高级检索

重庆松藻矿区关闭煤矿涌水来源与模式判识研究

康小兵, 李晓雪, 饶丽芳, 张文发, 罗向奎, 王克峰

康小兵,李晓雪,饶丽芳,等. 重庆松藻矿区关闭煤矿涌水来源与模式判识研究[J]. 煤炭科学技术,2023,51(10):220−230. DOI: 10.13199/j.cnki.cst.2022-1640
引用本文: 康小兵,李晓雪,饶丽芳,等. 重庆松藻矿区关闭煤矿涌水来源与模式判识研究[J]. 煤炭科学技术,2023,51(10):220−230. DOI: 10.13199/j.cnki.cst.2022-1640
KANG Xiaobing,LI Xiaoxue,RAO Lifang,et al. Source identification and pattern study of closed coal mines water inflow in Songzao Mining Area, Chongqing City[J]. Coal Science and Technology,2023,51(10):220−230. DOI: 10.13199/j.cnki.cst.2022-1640
Citation: KANG Xiaobing,LI Xiaoxue,RAO Lifang,et al. Source identification and pattern study of closed coal mines water inflow in Songzao Mining Area, Chongqing City[J]. Coal Science and Technology,2023,51(10):220−230. DOI: 10.13199/j.cnki.cst.2022-1640

重庆松藻矿区关闭煤矿涌水来源与模式判识研究

基金项目: 

重庆市国土资源和房屋管理局2015 年度重点前期工作资助项目( 2015-999-03);云南省岩土工程与地质灾害重点实验室(培育)开放基金资助项目(YNYDK-202209)

详细信息
    作者简介:

    康小兵: (1981—),男,江苏丹阳人,副教授,博士。E-mail:Kangxiaobing09@cdut.cn

  • 中图分类号: TD742

Source identification and pattern study of closed coal mines water inflow in Songzao Mining Area, Chongqing City

Funds: 

Key Preliminary Work Funding Project of Chongqing Municipal Bureau of Land, Resources and Housing Management in 2015 (2015-999-03); Yunnan Key Laboratory of Geotechnical Engineering and Geological Hazards (Cultivation) Open Fund Project (YNYDK-202209)

  • 摘要:

    关闭煤矿涌水来源的准确判识、涌水模式的正确划分对科学处置关闭煤矿排水造成的水资源浪费和水环境污染等问题具有重要意义。基于重庆松藻矿区多个关闭煤矿一个水文年的涌水流量动态监测数据、水化学指标及微生物指标数据,采用涌水的流量动态解析、流量−降雨水文序列相关函数等水量分析手段和水化学指标描述性统计、矿井水样间水化学指标Pearson相关函数等水质分析方法,并结合矿区水文地质条件,提出了“水量−水化学−微生物−水文地质条件”多元正−反演分析的关闭煤矿涌水来源综合判识、涌水模式研究的综合方法。研究结果表明:关闭煤矿涌水量对降雨的响应存在骤升缓降、缓升缓降、平稳3种波动类型;涌水水源、导水介质的不同是导致矿井涌水流量动态变化及其对降雨的响应存在时空差异性的主要原因,也是矿井水TDS、pH、化学关联程度和微生物含量变异性大的关键因素;综合水量、水质的特性对关闭煤矿涌水来源进行综合判识,并基于识别结果,提出了降雨入渗型、含水层释水型、老空水溢出型、复合型4种矿区关闭煤矿涌水模式。多元综合分析方法能有效判识岩溶矿区关闭煤矿涌水来源,深化了对关闭煤矿涌水特征的认识,为松藻矿区关闭煤矿涌水的科学防治与环境−资源协调发展提供了理论支撑。

    Abstract:

