Hydrological characters of coal reservoir and their significances on coalbed methane development: A review
-
摘要:
我国煤层气资源开发具有广阔的前景,煤储层水的演化过程及其在煤层气开发过程中的运移规律对煤层气的富集和产能有重要影响。文章阐明了煤储层水的组成、性质、来源及同位素年代学研究进展;分析了煤储层水运移过程中压降漏斗的扩展规律和井间干扰机理,探讨了煤储层水运移过程中可能造成的储层伤害,并根据煤储层水的演化过程及其在煤层气开发中的运移规律,对煤层气开发提出几点建议。研究总结表明:①煤储层水来源于原始沉积水、渗入水、深成水以及成岩水,原始沉积水的钠氯系数 (rNa+/rCl−)< 0.5,肖勒系数IBE>0.129,矿化度>10 000 mg/L;渗入水则与原始沉积水相反,深层水的δD介于−80‰~+40‰,δ18O介于+7‰~+9.5‰,成岩水δD介于−65‰~−20‰,δ18O介于+5‰~+25‰;②煤储层水地球化学特征对煤层气的富集、开发有重要指示意义,煤层气高含气区通常具有钠氯系数、脱硫系数、镁钙系数小,变质程度高的特点,低含气区反之;③煤储层水运移过程中形成的压降漏斗以及井间干扰有利于提高煤层气井产量,我国煤层气井大多采用矩形或菱形井网部署,最优井距通常在250~400 m;④煤储层水运移会引起水锁伤害、水敏伤害及速敏伤害等,通过实施合理排采强度、开展井网优化以及向入井流体中加入防水锁剂和煤粉分散剂方式等降低储层伤害。研究成果可为提高我国煤层气勘探效率和产量提供一定的理论依据。
Abstract:The development of coalbed methane resources in China has broad prospects, and the evolution process of coalbed water and its transportation law has important impacts on coalbed methane production capacity. This paper clarifies the composition, properties, sources and isotopic chronology of coal reservoir water, analyzes the expansion law of the pressure drop funnel and the inter-well interference mechanism during the water transport process, discusses the reservoir damage that may be caused by the water transport during drainage, and puts forward several suggestions for coalbed methane development according to the evolution of coal reservoir water and its transport and migration law during production. The results show that: (1) coal reservoir water is originated from primary sedimentary water, infiltration water, deep-forming water and diagenetic water, and the sodium-chlorine coefficient (rNa+/rCl−), Scholler coefficient (IBE), and mineralization degree of the original sedimentary water is<0.5, >0.129, and >10000 mg/L, respectively; corresponding values of infiltration water are the opposite of these relations; theδD andδ18O of deep-forming water is ranged from −80‰ to+40‰ and +7‰ to +9.5 ‰, respectively; theδD andδ18O of diagenetic water is ranged from −65‰ to −20‰ and +5‰ to+25‰, respectively; (2) the geochemical characteristics of coal reservoir water have important indicative significances for the enrichment and development of coalbed methane, and the high gas-containing areas of coalbed methane usually have the characteristics of low sodium-chlorine coefficient, low desulfurization coefficient, low magnesium-calcium coefficient, and high degree of metamorphism, correspondingly, the low gas-containing areas have the opposite characters; (3) the pressure drop funnel propagation during coal reservoir water transport and migration and the interference between wells are conducive to improve the coalbed methane production, and most of the coalbed methane wells in China are deployed by rectangular or diamond-shaped well networks, and the optimal well space is usually ranged between 250m and 400m; (4) the water transport of coal reservoirs can cause pulverized coal to block the formation, water lock damage, water sensitive damage, and velocity sensitive damage. To reduce reservoir damage, implementing reasonable drainage strength, optimizing the well network, and adding waterproof locking agent and pulverized coal dispersant to the incoming fluid are suggested. The research results can provide a certain theoretical basis for improving the exploration efficiency and coalbed methane yield in China.
-
Keywords:
- coalbed methane /
- coal reservoir water /
- water transport /
- reservoir damage /
- geochemistry
-
0. 引 言
