水产出机理[D]. 徐州: 中国矿业大学, 2020.

    LI Kexin. Characteristics of coal-bed methane reservoirs in the west of Linxing and the mechanism of gas-water output[D]. Xuzhou: China University of Mining and Technology, 2020.

    [18] 王 恬,桑树勋,刘世奇,等. 沁水盆地南部高阶煤气水相对渗透特征[J]. 断块油气田,2017,24(2):199−202.

    WANG Tian,SANG Shuxun,LIU Shiqi,et al. Relative permeability characteristics of high-grade gas water in the southern Qinshui Basin[J]. Fault Block Oil & Gas Field,2017,24(2):199−202.

    [19] 李叶朋. 二连盆地霍林河煤田低阶煤孔隙结构模式及气液流动规律[D]. 徐州: 中国矿业大学, 2018.

    LI Yepeng. Pore structure mode and gas-liquid flow pattern of low-order coal in Holinghe Coalfield in Erlian Basin[D]. Xuzhou: China University of Mining and Technology, 2018.

    [20] 彭 辉. 滇东黔西中-高煤阶储层微观尺度下流体流动性研究[D]. 徐州: 中国矿业大学, 2019.

    PENG Hui. Study on fluid fluid fluidity at microscale in middle-high coal-order reservoirs in eastern Yunnan and western Qianxi[D]. Xuzhou: China University of Mining and Technology, 2019.

    [21] 侯 伟,赵天天,张 雷,等. 基于低场核磁共振的煤储层束缚水饱和度应力响应研究与动态预测: 以保德和韩城区块为例[J]. 吉林大学学报(地球科学版),2020,50(2):608−616.

    HOU Wei,ZHAO Tiantian,ZHANG Lei,et al. Stress response study and dynamic prediction of confined water saturation in coal reservoir based on low-field nuclear magnetic resonance: A case study of Baode and Hancheng blocks[J]. Journal of Jilin University (Earth Science Edition),2020,50(2):608−616.

    [22] 陈文文,杨延辉,王生维,等. 高煤阶煤层气藏内水赋存特征与运移规律研究[J]. 煤炭科学技术,2016,44(S1):154−159.

    CHEN Wenwen,YANG Yanhui,WANG Shengwei,et al. Study on Water Storage Characteristics and Transport Law of High-Grade Coalbed Methane Reservoirs[J]. Coal Science and Technology,2016,44(S1):154−159.

    [23] 康保平,黄小燕,郭淑萍,等. 川西坳陷须二气藏气田水成因、运移及其成藏演化[J]. 石油与天然气地质,2018,39(2):309−317.

    KANG Baoping,HUANG Xiaoyan,GUO Shuping,et al. Water genesis, transport and evolution of reservoir formation in the reservoir of the second reservoir in the western sichuan depression[J]. Oil & GasGeology,2018,39(2):309−317.

    [24] 熊 亮,康保平,史洪亮,等. 川西大邑气藏气田水化学特征及其动态 运移[J]. 西南石油大学学报(自然科学版),2011,33(5):84−88,194.

    XIONG Liang,KANG Baoping,SHI Hongliang,et al. Water chemical characteristics and dynamic transport of gas field in Dayi gas reservoir in Western Sichuan Province[J]. Journal of Southwest Petroleum University (Natural Science Edition),2011,33(5):84−88,194.

    [25] 李 剑,车延前,熊先钺,等. 韩城煤层气田11号煤层水化学场特征及其对煤层气的控制作用[J]. 中国石油勘探,2018,23(3):74−80. doi: 10.3969/j.issn.1672-7703.2018.03.009

    LI Jian,CHE Yanqian,XIONG Xianyue,et al. Characteristics of No.11 coalbed water chemical field in Han-cheng Coalbed methane field and its control effect on coalbed methane[J]. PetroChina Exploration,2018,23(3):74−80. doi: 10.3969/j.issn.1672-7703.2018.03.009

    [26] 马行陟,宋 岩,柳少波,等. 煤储层中水的成因、年龄及演化: 卤素 离子、稳定同位素和129I 的证据[J]. 中国科学:地球科学,2013,43(10):1699−1707.