    Accurate identification of the source of water gushing in closed coal mines and correct division of water gushing modes are of great significance for scientific disposal of water resources waste and water environment pollution caused by closed coal mine drainage. A comprehensive method for water inflow characterization, source identification, and model research for closed coal mines by multivariate analysis of “water quantity–hydrochemistry–microorganism–hydrogeological conditions” is proposed. The method is based on the dynamic monitoring data of water inflow and the water chemical and microbial indexes of several closed coal mines in the Songzao mining area of Chongqing in a hydrological year. Water quality analysis methods, such as flow dynamic analysis of water inflow and flow–rainfall hydro-logical series correlation function, descriptive statistics of water chemical indexes, and the Pearson correla-tion function of water chemical indexes between mine water samples are also used as bases. The method is further coupled with the hydrogeological conditions of the mining area. Results show that there are three types of fluctuations in the response of water inflow from closed coal mines to rainfall: sudden rise and slow drop, slow rise and slow drop, and stable. The difference in water inflow source and water diversion medium is the main reason for the dynamic change in mine water inflow and the temporal and spatial differences in its response to rainfall. It also causes the characteristics of large variability in TDS, pH, chemical correlation degree, and microbial content of mine water. Based on water source identification, four types, rainfall infiltration type, aquifer release type, old empty water overflow type, and compound type, of water gushing modes of closed coal mines in mining areas are proposed. The multivariate comprehensive analysis method identifies the source of water inrush from closed coal mines in karst mining areas effectively, deepens the understanding of the characteristics of water inrush from closed coal mines, and provides theoretical support for the scientific prevention and control of closed coal mine water inrush in Songzao mining area and the coordinated development of environment and resources.

  • 内排土场是近水平、缓倾斜煤层露天开采的必然产物,其稳定性关系到矿山安全高效生产[1]。随着露天矿产量规模的加大,外排占地费用随之升高,为了缩短运距少占土地,降低开采成本,增大经济效益,许多露天煤矿的排弃物料不得不由外排转入内排,内排土场边坡稳定性问题日趋严重,导致发生变形及滑坡灾害频频发生[2]。如神话宝日希勒露天煤矿、霍林河北露天煤矿内排土场均发生过一定的变形或滑坡现象,给露天矿绿色高效生产带来极大的安全隐患。

    近些年来,许多专家学者对边坡稳定性影响因素展开了大量理论研究与实践探索,取得了丰硕的成果。王东等[3]通过建立断层作用下滑体的力学模型,推导出顺倾层状边坡分条稳定系数表达式,定量分析断层位置对露天矿顺倾层状边坡稳定性的影响;苏永华等[4]通过建立降雨入渗分析(LSGA)模型及该模型下边坡稳定性系数表达式来综合考虑湿润层土体含水量分布情况与饱和层内平行于坡面渗流作用对边坡稳定性的具体影响;曹兰柱等[56]采用二维刚体极限平衡与三维数值模拟相结合的方法分析了横采深部开挖角度、内排跟踪距离及断层位置对边坡稳定性的影响;周寿昌[7]结合我国露天煤矿内部排土经验以及在建露天煤矿的特点,论述了影响内排土场稳定性的排土台阶设置位置和发展方式、地质、水文地质、工程地质等因素。尽管学者们对边坡稳定性影响因素进行了大量研究,但对顺倾软弱起伏基底内排土场边坡稳定性影响因素分析较少,未达到统一的规律性认识。因此,有必要定量分析断层、边坡形态等因素对内排土场边坡稳定性影响规律,用于解决内排土场空间形态优化难题,对实现内排土场安全、高效排土具有重要意义[811]

    综上所述,以霍林河南露天矿内排土场边坡为研究对象,应用刚体极限平衡方法与数值模拟相结合的手段,就顺倾起伏基底排土场边坡稳定性及各项因素对其影响进行分析,揭示内排土场边坡变形特征,设计顺倾起伏基底内排土场边坡空间形态,为类似边坡工程的滑坡防治提供参考。

    霍林河南露天煤矿年产量为18 Mt,平均剥采比6 m3/t,年剥离量约为108 Mm3,内排空间需求量较大。内排土场基底主要由泥岩、不同粒径的砂岩、炭质泥岩、黏土、薄煤层构成。内排土场的基底倾角变化不大,通常在0°~10°,但此研究区域基底受Fd15断层影响,形成倾斜起伏内排土场基底。Fd15断层走向NW,倾角58°~75°,最大落差28 m。典型工程地质剖面如图1所示,岩土体物理力学指标见表1

    图  1  典型工程地质剖面
    Figure  1.  Geologic profile of typical engineering
    表  1  岩土体物理力学指标
    Table  1.  Physical and mechanical indexes of rock and soil
    岩石容重γ/(g·cm−3)黏聚力C/kPa内摩擦角φ/(°)弹性模量E/MPa泊松比μ
    排弃物料1.91524
    1.9020.0–27.50.030.3
    粉质黏土1.9832.016.870.250.4
    黏土1.9818.616.030.420.4
    下载: 导出CSV 
    | 显示表格