注二氧化碳强化煤层气开采(CO2−Enhanced Coal Bed Methane Recovery, CO2−ECBM)是一种典型的二氧化碳捕集、利用和储存(Carbon Dioxide Capture, Utilization and Storage, CCUS)技术[1-2],其基本原理是利用煤层对CO2的优先吸附性[3-4],向煤层中注入CO2,不仅可以封存一定量的CO2,有利于缓解全球气候变暖;同时可以促进CH4的解吸,有利于煤层气这种非常规天然气的开采,具有环境、经济双重效益。在“双碳”目标的大背景下,学者们已通过大量的宏观试验针对煤吸附CH4、CO2过程进行研究与分析,马东民等[5]开展了CO2与CH4的吸附试验并计算了两种气体的吸附热,发现CO2的吸附热大于CH4的吸附热,说明CO2在竞争吸附中占据优势;杨宏民等[6]分别对无烟煤、瘦煤、气肥煤3种不同变质程度的煤样进行吸附实验并计算吸附量,结果表明随着煤样变质程度的加深,CO2与CH4的吸附量均增大,且CO2的吸附量大于CH4;王向浩等[7]分别对高阶、低阶2种煤样开展了单组分和双组分吸附试验,试验结果表明高阶煤样的气体吸附能力明显强于低阶煤样。宏观层面的试验可在一定程度上揭示煤对CO2和CH4的吸附规律,但却无法从微观角度深入认识吸附机理,而分子模拟可从微观角度模拟宏观试验难以进行的情景,且具有成本低、不受试验设备精度限制等优点。关于吸附过程的分子模拟,ZHOU等[8]对褐煤中CO2和CH4的竞争吸附进行了分子模拟,结果表明在CO2存在的条件下,CH4的吸附被明显抑制;HAN等[9]选取了3种不同变质程度的煤分子模型,分别进行等温吸附模拟,发现孔径相同时,高阶煤样的吸附量更大。LI等[10]通过分子模拟发现水分子的存在会使煤吸附CH4的能力降低;唐巨鹏等[11]采用分子模拟方法对无烟煤中CH4分子的吸附量进行计算,发现随着含水率的增大,CH4的吸附量呈减少趋势。
目前,关于CO2与CH4二元混合气体的吸附研究多停留于对外因(气体温度、气体压力、含水率等)的研究,关于煤本身结构对气体吸附影响的研究较少,将试验和分子模拟2种手段相结合进行联合研究的成果有待补充。笔者以晋城矿区3号煤为研究对象,利用X射线衍射试验和巨正则系综蒙特卡洛(Grand Canonical Ensemble Monte Carlo, GCMC)方法,研究了煤中CH4与CO2二元混合气体吸附时,气体温度与压力、孔径、芳香片层堆砌度及芳香片层延展度对其吸附量、吸附热的影响规律。
1. 煤样采集与试验测试
1.1 煤样采集与工业分析
晋城矿区地处山西省太行山南麓,位于沁水煤田的南端,地形以低山丘陵居多,其3号煤层在地层划分上属于二叠系山西组,平均煤层厚度为6.31 m,埋藏深度一般小于1 000 m。本次取样煤层底板埋深为512 m,储层压力为3.67 MPa,储层温度为24.3 ℃。
将所取煤样经破碎、干燥后,依据标准GB/T30732—2014《煤的工业分析方法 仪器法》对其进行工业分析,测试地点在中国矿业大学现代分析与计算中心,所用设备为E−MAG6600全自动工业分析仪,此外还测试了煤样的镜质组反射率,测试结果见表1。
表 1 煤样工业分析与镜质组反射率测试结果Table 1. Results of industrial analysis and vitrinite reflectance test of coal samples% 煤样编号 工业分析 Ro Mad Aad Vad FCad J1 1.65 10.92 9.62 77.81 2.51 J2 1.12 16.68 8.02 74.18 2.65 J3 1.98 9.23 7.24 81.55 3.05 J4 1.43 10.05 7.02 81.50 3.07 J5 1.12 21.90 7.65 69.33 2.99 J6 2.98 11.92 7.98 77.12 2.67 1.2 X射线衍射分析
所用X射线衍射仪为德国Bruker公司生产的D8 ADVANCE型衍射仪,检测器开口为2.82°,测角仪半径为250 mm,入射侧与衍射侧索拉狭缝均为2.5°,扫描速度为0.07~0.20 s/步,采样间隔为
0.019450 步,得到的前3个煤样XRD原始图谱如图1所示。由图1可知,除了尖锐的矿物质衍射峰,在2θ=26°附近出现了典型的石墨衍射峰002峰,说明煤与石墨的结构具有相似之处。另外,根据SHI等[12]、朱亚明等[13]对煤X射线衍射结果的研究,在2θ=43°附近还存在一个低矮衍射峰100峰。煤样的002峰实际为排列规整的微晶碳峰和无定形碳峰γ峰叠加的结果[13-14],因此煤样的002峰均不对称。J3的002峰最尖锐,推测可能与挥发分有关,同时J3的100峰最为明显,衍射强度最大。
为进一步获得煤样XRD的定量参数,使用Origin软件对煤样的XRD图谱进行分峰拟合,并基于分峰拟合得到的衍射角、半高宽,使用布拉格公式和谢乐公式计算煤样芳香片层的网面间距d002、芳香片层的延展度La和芳香片层的堆砌度Lc[15]:
$$ d_{002}=\frac{\lambda}{2 \sin\; \theta_{002}} $$ (1) $$ L_{\rm{a}}=\frac{1.84 \lambda}{\beta_{100} \cos\; \theta_{100}} $$ (2) $$ L_{{\mathrm{c}}}=\frac{0.94 \lambda}{\beta_{002} \cos \;\theta_{\mathrm{002}}} $$ (3) 式中:λ为X射线的波长,取
0.154056 nm;θ100为100峰所对应的衍射角,(°);θ002为002峰所对应的衍射角,(°);β100为100峰的拟合半高宽,rad;β002为002峰的拟合半高宽,rad。计算结果见表2。表 2 煤样的芳香核参数Table 2. Aromatic kernel parameters of coal samples煤样编号 2θ002/(°) β002/(°) 2θ100/(°) β100/(°) d002/nm La/nm Lc/nm J1 25.923 4.051 42.533 6.288 0.3434 2.772 2.102 J2 25.546 3.950 43.459 5.816 0.3484 3.006 2.154 J3 26.079 3.990 43.692 4.456 0.3414 3.927 2.135 由表2可知,煤的芳香片层延展度La、芳香片层堆砌度Lc和芳香片层网面间距d002可定量表征芳香核的大小。其中,La表征芳香核的横向延展度,d002和堆砌层数共同决定了Lc的大小,而Lc表征纵向堆砌度。因此La和Lc是影响煤芳香核横向和纵向维度的关键参数。
2. 分子模型构建与计算方法
2.1 分子模型的构建
由X射线衍射试验可知,煤具有类石墨结构,因此基于无机晶体结构数据库(Inorganic Crystal Structure Database, ICSD)中的石墨晶胞参数(a=b=
0.2464 nm),使用Materials Studio软件的Visualizer模块进行构建煤分子模型。首先,将石墨单胞去除对称性,再结合X射线衍射数据(单胞参数c=d002),构建煤的单胞模型;再进行超晶胞化,超胞的芳香片层堆砌层数C由Lc/d002进位取整确定,芳香片层延展倍数N由La/a舍位取整确定,超胞的延展度LA由石墨晶胞参数a与延展倍数N共同确定,即LA=a×N,超胞的堆砌度LC由芳香片层的网面间距d002与堆砌层数C共同确定,即LC=d002×C。超胞化后,进行建层操作即可构建煤的分子模型,两层(即两个超胞)之间的真空层即为孔,孔径以真空层厚度表示。
通过计算,J1、J2、J3的芳香片层堆砌层数均为7层,芳香片层延展倍数分别为11、12、15倍,延展度分别为2.710、2.957、3.696 nm,堆砌度分别为2.404、2.439、2.390 nm,这与X射线衍射测得的数据接近,说明了所构建煤分子模型的合理性。所构建孔径为1 nm的J3煤分子模型如图2所示,J1、J2同理。所构建的J1、J2、J3煤分子模型用以研究气体温度和气体压力对CH4、CO2二元混合气体吸附的影响。
此外,为研究煤的孔径、芳香片层延展度和芳香片层堆砌度对CH4、CO2二元混合气体吸附的影响,以单一因素为变量,构建不同孔径、不同芳香片层堆砌度、不同芳香片层延展度的煤分子模型(单胞参数c=d002=
0.3434 ,以J1的X射线衍射数据为基础)。所构建不同类型煤分子模型的超胞参数见表3,表中的研究变量C(芳香片层堆砌层数)控制LC的大小,研究变量N(芳香片层延展倍数)控制LA的大小。
表 3 煤分子模型的超胞参数Table 3. Supercell parameters of coal molecular models编号 变量 K/nm C/层 N/倍 LA/nm LC/nm J-K-1 孔径K 1 7 11 2.710 2.404 J-K-2 2 7 11 2.710 2.404 J-K-3 3 7 11 2.710 2.404 J-K-4 4 7 11 2.710 2.404 J-K-5 5 7 11 2.710 2.404 J-C-4 芳香片层堆砌层数C 1 4 11 2.710 1.374 J-C-5 1 5 11 2.710 1.717 J-C-6 1 6 11 2.710 2.060 J-C-7 1 7 11 2.710 2.404 J-C-8 1 8 11 2.710 2.747 J-N-9 芳香片层延展倍数N 1 7 9 2.218 2.404 J-N-10 1 7 10 2.464 2.404 J-N-11 1 7 11 2.710 2.404 J-N-12 1 7 12 2.957 2.404 J-N-13 1 7 13 3.203 2.404 CH4和CO2气体分子也使用Visualizer模块进行构建。经几何优化后的气体分子参数见表4,几何优化使用Forcite模块中的Geometry Optimization任务,精度为Fine,力场选用COMPASS,范德华相互作用采用Atom Based,非键截断距离为1.55 nm,样条宽度为0.1 nm,缓冲宽度为0.05 nm。