    MA Xingzhi,SONG Yan,LIU Shaobo,et al. Genesis, age and evolution of water in coal reservoirs: Evidence for halogen ions, stable isotopes and 129I[J]. Science China Earth Sciences,2013,43(10):1699−1707.

    [27] 李 剑. 韩城区块水文地质条件对煤层气开发的影响[D]. 北京: 中国矿业大学(北京), 2019.

    LI Jian. Effects of hydrogeological conditionson coal-bed methane development in Hancheng District[D]. Beijing: China University of Mining and Technology-Bejing, 2019.

    [28] 徐 波. 东海盆地西湖凹陷天台反转带花港组地层水地球化学特征及其成因[J]. 海洋地质与第四纪地质,2021,41(3):62−71.

    XU Bo. Geochemical characteristics and genesis of stratigraphic water in the Huagang Formation of the west lake sag inverted belt in the east ch ina sea basin[J]. Marine Geology and Quaternary Geology,2021,41(3):62−71.

    [29] 白 晶,邹磊落,赵 亮,等. 含油气区地下水特征分析及意义[J]. 化学工程与装备,2020(10):166−168.

    BAI Jing,ZOU Leiluo,ZHAO Liang,et al. Characteristic analysis and significance of groundwater in oil and gas-bearing areas[J]. Chemical Engineering and Equipment,2020(10):166−168.

    [30] 楼章华,李 梅,金爱民,等. 中国海相地层水文地质地球化学与油气保存条件研究[J]. 地质学报,2008(3):387−396.

    LOU Zhanghua,LI Mei,JIN Aimin,et al. Study on hydrogeology, geochemistry and oil and gas preservation conditions of marine strata in China[J]. Acta Geologica Sinica,2008(3):387−396.

    [31] 代文军,陈耀宇. 试论早子沟金矿成矿作用过程中地幔流体的参与[J]. 甘肃地质,2022,31(1):29−35.

    DAI Wenjun,CHEN Yaoyu. Discussion on the participation of mantle fluid in the metallogenic process of Zaozigou Gold Ore[J]. Gansu Geology,2022,31(1):29−35.

    [32] 杨绪充. 油气田水文地质学 [M]. 北京: 石油大学出版社, 1993: 110.

    YANG Xuchong. Hydrogeology of oil and gas fields[M]. Beijing: University of Petroleum Press, 1993: 110.

    [33]

    ADELANA. Environmental isotopes in hydrogeology[M]. New Jersey: John Wiley& Sons Inc, 2005.

    [34] 韩 永,王广才,邢立亭,等. 地下水放射性同位素测年方法研究进展[J]. 煤田地质与勘探,2009,37(5):37−42. doi: 10.3969/j.issn.1001-1986.2009.05.009

    HAN Yong,WANG Guangcai,XING Liting,et al. ResearchProgress on Radioisotope Dating Methods for Groundwater[J]. Coal Geology and Exploration,2009,37(5):37−42. doi: 10.3969/j.issn.1001-1986.2009.05.009

    [35] 曾海鳌,吴敬禄,刘 文,等. 哈萨克斯坦东部水体氢、氧同位素和水化学特征[J]. 干旱区地理,2013,36(4):662−668.

    ZENG Haiao,WU Jinglu,LIU Wen,et al. Hydrogen, oxygen isotopes and water chemistry characteristics of water bodies in eastern Kazakhstan[J]. Arid Land Geography,2013,36(4):662−668.

    [36] 郑淑蕙,侯发高,倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报,1983(13):801−806.

    ZHENG Shuhui,HOU Fagao,NI Baoling. Study on hydrogen-oxygen stable isotopes of atmospheric precipitation in China[J]. Chinese Science Bulletin,1983(13):801−806.

    [37] 王善博,唐书恒,万 毅,等. 山西沁水盆地南部太原组煤储层产出水氢氧同位素特征[J]. 煤炭学报,2013,38(3):448−454.

    WANG Shanbo,TANG Shuheng,WAN Yi,et al. Isotope characteristics of hydrogen and oxygen produced in coal reservoirs of Taiyuan Formation in the southern Qinshui Basin of Shanxi Province[J]. Journal of China Coal Society,2013,38(3):448−454.