    刚体极限平衡法是当今解决工程实际问题,对边坡稳定性进行定量分析最常用的方法,其基本原理是将岩土体视为刚体,不考虑变形问题,假定滑体各分条块在某种条件下都达到极限平衡状态,将强度折减系数定义为边坡稳定的安全系数。其中简化Bishop法是边坡稳定分析考虑土条间相互作用力的圆弧滑动分析法,剩余推力法适用于任意滑面的边坡稳定性计算,基于这2 种方法开发二维刚体极限平衡计算软件定量分析内排土场边坡稳定性[1214]

    结合霍林河内排土场排土状况,确定台阶高度(24 m)、平盘宽度(40 m),选择3个排弃高度H(168 m, 216 m, 264 m),6个边坡角α(15°~20°)和6个基底倾角β(5°~10°),分别计算变化坡高H、边坡角α和基底倾角β情况时内排土场边坡稳定性,计算结果如图2图4所示。

    图  2  边坡稳定性在排弃高度168 m时的计算结果
    Figure  2.  Slope stability calculation results at discharge level 168 m
    图  3  边坡稳定性在排弃高度216 m时的计算结果
    Figure  3.  Slope stability calculation results at discharge level 216 m

    图24可知,在不同边坡高度条件下,边坡稳定性系数随着基底倾角与边坡角的增大而降低,内排土场边坡稳定性明显降低,两者全部近似成线性关系,前者基底倾角每增加1°,边坡稳定性平均降低0.035,后者边坡角每增大1°,边坡稳定性平均降低0.056,并且通过图5得出,相对于基底倾角而言,边坡稳定性系数对边坡角更加敏感(即下降梯度ΔFsαFsβ)。边坡稳定性随着边坡高度的增加而降低,同时关注下降梯度(ΔFsH)可以发现,通过降低边坡高度来提高边坡稳定性的相对效果较差。

    图  4  边坡稳定性在排弃高度264 m时的计算结果
    Figure  4.  Slope stability calculation results at discharge level 264 m
    图  5  边坡稳定性在排弃标高不同的条件下与边坡角、基底倾角的关系
    Figure  5.  Relation of slope stability with basal angle and slope angle based on different discharge level

    基底形态是影响内排土场稳定性的重要因素之一,而基底断层的相对位置显著改变了排土场基底形态,进而影响排土场边坡稳定性[1517]

    在之前研究排土场边坡的3个影响因素(边坡高度、边坡角、基底倾角)的基础上,固定边坡高度H=216 m,边坡角α=20°,基底倾角β=5°和断层倾角60°,单独对基底断层与排土场边坡的相对空间位置关系对内排土场边坡稳定性的影响展开研究,分别计算改变断层落差h(20 m, 30 m, 40 m)和断层与内排土场边坡坡底线水平距离L(100 m, 150 m, 200 m, 250 m, 300 m, 350 m)条件下边坡稳定性,计算结果如图6所示。

    图  6  变化断层落差与相对位置条件下内排土场边坡稳定性计算结果
    Figure  6.  Calculation results of stability of internal dump slope under varying fault drop and relative position

    通过图6可知,内排土场边坡被断层切分为上下两部分,对于上部边坡而言,边坡潜在滑坡模式为沿着基底滑动,然后切穿排土场,下部边坡潜在滑坡模式为切层–顺层滑动。随着排土场推进距离的逐渐增加,边坡潜在滑移位置会发生改变,从上部边坡沿下盘基底切层–顺层滑动转变为从下部边坡沿上盘基底切层–顺层滑动。通过表2中的数据得出,边坡稳定性随着断层落差的增加先降低后升高,随着断层相对坡脚距离L的增加先升高后降低。据此得出,在边坡高度216 m、边坡角20°、基底倾角5°的情况下,断层落差为30 m时,稳定性系数最低。

    表  2  不同空间位置断层的边坡稳定性计算结果
    Table  2.  Calculation results of slope stability in different spatial positions of faults.
    L/m 不同边坡高度下h/m
    100 150 200 250 300 350
    20 1.35 1.36 1.38 1.3 1.29 1.283
    30 1.34 1.34 1.36 1.29 1.29 1.28
    40 1.34 1.35 1.37 1.39 1.3 1.29
    下载: 导出CSV 
    | 显示表格