表 4 几何优化后的气体分子参数Table 4. Parameters of gas moleculars after geometric optimizating吸附质分子 键长/nm 键角/( ° ) CH4 0.110 109.471 CO2 0.116 179.979 2.2 模型验证
计算CH4在J1、J2、J3煤分子模型中的吸附热,将其与试验测试得到的吸附热进行比对,即可验证所建煤分子模型的合理性。亨利常数K的定义如式(4)[16]所示:
$$ K=\left[\frac{q}{p}\right]_{\text {lim}_p \rightarrow 0}=\frac{V_{\text {cell }}}{k T N} \sum \exp \left[-\frac{U(r, \theta)}{k T}\right] $$ (4) 式中:K为亨利常数;q为吸附量,个/晶胞;p为吸附质分压,MPa;N为模拟步长;r为吸附质分子的位置自由度;θ为吸附质分子的角度自由度;U(r, θ)为吸附质分子在位置r和角度θ时的能量,kJ/mol;Vcell为吸附剂的晶胞体积,cm3。
吸附热Qst可由Van’t Hoff方程式得到,如式(5)[17]所示:
$$ Q_{{\mathrm{s t}}}=R T^{2}\left(\frac{\partial \ln K}{\partial T}\right) $$ (5) 式中:Qst为吸附热,kJ/mol;R为气体常数;T为温度,K;K为亨利常数。
对式(5)进行积分可得:
$$ \ln K=-\frac{Q_{\text {bt }}}{R T}+C $$ (6) 使用Materials Studio软件的Henry constant任务可计算得到ln K和T−1的关系,进而根据公式(6)即可计算得到吸附热Qst。10~50 ℃(283.15~323.15 K)煤吸附CH4的拟合结果如图3所示,可计算得到CH4在3个煤分子模型中的吸附热分别为15.21、15.16、15.23 kJ/mol,这与卢守青等[18]通过试验测得的CH4在高阶煤中的吸附热相一致。
2.3 计算方法与参数设置
使用Materials Studio软件的Sorption模块计算气体吸附过程的吸附量和吸附热,将煤分子模型视为具有刚性的结构,将气体分子视为非极性分子,只考虑气体分子与煤模型原子之间的非键相互作用,采用周期性边界条件[19]。
计算方法使用Metropolis,分子交换被接受概率为39%、构象异构化被接受概率为20%、转动被接受概率为20%、平动被接受概率为20%,力场选用COMPASS,静电相互作用和范德华相互作用分别采用Ewald、Atom based,非键截断距离的值为1.55 nm,Ewald精度为
4.1868 ×10−4 mol,样条宽度、缓冲宽度的值分别为0.1、0.05 nm[15,17,22,25]。压力与逸度的转换通过Peng-Robinson状态方程进行计算[20]。对于外因,实际储层温度为24.3 ℃,因此将模拟温度范围设置为293.15~313.15 K(间隔10 K);实际储层压力为3.67 MPa,因此将模拟压力范围设置为1~7 MPa(间隔1 MPa)用以计算。此温度与压力范围,未使CO2达到超临界状态,因此CO2为气态。对于煤本身结构,以表3所构建的不同类型分子模型为吸附剂,对实际储层温度(24.3 ℃)和储层压力(3.67 MPa)下的CH4和CO2二元混合气体竞争吸附进行模拟计算,参与吸附的两种气体比例均为1∶1。
3. 结果与讨论
3.1 温度与压力的影响
煤在不同温度、压力下对CH4和CO2二元混合气体的吸附量和吸附热如图4所示,吸附量拟合所用Langmuir I型拟合方程如式(7)[21]所示:
$$ n_{\mathrm{abs}}=n_{\max } \frac{b p}{1+b p} $$ (7) 式中:nabs为CO2的绝对吸附量,mmol/g;nmax为CO2的最大吸附量,mmol/g;b为Langmuir系数,MPa−1;p为压力,MPa。
Materials Studio软件计算所得吸附量单位为个/晶胞,通过式(8)[22]转换为常用单位:
$$ 1个/晶胞=\frac{10^{3}}{N_{{\mathrm{A}}} \times M} \text { mmol }/\mathrm{g} $$ (8) 式中:NA为阿伏伽德罗常数,6.02×1023,mol−1;M为晶胞单元质量,g/晶胞。
由图4可知,3个煤样的气体吸附量变化趋势均符合Langmuir方程I型等温线,这与ZHOU等[8]、LI等[10]、HAN等[23]的研究结果相一致。
在3个煤分子模型中,CO2的最大吸附量均接近2 mmol/g,而CH4的最大吸附量不到0.5 mmol/g,CO2吸附量大于CH4,这与LI等[24]、范志辉等[25]的CH4与CO2二元混合气体竞争吸附计算结果变化趋势相一致,说明CO2在竞争吸附过程中占据优势地位。
拟合的R2均大于0.9,说明拟合效果较好。对于同一煤样,随着温度升高,煤样的吸附量有所减少,气体吸附能力降低,说明相对较低的温度有利于吸附。原因可能是高温加速了分子之间的碰撞,缩短了气体分子的停留时间。同一温度下,对于同一煤样,压力为5 MPa时,吸附量已接近饱和,因此以5 MPa注入CO2为宜。
吸附热可表示吸附能力的大小,是吸附模拟的重要参数。由图4可知,2种气体的吸附热均小于42 kJ/mol,说明煤吸附CH4、CO2的过程为物理吸附。CO2的吸附热始终高于CH4,说明煤对CO2的吸附能力更强。随着压力的增加,两种气体的吸附热均有所增加,但增加幅度并不大,变化趋势与吸附量的拟合曲线具有一致性。温度越低,吸附热越大,说明较低的温度有利于吸附。
3.2 孔径的影响
以实际储层温度和储层压力(T=24.3 ℃,P=3.67 MPa)为模拟的工况,对孔径为1~5 nm的煤分子模型进行CH4和CO2二元混合气体的吸附模拟计算,得到的不同孔径下煤吸附量和孔隙体积见表5,可以看出,随着孔径的增加,煤对CH4的吸附量持续增加。孔径每增加1 nm,吸附CH4分子数分别增加了11.516、1.497、4.407、2.096个,单位质量煤的CH4吸附量分别增加了0.283、0.037、0.108、0.052 mmol/g,孔径从1 nm增加到2 nm,CH4的吸附量增加最快。CO2的吸附量变化很小,吸附CO2的分子数量范围为77.903~83.258个,而单位质量煤的CO2吸附量范围则为1.916~2.048 mmol/g。若进一步增大气体压力,则会吸附更多的CH4和CO2分子。
表 5 不同孔径煤的吸附量与孔隙体积Table 5. Adsorption capacity and pore volume of coal with different pore sizes孔径/nm 吸附CH4分子数/个 吸附CO2分子数/个 吸附气体总数/个 单位质量煤的CH4
吸附量/(mmol∙g−1)单位质量煤的CO2
吸附量/(mmol∙g−1)单位质量煤的气体
吸附总量/(mmol∙g−1)孔隙体积/nm3 1 8.292 80.392 88.684 0.204 1.977 2.181 6.37 2 19.808 77.903 97.711 0.487 1.916 2.403 12.96 3 21.305 79.186 100.491 0.524 1.948 2.472 19.10 4 25.712 79.469 105.181 0.632 1.955 2.587 25.51 5 27.808 83.258 111.066 0.684 2.048 2.732 32.13 另外,在5种不同孔径下,无论是整个煤分子模型吸附的气体分子数,还是单位质量煤的气体吸附量,CO2均大于CH4,这反映了CO2的竞争吸附优势性。
随孔径的增加,气体总吸附量不断增大,这与孔隙体积的大小有关。通过Materials Studio软件的Connolly算法(Connolly半径设置为0.1 nm)可获得煤的孔隙体积[26-27]。可以看出,随着煤孔径的增加,煤的孔隙体积呈增大趋势,说明孔径越大,煤的气体吸附点位越多,越有利于吸附。
3.3 芳香片层堆砌度的影响