    [38] 时 伟,唐书恒,李忠城,等. 沁水盆地南部山西组煤储层产出水氢氧同位素特征[J]. 煤田地质与勘探,2017,45(2):62−68. doi: 10.3969/j.issn.1001-1986.2017.02.011

    SHI Wei,TANG Shuheng,LI Zhongcheng,et al. Isotope characteristics of hydrogen and oxygen produced in coal reservoirs of the Shanxi Formation in the southern Qinshui Basin[J]. Coal Geology and Explorat-ion,2017,45(2):62−68. doi: 10.3969/j.issn.1001-1986.2017.02.011

    [39] 张向阳. 放射性同位素—揭示地下水年龄的时钟[J]. 国土资源科普与文化,2019(4):21−23.

    ZHANG Xiangyang. Radioisotopes—clocks for revealing groundwater age[J]. Science and Culture of Land and Resources,2019(4):21−23.

    [40] 葛燕燕. 煤系多层叠置含水系统及煤层气合排水源判识[D]. 徐州: 中国矿业大学, 2015.

    GE Yanyan. Identification of coal-based multilayer superimposed water-bearing system and coal-bed methane combined drainage source[D]. Xuzhou: China University of Mining and Technology, 2015.

    [41]

    GLYNN P D,PLUMMER L N. Geochemistry and the understanding of groundwater systems[J]. Hydrogeology Journal,2005,13(1):263−287. doi: 10.1007/s10040-004-0429-y

    [42]

    CHEN Z,NIE Z,ZHANG G,et al. Environmental isotopic study on the recharge and residence timeof groundwater in the Heihe River Basin, north-western China[J]. Hydrogeology Journal,2006,14(8):1635−1651. doi: 10.1007/s10040-006-0075-7

    [43] 王宗礼,何 建. 地下水年龄测试的主要方法与进展[J]. 甘肃水利水电技术,2014,50(1):6−8,63.

    WANG Zongli,HE Jian. The main methods and progress of groundwater age test[J]. Gansu Water Resources and Hydropower Engineering,2014,50(1):6−8,63.

    [44] 王海超. 沁水盆地中南部煤系气储层物性及叠置成藏模式[D]. 徐州: 中国矿业大学, 2017.

    WANG Haichao. Physical properties and stacked reservoir patterns of coal-based gas reservoirs in central and southern Qinshui Basin[D]. Xuzhou: China University of Mining and Technology, 2017.

    [45] 李跃国,姚程鹏,杨曙光,等. 准南米泉地区煤层气成因及其富集成藏机理研究[J]. 煤炭科学技术,2021,49(4):220−226.

    LI Yueguo,YAO Chengpeng,YANG Shuguang,et al. Study on the Genesis of Coalbed Methane and Its Reservoir Enrichment Mechanism in Junnanmiquan Area[J]. Coal Science and Technology,2021,49(4):220−226.

    [46] 田文广,汤达祯,王志丽,等. 鄂尔多斯盆地东北缘保德地区煤层气成因[J]. 高校地质学报,2012,18(3):479−484.

    TIAN Wenguang,TANG Dazhen,WANG Zhili,et al. Genesis of coal-bed methane in Baode area, northeast edge of Ordos Basin[J]. Geological Journal of Universities,2012,18(3):479−484.

    [47] 陈 刚,胡宗全,张永贵,等. 延川南区块煤层气富集高产的地质控制作用[J]. 天然气地球科学,2016,27(11):2093−2102.

    CHEN Gang,HU Zongquan,ZHANG Yonggui,et al. Geological control effect of coalbed methane enrichment and high yield in Yanchuan South Block[J]. Natural Gas Geoscience,2016,27(11):2093−2102.