芳香片层堆砌层数为4、6、8时二元混合气体的吸附构型如图5所示,其中,红色代表CH4分子的吸附概率,绿色代表CO2分子的吸附概率。可以看出,在不同堆砌层数下,CO2始终具有明显的吸附优势,CH4在竞争吸附过程中处于弱势地位,但两种气体的吸附量变化并不明显。煤吸附的气体分子个数如图6所示,由图可知,随芳香片层堆砌层数的增加,煤吸附的气体分子个数变化不大,CH4气体分子数在6.998~8.885个,差值为1.887个,CO2气体分子数在80.645~83.156个,差值为2.511个。
进一步算出不同堆砌层数下单位质量煤对气体的吸附量,如图7所示。由图可知,随芳香片层堆砌层数增加,单位质量煤对CH4的吸附量仅略有降低,对CO2的吸附量呈逐渐降低趋势,每增加一层,CO2的吸附量分别减少18.96%、19.18%、13.18%、11.80%。
不同堆砌层数下气体的吸附热如图8所示,由图可知,吸附热均小于42 kJ/mol,为物理吸附,两种气体的吸附热均变化不大,但CO2的吸附热始终大于CH4,说明CO2具有吸附优势。
3.4 芳香片层延展度的影响
芳香片层延展倍数为9、11、13时,二元混合气体的吸附构型如图9所示,由图可知,不同延展倍数下的气体吸附量变化明显,随着延展倍数的增加,CH4和CO2的吸附量均增大。煤吸附的气体分子个数如图10所示,煤对CH4的吸附分子数呈缓慢增加趋势,对CO2的吸附分子数呈快速增加趋势,延展度每增加一倍,吸附CO2的分子数分别增加17.81%、26.54%、16.97%、16.89%。
不同延展倍数下单位质量煤对CH4和CO2的吸附量如图11所示,由图可知,随芳香片层延展倍数的增加,单位质量煤对2种气体的吸附量变化并不明显,CH4吸附量在0.167~0.207 mmol/g,差值仅为0.04 mmol/g,CO2吸附量在1.98~2.075 mmol/g,差值仅为0.095 mmol/g。
不同延展倍数下气体的吸附热如图12所示,由图可知,吸附过程为物理吸附(吸附热均小于42 kJ/mol),且吸附热变化不明显。
此外,由图12可知,在不同延展倍数下,煤更易吸附CO2气体,相对于CH4,CO2气体具有吸附优势。
4. 结 论
1)随气体压力的增加,气体吸附量变化趋势与Langmuir I型方程相符合,压力为5MPa时CO2的吸附量已接近饱和,以此压力注气为宜。
2)温度增加会抑制吸附,导致煤对CO2的最大吸附量降低,吸附热也有所降低,以相对较低的温度注气为宜。
3)随孔径的增大,由于孔隙体积的增加,煤对气体的总吸附量增大,对CO2的吸附量基本不变,对CH4的吸附量持续增加,孔径从1 nm增加到2 nm,CH4的吸附量增加最快。
4)煤芳香片层堆砌度的增加对煤吸附的气体分子数影响较小,但会降低单位质量煤对CH4和CO2的吸附量。
5)煤芳香片层延展度的增加会导致煤吸附的气体分子数增加,但对单位质量煤吸附的CH4、CO2量无明显影响。
6)从吸附量和吸附热2个角度来看,CO2在CH4、CO2二元混合气体竞争吸附过程中均处于优势地位。
-
表 1 煤层水组成分类
Table 1 Classification of coal-bed water composition
表 2 不同水地球化学特征总结
Table 2 Summary of different water geochemical characteristics
水类型 原始沉积水 渗入水 深成水 成岩水 钠氯系数 <0.5 >0.5 — — 肖勒系数 >0.129 <0.129 — — 矿化度 >10 000 mg/L <1 000 mg/L 较高 较低 水类型 δD/‰ δ18O/‰ 备注 渗入水 <−400~+10 −60~0
比较标准:
SMOWδD=8δ18O+10‰沉积水 −50~−5 −4.5~+3 成岩水 −65~−20 +5~+25 深成水 −80~+40 +7~+9.5 -
[1] 傅雪海, 秦 勇, 韦重韬. 煤层气地质学[M]. 徐州: 中国矿业大学出版社, 2007. FU Xuehai, QIN Yong , WEI Chongtao. Geology of coal-bed methane[M]. Xuzhou: China University of Mining and Technology Press, 2007.
[2] MENG Y J,TANG D Z,XU H,et al. Division of coalbed methane desorption stages and its significance[J]. Petroleum Exploration and Development Online,2014,41(5):671−677. doi: 10.1016/S1876-3804(14)60080-X
[3] 卫明明,琚宜文. 沁水盆地南部煤层气田产出水地球化学特征及其来源[J]. 煤炭学报,2015,40(3):629−635. WEI Mingming,JU Yiwen. Geochemical characteristics and sources of water produced in coalbed methane field in southern Qinshui Basin[J]. Journal of China Coal Society,2015,40(3):629−635.
[4] KAISER W R ,HAMILTON D S,SCOTT A R, et al. Geological and hydrological controls on theproducibility of coalbed methane[J]. Journal of the GeologicalSociety,1994,151(3):417−420.
[5] AYERS W B. Coalbed gas systems, resources, and production and a review of contrasting cases from the San Juan and Powder River Basins[J]. AAPG Bulletin,2002,86:1853−1890.
[6] SCOTT A R. Hydrogeologic factors affecting gas contentdistribution in coal beds[J]. International Journal of Coal Geology,2002,50(14):363−287.
[7] 唐文蛟,张守玉,董建勋,等. 褐煤中水分存在形式的实验研究[J]. 煤炭转化,2015,38(1):5−9,22. doi: 10.3969/j.issn.1004-4248.2015.01.002 TANG Wenjiao,ZHANG Shouyu,Dong Jianxun,et al. Experimental study on the presence of moisture in lignite[J]. Coal Conversion,2015,38(1):5−9,22. doi: 10.3969/j.issn.1004-4248.2015.01.002
[8] 苗雅楠. 煤层气藏气水赋存方式及产气机理研究[D]. 北京: 中国石油大学(北京), 2019. MIAO Yanan. Study on gas-water storage mode and gas production mechanism of coal-bed methane reservoir[D]. Beijing: China University of Petroleum(Beijing), 2019.
[9] ZIMMERMANN E,NIEMANN DELIUS C. Microwave beneficiation of brown coal[J]. Górnictwo I Geoinzynieria,2007,31(2):627−633.
[10] SEEHRA M S, KALRA A, MANIVANNA A. Dewatering of fine coal slurries by selective heating with microwave[J]. Fuel, 2007, 86(5) 86: 829−834.
[11] 高洪烈. 论煤层气与地下水[J]. 中国煤田地质,1998(4):45−48. GAO Honglie. On coal-bed methane and groundwater[J]. Coal Geology of China,1998(4):45−48.
[12] NORINAGA K,KUMAGAI H,HAYASHI J,et al. Classi-fication of water sorbed in coal on the basis of congelation characteristics[J]. Energy & Fuels,1998,12(3):574−579.
[13] JIN H,ZhAO Z Y,XIAO G L,et al. Influence of coal-seam water on coalbed methane production: a review[J]. Chemistry and Technology of Fuels and Oils,2015,51(2):201−221.
[14] 李夏伟,刘大锰,蔡益栋,等. 高煤级煤储层含水性特征及其对吸附能力的影响[J]. 地学前缘,2018,25(4):237−244. LI Xiawei,LIU Dameng,MENG Caiyi,et al. Aqueous characteristics of high-grade coal reservoirs and their influence on adsorption capacity[J]. Earth Science Frontiers,2018,25(4):237−244.
[15] SUN Y,ZHAI C,XU J Z,et al. A method for accurate characterisation of the pore structure of a coal mass based on two-dimensional nuclear magnetic resonance T1-T2[J]. Fuel,2020,262:263−278.
[16] 李传亮,彭朝阳. 煤层气的开采机理研究[J]. 岩性油气藏,2011,23(4):9−11,19. doi: 10.3969/j.issn.1673-8926.2011.04.002 LI Chuanling,PENG Chaoyang. Study on the mining mechanism of coal-bed methane[J]. Lithological Reservoirs,2011,23(4):9−11,19. doi: 10.3969/j.issn.1673-8926.2011.04.002
[17] 李可心. 临兴西深部煤层气储层特征及气水产出机理[D]. 徐州: 中国矿业大学, 2020. LI Kexin. Characteristics of coal-bed methane reservoirs in the west of Linxing and the mechanism of gas-water output[D]. Xuzhou: China University of Mining and Technology, 2020.
[18] 王 恬,桑树勋,刘世奇,等. 沁水盆地南部高阶煤气水相对渗透特征[J]. 断块油气田,2017,24(2):199−202. WANG Tian,SANG Shuxun,LIU Shiqi,et al. Relative permeability characteristics of high-grade gas water in the southern Qinshui Basin[J]. Fault Block Oil & Gas Field,2017,24(2):199−202.
[19] 李叶朋. 二连盆地霍林河煤田低阶煤孔隙结构模式及气液流动规律[D]. 徐州: 中国矿业大学, 2018. LI Yepeng. Pore structure mode and gas-liquid flow pattern of low-order coal in Holinghe Coalfield in Erlian Basin[D]. Xuzhou: China University of Mining and Technology, 2018.
[20] 彭 辉. 滇东黔西中-高煤阶储层微观尺度下流体流动性研究[D]. 徐州: 中国矿业大学, 2019. PENG Hui. Study on fluid fluid fluidity at microscale in middle-high coal-order reservoirs in eastern Yunnan and western Qianxi[D]. Xuzhou: China University of Mining and Technology, 2019.
[21] 侯 伟,赵天天,张 雷,等. 基于低场核磁共振的煤储层束缚水饱和度应力响应研究与动态预测: 以保德和韩城区块为例[J]. 吉林大学学报(地球科学版),2020,50(2):608−616. HOU Wei,ZHAO Tiantian,ZHANG Lei,et al. Stress response study and dynamic prediction of confined water saturation in coal reservoir based on low-field nuclear magnetic resonance: A case study of Baode and Hancheng blocks[J]. Journal of Jilin University (Earth Science Edition),2020,50(2):608−616.
[22] 陈文文,杨延辉,王生维,等. 高煤阶煤层气藏内水赋存特征与运移规律研究[J]. 煤炭科学技术,2016,44(S1):154−159. CHEN Wenwen,YANG Yanhui,WANG Shengwei,et al. Study on Water Storage Characteristics and Transport Law of High-Grade Coalbed Methane Reservoirs[J]. Coal Science and Technology,2016,44(S1):154−159.
[23] 康保平,黄小燕,郭淑萍,等. 川西坳陷须二气藏气田水成因、运移及其成藏演化[J]. 石油与天然气地质,2018,39(2):309−317. KANG Baoping,HUANG Xiaoyan,GUO Shuping,et al. Water genesis, transport and evolution of reservoir formation in the reservoir of the second reservoir in the western sichuan depression[J]. Oil & GasGeology,2018,39(2):309−317.
[24] 熊 亮,康保平,史洪亮,等. 川西大邑气藏气田水化学特征及其动态 运移[J]. 西南石油大学学报(自然科学版),2011,33(5):84−88,194. XIONG Liang,KANG Baoping,SHI Hongliang,et al. Water chemical characteristics and dynamic transport of gas field in Dayi gas reservoir in Western Sichuan Province[J]. Journal of Southwest Petroleum University (Natural Science Edition),2011,33(5):84−88,194.
[25] 李 剑,车延前,熊先钺,等. 韩城煤层气田11号煤层水化学场特征及其对煤层气的控制作用[J]. 中国石油勘探,2018,23(3):74−80. doi: 10.3969/j.issn.1672-7703.2018.03.009 LI Jian,CHE Yanqian,XIONG Xianyue,et al. Characteristics of No.11 coalbed water chemical field in Han-cheng Coalbed methane field and its control effect on coalbed methane[J]. PetroChina Exploration,2018,23(3):74−80. doi: 10.3969/j.issn.1672-7703.2018.03.009
[26] 马行陟,宋 岩,柳少波,等. 煤储层中水的成因、年龄及演化: 卤素 离子、稳定同位素和129I 的证据[J]. 中国科学:地球科学,2013,43(10):1699−1707. MA Xingzhi,SONG Yan,LIU Shaobo,et al. Genesis, age and evolution of water in coal reservoirs: Evidence for halogen ions, stable isotopes and 129I[J]. Science China Earth Sciences,2013,43(10):1699−1707.
[27] 李 剑. 韩城区块水文地质条件对煤层气开发的影响[D]. 北京: 中国矿业大学(北京), 2019. LI Jian. Effects of hydrogeological conditionson coal-bed methane development in Hancheng District[D]. Beijing: China University of Mining and Technology-Bejing, 2019.
[28] 徐 波. 东海盆地西湖凹陷天台反转带花港组地层水地球化学特征及其成因[J]. 海洋地质与第四纪地质,2021,41(3):62−71. XU Bo. Geochemical characteristics and genesis of stratigraphic water in the Huagang Formation of the west lake sag inverted belt in the east ch ina sea basin[J]. Marine Geology and Quaternary Geology,2021,41(3):62−71.
[29] 白 晶,邹磊落,赵 亮,等. 含油气区地下水特征分析及意义[J]. 化学工程与装备,2020(10):166−168. BAI Jing,ZOU Leiluo,ZHAO Liang,et al. Characteristic analysis and significance of groundwater in oil and gas-bearing areas[J]. Chemical Engineering and Equipment,2020(10):166−168.
[30] 楼章华,李 梅,金爱民,等. 中国海相地层水文地质地球化学与油气保存条件研究[J]. 地质学报,2008(3):387−396. LOU Zhanghua,LI Mei,JIN Aimin,et al. Study on hydrogeology, geochemistry and oil and gas preservation conditions of marine strata in China[J]. Acta Geologica Sinica,2008(3):387−396.
[31] 代文军,陈耀宇. 试论早子沟金矿成矿作用过程中地幔流体的参与[J]. 甘肃地质,2022,31(1):29−35. DAI Wenjun,CHEN Yaoyu. Discussion on the participation of mantle fluid in the metallogenic process of Zaozigou Gold Ore[J]. Gansu Geology,2022,31(1):29−35.