    [48] 崔明明,王宗秀,樊爱萍,等. 鄂尔多斯盆地苏里格气田西南部地层水特征与气水关系[J]. 天然气地球科学,2018,29(9):1364−1375. doi: 10.11764/j.issn.1672-1926.2018.07.002

    CUI Mingming,WANG Zongxiu,FAN Aiping,et al. Stratigraphic water characteristics and gas-water relationship between southwest sulige gas field in Ordos Basin[J]. Natural Gas Geoscience,2018,29(9):1364−1375. doi: 10.11764/j.issn.1672-1926.2018.07.002

    [49] 刘福田,李荣西,左智峰,等. 鄂尔多斯盆地南部地区上三叠统延长组6段地层水成因及其油气意义[J]. 石油与天然气地质,2018,39(6):1179−1189.

    LIU Futian,LI Rongxi,ZUO Zhifeng,et al. Water genesis and hydrocarbon significance of 6 sections of the Upper Triassic Yanchang Formation in the southern region of Ordos Basin[J]. Oil and Gas Geology,2018,39(6):1179−1189.

    [50] 王 勃. 沁水盆地煤层气富集高产规律及有利区块预测评价[D]. 徐州: 中国矿业大学, 2013.

    WANG Bo. Prediction and evaluation of coal-bed methane enrichment and favorable block in Qinshui Basin[D]. Xuzhou: China University of Mining and Technology, 2013.

    [51] 潘一山,唐巨鹏,李成全. 煤层中气水两相运移的NMRI试验研究[J]. 地球物理学报,2008(5):1620−1626. doi: 10.3321/j.issn:0001-5733.2008.05.038

    PAN Yishan,TANG Jupeng,LI Chengquan. NMRI experimental study on the two-phase transport of gas and water in coal seams[J]. Chinese Journal of Geophysics,2008(5):1620−1626. doi: 10.3321/j.issn:0001-5733.2008.05.038

    [52] 刘新福,綦耀光,胡爱梅,等. 煤层气井气水两相流入动态关系研究[J]. 中国矿业大学学报,2011,40(4):561−565,591.

    LIU Xinfu,QI Yaoguang,HU Aimei,et al. Study on the dynamic relationship between gas-water inflow of coal-bed methane wells[J]. Journal of China University of Mining and Technology,2011,40(4):561−565,591.

    [53] 王国强,吴建光,熊德华,等. 沁南潘河煤层气田稳控精细排采技术[J]. 天然气工业,2011,31(5):31−34,115.

    WANG Guoqiang,WU Jiangguang,XIONG Dehua,et al. Qinnan-Panhe coalbed methane field stability control fine extraction technology[J]. Natural Gas Industry,2011,31(5):31−34,115.

    [54] 邹雨时,张士诚,张 劲,等. 煤粉对裂缝导流能力的伤害机理[J]. 煤炭学报,2012,37(11):1890−1894.

    ZOU Yushi,ZHANG Shicheng,ZHANG Jin,et al. The injury mechanism of pulverized coal on the ability of crack diversion[J]. Journal of China Coal Society,2012,37(11):1890−1894.

    [55] 李俊乾,卢双舫,薛海涛,等. 高阶煤层气储层非均质性及其定量评价—以沁水盆地南部郑庄区块为例[J]. 石油与天然气地质,2016,37(1):72−79.

    LI Junqian,LU Shuangfang,XUE Haitao,et al. Heterogeneity and quantitative evaluation of higher-order coal-bed methane reservoirs: A case study of Zhengzhuang Block in the south of Qinshui Basin[J]. Oil and Gas Geology,2016,37(1):72−79.

    [56] 刘 贺,罗 勇,雷坤超,等. 基于渗流力学建立的煤层气井排水降压模型及排采规律分析[J]. 煤矿安全,2019,50(2):190−194.

    LIU He,LUO Yong,LEI Kunchao,et al. Analysis of drainage pressure reduction model and discharge law of coalbed methane well based on seepage mechanics[J]. Coal Mine Safety,2019,50(2):190−194.

    [57] 杜严飞,吴财芳,邹明俊,等. 煤层气排采过程中煤储层压力传播规律研究[J]. 煤炭工程,2011(7):87−89.

    DU Yanfei,WU Caifang,ZOU Mingjun,et al. Study on the propagation law of coal reservoir pressure in the process of coalbed methane exhaust and production[J]. Coal Engineering,2011(7):87−89.