[32] 杨绪充. 油气田水文地质学 [M]. 北京: 石油大学出版社, 1993: 110. YANG Xuchong. Hydrogeology of oil and gas fields[M]. Beijing: University of Petroleum Press, 1993: 110.
[33] ADELANA. Environmental isotopes in hydrogeology[M]. New Jersey: John Wiley& Sons Inc, 2005.
[34] 韩 永,王广才,邢立亭,等. 地下水放射性同位素测年方法研究进展[J]. 煤田地质与勘探,2009,37(5):37−42. doi: 10.3969/j.issn.1001-1986.2009.05.009 HAN Yong,WANG Guangcai,XING Liting,et al. ResearchProgress on Radioisotope Dating Methods for Groundwater[J]. Coal Geology and Exploration,2009,37(5):37−42. doi: 10.3969/j.issn.1001-1986.2009.05.009
[35] 曾海鳌,吴敬禄,刘 文,等. 哈萨克斯坦东部水体氢、氧同位素和水化学特征[J]. 干旱区地理,2013,36(4):662−668. ZENG Haiao,WU Jinglu,LIU Wen,et al. Hydrogen, oxygen isotopes and water chemistry characteristics of water bodies in eastern Kazakhstan[J]. Arid Land Geography,2013,36(4):662−668.
[36] 郑淑蕙,侯发高,倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报,1983(13):801−806. ZHENG Shuhui,HOU Fagao,NI Baoling. Study on hydrogen-oxygen stable isotopes of atmospheric precipitation in China[J]. Chinese Science Bulletin,1983(13):801−806.
[37] 王善博,唐书恒,万 毅,等. 山西沁水盆地南部太原组煤储层产出水氢氧同位素特征[J]. 煤炭学报,2013,38(3):448−454. WANG Shanbo,TANG Shuheng,WAN Yi,et al. Isotope characteristics of hydrogen and oxygen produced in coal reservoirs of Taiyuan Formation in the southern Qinshui Basin of Shanxi Province[J]. Journal of China Coal Society,2013,38(3):448−454.
[38] 时 伟,唐书恒,李忠城,等. 沁水盆地南部山西组煤储层产出水氢氧同位素特征[J]. 煤田地质与勘探,2017,45(2):62−68. doi: 10.3969/j.issn.1001-1986.2017.02.011 SHI Wei,TANG Shuheng,LI Zhongcheng,et al. Isotope characteristics of hydrogen and oxygen produced in coal reservoirs of the Shanxi Formation in the southern Qinshui Basin[J]. Coal Geology and Explorat-ion,2017,45(2):62−68. doi: 10.3969/j.issn.1001-1986.2017.02.011
[39] 张向阳. 放射性同位素—揭示地下水年龄的时钟[J]. 国土资源科普与文化,2019(4):21−23. ZHANG Xiangyang. Radioisotopes—clocks for revealing groundwater age[J]. Science and Culture of Land and Resources,2019(4):21−23.
[40] 葛燕燕. 煤系多层叠置含水系统及煤层气合排水源判识[D]. 徐州: 中国矿业大学, 2015. GE Yanyan. Identification of coal-based multilayer superimposed water-bearing system and coal-bed methane combined drainage source[D]. Xuzhou: China University of Mining and Technology, 2015.
[41] GLYNN P D,PLUMMER L N. Geochemistry and the understanding of groundwater systems[J]. Hydrogeology Journal,2005,13(1):263−287. doi: 10.1007/s10040-004-0429-y
[42] CHEN Z,NIE Z,ZHANG G,et al. Environmental isotopic study on the recharge and residence timeof groundwater in the Heihe River Basin, north-western China[J]. Hydrogeology Journal,2006,14(8):1635−1651. doi: 10.1007/s10040-006-0075-7
[43] 王宗礼,何 建. 地下水年龄测试的主要方法与进展[J]. 甘肃水利水电技术,2014,50(1):6−8,63. WANG Zongli,HE Jian. The main methods and progress of groundwater age test[J]. Gansu Water Resources and Hydropower Engineering,2014,50(1):6−8,63.
[44] 王海超. 沁水盆地中南部煤系气储层物性及叠置成藏模式[D]. 徐州: 中国矿业大学, 2017. WANG Haichao. Physical properties and stacked reservoir patterns of coal-based gas reservoirs in central and southern Qinshui Basin[D]. Xuzhou: China University of Mining and Technology, 2017.
[45] 李跃国,姚程鹏,杨曙光,等. 准南米泉地区煤层气成因及其富集成藏机理研究[J]. 煤炭科学技术,2021,49(4):220−226. LI Yueguo,YAO Chengpeng,YANG Shuguang,et al. Study on the Genesis of Coalbed Methane and Its Reservoir Enrichment Mechanism in Junnanmiquan Area[J]. Coal Science and Technology,2021,49(4):220−226.
[46] 田文广,汤达祯,王志丽,等. 鄂尔多斯盆地东北缘保德地区煤层气成因[J]. 高校地质学报,2012,18(3):479−484. TIAN Wenguang,TANG Dazhen,WANG Zhili,et al. Genesis of coal-bed methane in Baode area, northeast edge of Ordos Basin[J]. Geological Journal of Universities,2012,18(3):479−484.
[47] 陈 刚,胡宗全,张永贵,等. 延川南区块煤层气富集高产的地质控制作用[J]. 天然气地球科学,2016,27(11):2093−2102. CHEN Gang,HU Zongquan,ZHANG Yonggui,et al. Geological control effect of coalbed methane enrichment and high yield in Yanchuan South Block[J]. Natural Gas Geoscience,2016,27(11):2093−2102.
[48] 崔明明,王宗秀,樊爱萍,等. 鄂尔多斯盆地苏里格气田西南部地层水特征与气水关系[J]. 天然气地球科学,2018,29(9):1364−1375. doi: 10.11764/j.issn.1672-1926.2018.07.002 CUI Mingming,WANG Zongxiu,FAN Aiping,et al. Stratigraphic water characteristics and gas-water relationship between southwest sulige gas field in Ordos Basin[J]. Natural Gas Geoscience,2018,29(9):1364−1375. doi: 10.11764/j.issn.1672-1926.2018.07.002
[49] 刘福田,李荣西,左智峰,等. 鄂尔多斯盆地南部地区上三叠统延长组6段地层水成因及其油气意义[J]. 石油与天然气地质,2018,39(6):1179−1189. LIU Futian,LI Rongxi,ZUO Zhifeng,et al. Water genesis and hydrocarbon significance of 6 sections of the Upper Triassic Yanchang Formation in the southern region of Ordos Basin[J]. Oil and Gas Geology,2018,39(6):1179−1189.
[50] 王 勃. 沁水盆地煤层气富集高产规律及有利区块预测评价[D]. 徐州: 中国矿业大学, 2013. WANG Bo. Prediction and evaluation of coal-bed methane enrichment and favorable block in Qinshui Basin[D]. Xuzhou: China University of Mining and Technology, 2013.