    [58]

    VAFERI B,SALIMI V,BANIANI D D,et al. Predictionof transient pressure response in the petroleum reservoirs using orthogonal collocation[J]. Journal of Petroleum Science and Engineering,2012,98(11):156−163.

    [59] 叶建平,陆小霞. 我国煤层气产业发展现状和技术进展[J]. 煤炭科学技术,2016,44(1):24−28.

    YE Jianping,LU Xiaoxia. Development status and technological progress of coalbed methane industry in China[J]. Coal Science and Technology,2016,44(1):24−28.

    [60] 刘世奇,桑树勋,李梦溪,等. 沁水盆地南部煤层气井网排采压降漏斗的控制因素[J]. 中国矿业大学学报,2012,41(6):943−950.

    LIU Shiqi,SANG Shuxun,LI Mengxi,et al. Controlling factors of pressure drop funnel in coalbed methane network drainage in southern Qinshui Basin[J]. Journal of China University of Mining and Technology,2012,41(6):943−950.

    [61] 王 渊,王辰龙,王凤清. 煤层气井压降规律与排采参数关系分析−以保德区块为例[J]. 石油钻采工艺,2019,41(4):502−508.

    WANG Yuan,WANG Chenlong,WANG Fengqing. Analysis on the relationship between pressure drop law and exhaust and production parameters of coalbed methane wells: a case study of baode block[J]. Petroleum Drilling and Production Technology,2019,41(4):502−508.

    [62] 赵 金,张遂安. 煤层气排采储层压降传播规律研究[J]. 煤炭科学技术,2012,40(10):65−68.

    ZHAO Jin,ZHANG Suian. Study on pressure drop propagation law of coal-bed methane exhaustandproduction reservoir[J]. Coal Science and Technology,2012,40(10):65−68.

    [63] 杜彩霞,张遂安,刘 程,等. 煤层气规模开发条件下压力传播特征研究[J]. 煤炭科学技术,2016,44(12):179−183.

    DU Caixia,ZHANG Suian,LIU Cheng,et al. Study on pressure propagation characteristics under the conditions of coal-bed methane scale development[J]. Coal Science and Technology,2016,44(12):179−183.

    [64] 王卫东,张亚飞,孔庆虎,等. 煤层气干扰试井测试在柿庄区块产能分析中的应用研究[J]. 中国煤层气,2021,18(3):29−34. doi: 10.3969/j.issn.1672-3074.2021.03.008

    WANG Weidong,ZHANG Yafei,KONG Qinghu,et al. Application of coal-bed methane interference test in capacity analysis of Persimmon Block[J]. China Coalbed Methane,2021,18(3):29−34. doi: 10.3969/j.issn.1672-3074.2021.03.008

    [65] 李国富,田永东. 煤层气井排水采气机理浅探[J]. 中国煤炭,2002(7):4,33−35.

    LI Guofu,TIAN Yongdong. Shallow exploration of drainage gas production mechanism of coalbed methane well[J]. China Coal,2002(7):4,33−35.

    [66] 田永东. 试论煤层气地面开发的规模性[J]. 科技情报开发与经济,2005(13):163−165.

    TIAN Yongdong. On the scale of coal-bed methane surface development[J]. Science and Technology Information Development and Economy,2005(13):163−165.

    [67]

    HARRISON S M,GENTZIS T ,PAYNE M.Hydraulic, water quality, and isotopic characterization of Late Cretaceous–Tertiary Ardley coal waters in a key test-well, Pembina–Warburg exploration area, Alberta, Canada[J]. Bulletin of Canadian Petroleum Geology,2006,54(3):238−260. doi: 10.2113/gscpgbull.54.3.238

    [68] 杜 鹏. 煤层气开发井间干扰特征研究[D]. 青岛: 中国石油大学(华东), 2013.

    DU Peng. Study on interwell interference characteristics of coal-bed methane development[D]. Qingdao: China University of Petroleum (East China), 2013.

    [69] 张遂安,秦 鹏,张典坤,等. 煤层气井井间干扰试井技术研究[J]. 煤炭科学技术,2015,43(12):75−79.

    ZHANG Suian,QIN Peng,ZHANG Diankun,et al. Research on interwell interference well test technology of coalbed methane[J]. Coal Science and Technology,2015,43(12):75−79.

    [70] 贾奇锋,刘大锰,蔡益栋. 煤层气开采井间干扰研究进展[J]. 煤炭学报,2020,45(S2):882−893.

    JIA Qifeng,LIU Damang,CAI Yidong. Research Progress on Interwell Interference in Coalbed Methane Mining[J]. Journal of China Coal Society,2020,45(S2):882−893.

    [71] 王 宁,王运海,程 翠,等. 数值模拟技术在煤层气开发井网设计中的应用−以鄂尔多斯盆地延川南区块为例[J]. 油气藏评价与开发,2014,4(6):61−65.

    WANG Ning,WANG Yunhai,CHENG Cui,et al. Application of Numerical Simulation Technology in Well Network Design for Coal-Bed Methane Development: A Case Study of Yanchuan South Block in Ordos Basin[J]. Reservoir Evaluation and Development,2014,4(6):61−65.

    [72] 赵 欣,姜 波,徐 强,等. 煤层气开发井网设计与优化部署[J]. 石油勘探与开发,2016,43(1):84−90.

    ZHAO Xin,JIANG Bo,XU Qiang,et al. Design and optimal deployment of coal-bed methane development well network[J]. Petroleum Exploration and Development,2016,43(1):84−90.

    [73] 郭 晨,秦 勇,韩 冬. 黔西比德—三塘盆地煤层气井产出水离子动态及其对产能的指示[J]. 煤炭学报,2017,42(3):680−686.

    GUO Chen,QIN Yong,HAN Dong. Dynamics of water ions produced by coalbed methane wells in Qianxi Bid-Santang Basin and their indication of production capacity[J]. Journal of Coal Society,2017,42(3):680−686.

    [74] 白铁峰. 大倾角煤层煤层气井网优化[D]. 北京: 中国石油大学(北京), 2020.

    BAI Tiefeng. Optimization of coalbed methane network in large inclination coalbed[D]. Beijing: China University of Petroleum (Beijing), 2020.

    [75] 李 腾. 不同构造条件下多煤层区煤层气井井型井网优化设计[D]. 徐州: 中国矿业大学, 2014.

    LI Teng. Optimization design of well-type well network of coalbed methane wells in multicoal-bed area under different structural conditions[D]. Xuzhou: China University of Mining and Technology, 2014.

    [76] 伊永祥. 沁水盆地柿庄南区块煤层气井生产特征及排采控制研究[D]. 北京: 中国地质大学(北京), 2020.

    YI Yongxiang. Production characteristics and dischargecontrol of coalbed methane wells in Persimmon Zhuangnan Block, Qinshui Basin[D]. Beijing: China University of Geosciences(Beijing), 2020.

    [77] 倪小明,张崇崇,王延斌,等. 单相水流阶段煤层气井裂隙水运移的临界裂隙尺寸数学模型[J]. 工程力学,2015,32(4):250−256.

    NI Xiaoming,ZHANG Chongchong,WANG Yanbin,et al. Mathematical model of critical fracture size of fracturewater transport in coalbed methane wells in single-phase water flow stage[J]. Engineering Mechanics,2015,32(4):250−256.

    [78] 刘世奇,桑树勋,MA Jingsheng,等. 沁水盆地南部高阶煤储层气水产出过程分析[J]. 煤炭科学技术,2017,45(9):1−6,24.

    LIU Shiqi,SANG Shuxun,Ma Jingsheng,et al. Analysis of gas and water production process of high-order coal reservoir in southern Qinshui Basin[J]. Coal Science and Technology,2017,45(9):1−6,24.

    [79] 胡秋嘉,刘世奇,闫 玲,等. 樊庄-郑庄区块无烟煤储层气水赋存-运移-产出路径的研究[J]. 煤矿安全,2020,51(10):218−222.

    HU Qiujia,LIU Shiqi,YAN ling,et al. Study on the path of gaswater storage-transport-output in anthracite coal reservoir in fanzhuang-zhengzhuang block[J]. Coal Mine Safety,2020,51(10):218−222.