[51] 潘一山,唐巨鹏,李成全. 煤层中气水两相运移的NMRI试验研究[J]. 地球物理学报,2008(5):1620−1626. doi: 10.3321/j.issn:0001-5733.2008.05.038 PAN Yishan,TANG Jupeng,LI Chengquan. NMRI experimental study on the two-phase transport of gas and water in coal seams[J]. Chinese Journal of Geophysics,2008(5):1620−1626. doi: 10.3321/j.issn:0001-5733.2008.05.038
[52] 刘新福,綦耀光,胡爱梅,等. 煤层气井气水两相流入动态关系研究[J]. 中国矿业大学学报,2011,40(4):561−565,591. LIU Xinfu,QI Yaoguang,HU Aimei,et al. Study on the dynamic relationship between gas-water inflow of coal-bed methane wells[J]. Journal of China University of Mining and Technology,2011,40(4):561−565,591.
[53] 王国强,吴建光,熊德华,等. 沁南潘河煤层气田稳控精细排采技术[J]. 天然气工业,2011,31(5):31−34,115. WANG Guoqiang,WU Jiangguang,XIONG Dehua,et al. Qinnan-Panhe coalbed methane field stability control fine extraction technology[J]. Natural Gas Industry,2011,31(5):31−34,115.
[54] 邹雨时,张士诚,张 劲,等. 煤粉对裂缝导流能力的伤害机理[J]. 煤炭学报,2012,37(11):1890−1894. ZOU Yushi,ZHANG Shicheng,ZHANG Jin,et al. The injury mechanism of pulverized coal on the ability of crack diversion[J]. Journal of China Coal Society,2012,37(11):1890−1894.
[55] 李俊乾,卢双舫,薛海涛,等. 高阶煤层气储层非均质性及其定量评价—以沁水盆地南部郑庄区块为例[J]. 石油与天然气地质,2016,37(1):72−79. LI Junqian,LU Shuangfang,XUE Haitao,et al. Heterogeneity and quantitative evaluation of higher-order coal-bed methane reservoirs: A case study of Zhengzhuang Block in the south of Qinshui Basin[J]. Oil and Gas Geology,2016,37(1):72−79.
[56] 刘 贺,罗 勇,雷坤超,等. 基于渗流力学建立的煤层气井排水降压模型及排采规律分析[J]. 煤矿安全,2019,50(2):190−194. LIU He,LUO Yong,LEI Kunchao,et al. Analysis of drainage pressure reduction model and discharge law of coalbed methane well based on seepage mechanics[J]. Coal Mine Safety,2019,50(2):190−194.
[57] 杜严飞,吴财芳,邹明俊,等. 煤层气排采过程中煤储层压力传播规律研究[J]. 煤炭工程,2011(7):87−89. DU Yanfei,WU Caifang,ZOU Mingjun,et al. Study on the propagation law of coal reservoir pressure in the process of coalbed methane exhaust and production[J]. Coal Engineering,2011(7):87−89.
[58] VAFERI B,SALIMI V,BANIANI D D,et al. Predictionof transient pressure response in the petroleum reservoirs using orthogonal collocation[J]. Journal of Petroleum Science and Engineering,2012,98(11):156−163.
[59] 叶建平,陆小霞. 我国煤层气产业发展现状和技术进展[J]. 煤炭科学技术,2016,44(1):24−28. YE Jianping,LU Xiaoxia. Development status and technological progress of coalbed methane industry in China[J]. Coal Science and Technology,2016,44(1):24−28.
[60] 刘世奇,桑树勋,李梦溪,等. 沁水盆地南部煤层气井网排采压降漏斗的控制因素[J]. 中国矿业大学学报,2012,41(6):943−950. LIU Shiqi,SANG Shuxun,LI Mengxi,et al. Controlling factors of pressure drop funnel in coalbed methane network drainage in southern Qinshui Basin[J]. Journal of China University of Mining and Technology,2012,41(6):943−950.
[61] 王 渊,王辰龙,王凤清. 煤层气井压降规律与排采参数关系分析−以保德区块为例[J]. 石油钻采工艺,2019,41(4):502−508. WANG Yuan,WANG Chenlong,WANG Fengqing. Analysis on the relationship between pressure drop law and exhaust and production parameters of coalbed methane wells: a case study of baode block[J]. Petroleum Drilling and Production Technology,2019,41(4):502−508.
[62] 赵 金,张遂安. 煤层气排采储层压降传播规律研究[J]. 煤炭科学技术,2012,40(10):65−68. ZHAO Jin,ZHANG Suian. Study on pressure drop propagation law of coal-bed methane exhaustandproduction reservoir[J]. Coal Science and Technology,2012,40(10):65−68.
[63] 杜彩霞,张遂安,刘 程,等. 煤层气规模开发条件下压力传播特征研究[J]. 煤炭科学技术,2016,44(12):179−183. DU Caixia,ZHANG Suian,LIU Cheng,et al. Study on pressure propagation characteristics under the conditions of coal-bed methane scale development[J]. Coal Science and Technology,2016,44(12):179−183.
[64] 王卫东,张亚飞,孔庆虎,等. 煤层气干扰试井测试在柿庄区块产能分析中的应用研究[J]. 中国煤层气,2021,18(3):29−34. doi: 10.3969/j.issn.1672-3074.2021.03.008 WANG Weidong,ZHANG Yafei,KONG Qinghu,et al. Application of coal-bed methane interference test in capacity analysis of Persimmon Block[J]. China Coalbed Methane,2021,18(3):29−34. doi: 10.3969/j.issn.1672-3074.2021.03.008
[65] 李国富,田永东. 煤层气井排水采气机理浅探[J]. 中国煤炭,2002(7):4,33−35. LI Guofu,TIAN Yongdong. Shallow exploration of drainage gas production mechanism of coalbed methane well[J]. China Coal,2002(7):4,33−35.
[66] 田永东. 试论煤层气地面开发的规模性[J]. 科技情报开发与经济,2005(13):163−165. TIAN Yongdong. On the scale of coal-bed methane surface development[J]. Science and Technology Information Development and Economy,2005(13):163−165.
[67] HARRISON S M,GENTZIS T ,PAYNE M.Hydraulic, water quality, and isotopic characterization of Late Cretaceous–Tertiary Ardley coal waters in a key test-well, Pembina–Warburg exploration area, Alberta, Canada[J]. Bulletin of Canadian Petroleum Geology,2006,54(3):238−260. doi: 10.2113/gscpgbull.54.3.238
[68] 杜 鹏. 煤层气开发井间干扰特征研究[D]. 青岛: 中国石油大学(华东), 2013. DU Peng. Study on interwell interference characteristics of coal-bed methane development[D]. Qingdao: China University of Petroleum (East China), 2013.
[69] 张遂安,秦 鹏,张典坤,等. 煤层气井井间干扰试井技术研究[J]. 煤炭科学技术,2015,43(12):75−79. ZHANG Suian,QIN Peng,ZHANG Diankun,et al. Research on interwell interference well test technology of coalbed methane[J]. Coal Science and Technology,2015,43(12):75−79.
[70] 贾奇锋,刘大锰,蔡益栋. 煤层气开采井间干扰研究进展[J]. 煤炭学报,2020,45(S2):882−893. JIA Qifeng,LIU Damang,CAI Yidong. Research Progress on Interwell Interference in Coalbed Methane Mining[J]. Journal of China Coal Society,2020,45(S2):882−893.