    [80] 皇凡生,康毅力,李相臣等. 单相水流诱发裂缝内煤粉启动机理与防控对策[J]. 石油学报,2017,38(8):947−954.

    HUANG Fansheng,KANG Yili,Li Xiangchen,et al. Startupmechanism and prevention and control countermeasures of pulverized coal in cracks induced by single-phase water flow[J]. Acta Petroleum Sinica,2017,38(8):947−954.

    [81] 胡友林,乌效鸣. 煤层气储层水锁损害机理及防水锁剂的研究[J]. 煤炭学报,2014,39(6):1107−1111.

    HU Youlin,WU Xiaoming. Study on water lock damage mechanism and waterproof locking agent of coal-bed methane reservoir[J]. Journal of Coal Engineering,2014,39(6):1107−1111.

    [82] 左银卿,张学英,周 叡,等. 沁南地区高煤阶煤储层水敏效应及其控制因素[J]. 油气地质与采收率,2014,21(5):107−110,118. doi: 10.3969/j.issn.1009-9603.2014.05.027

    ZUO Yinqing,ZHANG Xxueying,ZHOU Rui,et al. Water sensitivity effect and its controlling factors in high grade coal reservoirs in Qinnan area[J]. Petrolum Geology and Recovery,2014,21(5):107−110,118. doi: 10.3969/j.issn.1009-9603.2014.05.027

    [83] 汪伟英,马 丽,原晓珠,等. 煤层气储层阳离子交换容量及其对煤岩物性的影响[J]. 煤炭科学技术,2011,39(9):118−120.

    WANG Weiying,MA Li,YUAN xiaozhu,et al. Cation exchange capacity of coalbed methane reservoirs and its influence on coal rock properties[J]. Coal Scienceand Technology,2011,39(9):118−120.

    [84] 柳迎红,房茂军,廖 夏. 煤层气排采阶段划分及排采制度制定[J]. 洁净煤技术,2015,21(3):121−124,128.

    LIU Yinghong,FANG Maojun,Liaoxia. Coalbed methane extraction stage division and extraction system[J]. Clean Coal Technology,2015,21(3):121−124,128.

    [85] 戴 楠. 大佛寺煤层气水平井降压与产气的耦合分析[D]. 西安: 西安科技大学, 2018.

    DAI Nan. Coupling analysis of pressure relief and gas production in horizontal coal-bed methane wells of Dafo Temple[D]. Xi’an : Xi’an University of Science and Technology, 2018.

    [86] 续化蕾,李焕文,王云飞,等. 煤层气储层水锁伤害影响因素及防治措施研究[J]. 钻采工艺,2019,42(6):110−112.

    XU Hualei,LI Huanwen,Wang Yunfei,et al. Research on influencing factors of water lock injury in coal-bed methane reservoirs and prevention measures[J]. Drilling and Mining Technology,2019,42(6):110−112.

    [87] 宋金星,陈培红,王 乾. 煤储层水基压裂液用表面活性剂的筛选实验[J]. 煤田地质与勘探,2017,45(6):79−83.

    SONG Jinxing,CHEN Peihong,WANG Qian. Screening experiments of surfactants for water-based fracturing fluids in coal reservoirs[J]. CoalField Geology and Exploration,2017,45(6):79−83.

    [88] 蒋金龙. 煤粉在压裂支撑裂缝内的微观运移机理研究[D]. 成都: 西南石油大学, 2018.

    JIANG Jinlong. Study on the microscopic transport mechanism of pulverized coal in fracturing support fractures[D]. Chengdu: Southwest Petroleum University, 2018.

    [89] 许耀波. 煤层气水平井煤粉产出规律及其防治措施[J]. 煤田地质与勘探,2016,44(1):43−46.

    XU Yaobo. Production law of pulverized coal in horizontal coal-bed methane wells and its prevention and control measures[J]. Coal Geology and Exploration,2016,44(1):43−46.

图(7)  /  表(4)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  38
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-23
  • 网络出版日期:  2023-05-14
  • 刊出日期:  2023-04-29

目录

    /

    返回文章
    返回