[71] 王 宁,王运海,程 翠,等. 数值模拟技术在煤层气开发井网设计中的应用−以鄂尔多斯盆地延川南区块为例[J]. 油气藏评价与开发,2014,4(6):61−65. WANG Ning,WANG Yunhai,CHENG Cui,et al. Application of Numerical Simulation Technology in Well Network Design for Coal-Bed Methane Development: A Case Study of Yanchuan South Block in Ordos Basin[J]. Reservoir Evaluation and Development,2014,4(6):61−65.
[72] 赵 欣,姜 波,徐 强,等. 煤层气开发井网设计与优化部署[J]. 石油勘探与开发,2016,43(1):84−90. ZHAO Xin,JIANG Bo,XU Qiang,et al. Design and optimal deployment of coal-bed methane development well network[J]. Petroleum Exploration and Development,2016,43(1):84−90.
[73] 郭 晨,秦 勇,韩 冬. 黔西比德—三塘盆地煤层气井产出水离子动态及其对产能的指示[J]. 煤炭学报,2017,42(3):680−686. GUO Chen,QIN Yong,HAN Dong. Dynamics of water ions produced by coalbed methane wells in Qianxi Bid-Santang Basin and their indication of production capacity[J]. Journal of Coal Society,2017,42(3):680−686.
[74] 白铁峰. 大倾角煤层煤层气井网优化[D]. 北京: 中国石油大学(北京), 2020. BAI Tiefeng. Optimization of coalbed methane network in large inclination coalbed[D]. Beijing: China University of Petroleum (Beijing), 2020.
[75] 李 腾. 不同构造条件下多煤层区煤层气井井型井网优化设计[D]. 徐州: 中国矿业大学, 2014. LI Teng. Optimization design of well-type well network of coalbed methane wells in multicoal-bed area under different structural conditions[D]. Xuzhou: China University of Mining and Technology, 2014.
[76] 伊永祥. 沁水盆地柿庄南区块煤层气井生产特征及排采控制研究[D]. 北京: 中国地质大学(北京), 2020. YI Yongxiang. Production characteristics and dischargecontrol of coalbed methane wells in Persimmon Zhuangnan Block, Qinshui Basin[D]. Beijing: China University of Geosciences(Beijing), 2020.
[77] 倪小明,张崇崇,王延斌,等. 单相水流阶段煤层气井裂隙水运移的临界裂隙尺寸数学模型[J]. 工程力学,2015,32(4):250−256. NI Xiaoming,ZHANG Chongchong,WANG Yanbin,et al. Mathematical model of critical fracture size of fracturewater transport in coalbed methane wells in single-phase water flow stage[J]. Engineering Mechanics,2015,32(4):250−256.
[78] 刘世奇,桑树勋,MA Jingsheng,等. 沁水盆地南部高阶煤储层气水产出过程分析[J]. 煤炭科学技术,2017,45(9):1−6,24. LIU Shiqi,SANG Shuxun,Ma Jingsheng,et al. Analysis of gas and water production process of high-order coal reservoir in southern Qinshui Basin[J]. Coal Science and Technology,2017,45(9):1−6,24.
[79] 胡秋嘉,刘世奇,闫 玲,等. 樊庄-郑庄区块无烟煤储层气水赋存-运移-产出路径的研究[J]. 煤矿安全,2020,51(10):218−222. HU Qiujia,LIU Shiqi,YAN ling,et al. Study on the path of gaswater storage-transport-output in anthracite coal reservoir in fanzhuang-zhengzhuang block[J]. Coal Mine Safety,2020,51(10):218−222.
[80] 皇凡生,康毅力,李相臣等. 单相水流诱发裂缝内煤粉启动机理与防控对策[J]. 石油学报,2017,38(8):947−954. HUANG Fansheng,KANG Yili,Li Xiangchen,et al. Startupmechanism and prevention and control countermeasures of pulverized coal in cracks induced by single-phase water flow[J]. Acta Petroleum Sinica,2017,38(8):947−954.
[81] 胡友林,乌效鸣. 煤层气储层水锁损害机理及防水锁剂的研究[J]. 煤炭学报,2014,39(6):1107−1111. HU Youlin,WU Xiaoming. Study on water lock damage mechanism and waterproof locking agent of coal-bed methane reservoir[J]. Journal of Coal Engineering,2014,39(6):1107−1111.
[82] 左银卿,张学英,周 叡,等. 沁南地区高煤阶煤储层水敏效应及其控制因素[J]. 油气地质与采收率,2014,21(5):107−110,118. doi: 10.3969/j.issn.1009-9603.2014.05.027 ZUO Yinqing,ZHANG Xxueying,ZHOU Rui,et al. Water sensitivity effect and its controlling factors in high grade coal reservoirs in Qinnan area[J]. Petrolum Geology and Recovery,2014,21(5):107−110,118. doi: 10.3969/j.issn.1009-9603.2014.05.027
[83] 汪伟英,马 丽,原晓珠,等. 煤层气储层阳离子交换容量及其对煤岩物性的影响[J]. 煤炭科学技术,2011,39(9):118−120. WANG Weiying,MA Li,YUAN xiaozhu,et al. Cation exchange capacity of coalbed methane reservoirs and its influence on coal rock properties[J]. Coal Scienceand Technology,2011,39(9):118−120.
[84] 柳迎红,房茂军,廖 夏. 煤层气排采阶段划分及排采制度制定[J]. 洁净煤技术,2015,21(3):121−124,128. LIU Yinghong,FANG Maojun,Liaoxia. Coalbed methane extraction stage division and extraction system[J]. Clean Coal Technology,2015,21(3):121−124,128.
[85] 戴 楠. 大佛寺煤层气水平井降压与产气的耦合分析[D]. 西安: 西安科技大学, 2018. DAI Nan. Coupling analysis of pressure relief and gas production in horizontal coal-bed methane wells of Dafo Temple[D]. Xi’an : Xi’an University of Science and Technology, 2018.
[86] 续化蕾,李焕文,王云飞,等. 煤层气储层水锁伤害影响因素及防治措施研究[J]. 钻采工艺,2019,42(6):110−112. XU Hualei,LI Huanwen,Wang Yunfei,et al. Research on influencing factors of water lock injury in coal-bed methane reservoirs and prevention measures[J]. Drilling and Mining Technology,2019,42(6):110−112.
[87] 宋金星,陈培红,王 乾. 煤储层水基压裂液用表面活性剂的筛选实验[J]. 煤田地质与勘探,2017,45(6):79−83. SONG Jinxing,CHEN Peihong,WANG Qian. Screening experiments of surfactants for water-based fracturing fluids in coal reservoirs[J]. CoalField Geology and Exploration,2017,45(6):79−83.
[88] 蒋金龙. 煤粉在压裂支撑裂缝内的微观运移机理研究[D]. 成都: 西南石油大学, 2018. JIANG Jinlong. Study on the microscopic transport mechanism of pulverized coal in fracturing support fractures[D]. Chengdu: Southwest Petroleum University, 2018.
[89] 许耀波. 煤层气水平井煤粉产出规律及其防治措施[J]. 煤田地质与勘探,2016,44(1):43−46. XU Yaobo. Production law of pulverized coal in horizontal coal-bed methane wells and its prevention and control measures[J]. Coal Geology and Exploration,2016,44(1):43−46.
-
期刊类型引用(1)
1. 张小东,王康,卢铁,王芳芳,张硕. ScCO_2作用下高阶构造煤吸附热变化特征及机制. 中国石油大学学报(自然科学版). 2025(01): 81-91 . 百度学术
其他类型引用(0)