    根据中国矿业大学编制的《霍林河南露天矿开采程序的优化研究》报告确定霍林河南矿内排标高为+926 m,台阶高度24 m。内排土场边坡稳定性分析时,选取了1个工程位置设计内排土场沿煤层底板推进不同距离时内排土场极限边坡形态,使得内排土场边坡达到极限位置状态时仍然能够保持稳定。

    内排土场基底被正断层Fd15切断,断层与上下盘交线落差23.66 m,断层倾角55.09°,断层倾向与边坡倾向一致。基底被断层切断成上下2部分,上部分基底倾角5°~6.3°,变化较小,下部分基底倾角9.28°。剖面排土场形态设计至推进距离300 m处。排土场边坡形态从紧邻断层位置处开始向前推进300 m距离时结束。分别设计各阶段排土台阶高度、平盘宽度以及边坡角,使其满足安全储备系数。剖面发展至不同工程位置极限边坡形态结果如图7所示。

    图  7  剖面发展至不同工程位置的极限边坡形态
    Figure  7.  Profile slope shape in different propelling position

    内排土场边坡从边坡紧邻断层位置开始,推进至不同工程位置时各个阶段参数见表3,使边坡形态达到极限状态,满足安全储备系数,此时内排土场边坡推进至不同工程位置内排空间最大,实现经济效益最大化。在顺倾起伏基底排土场向前发展过程中,边坡稳定性系数呈先增大后减小的规律。通过图8可知,在此剖面推进过程中,保持边坡稳定性系数近似不变,Fs≈1.20,随推进距离增加边坡角呈先增大后减小的规律,此时验证了顺倾起伏基底内排土场向前发展过程中边坡稳定性随断层相对坡脚距离的增加先增大后减小的规律。

    表  3  剖面发展至不同工程位置的内排土场边坡参数
    Table  3.  Profile of the dump slope developed from different sections to different engineering locations
    推进位置台阶数量最后一个台阶高度/m平盘宽度/m边坡角/(°)稳定性系数
    边坡紧邻断层826.392921.781.21
    L=100 m832.62921.971.21
    L=150 m916.582921.241.21
    L=200 m924.75+812水平及以下38 m20.421.20
    +812水平以上29 m
    L=250 m932.38+812水平及以下40 m20.381.215
    +812水平以上29 m
    L=300 m1015.59+812水平及以下37 m19.901.214
    +812水平以上29 m
    下载: 导出CSV 
    | 显示表格
    图  8  剖面发展至不同工程位置的边坡角
    Figure  8.  Profile slope angle in different propelling position

    刚体极限平衡法最大缺点是计算精度粗糙,过程复杂,并且在计算过程中未考虑岩土体内部应力–应变关系,无法深入分析边坡岩土体内部变形的破坏过程[18]。因此,对于复杂的变形破坏机制,采用数值模拟方法进行计算得出的结果更符合实际[19]。FLAC3D程序的基本原理是拉格朗日差分法,采用了显示拉格朗日算法和混合–离散分区技术,能够非常准确的模拟材料的塑性破坏和流动,非常适合解决岩土工程中经常遇到的大变形[20]。基于此,本节采用大型岩土分析软件FLAC3D,研究霍林河南露天矿内排土场不同断层与边坡空间位置时边坡的稳定性和滑坡模式,为了降低网格划分对计算结果的影响,统一建立高300 m、宽20 m、长1 000 m的数值预设模型。以0作为两侧水平位移,即水平约束为边界条件,将铅垂位移与底部水平位移设为0,采用底部边界固定的方式进行分析,以重力加载作为模型加载方式,同时,模型坡面及顶部均采用自由面。推进不同位置时内土场边坡最大位移云图如图9所示。

    图  9  剖面发展至不同工程位置位移
    Figure  9.  Displacement nephogram in different propelling position

    通过图9可知,边坡体内部各点的位移分布规律,断层、基底弱层与边坡面所包络形成的潜在滑体与滑床之间有明显位移,尤其当断层与边坡面相距较近时更为明显,上部岩体位移以下沉为主,下部岩体位移以水平为主,表明滑坡是由于上部岩体在自身重力下发生滑移,进而挤压下部岩体沿基底弱层向临空面滑移而发生的推动式滑坡。对比发展至不同工程位置时边坡的位移云图可知,断层距离坡脚150~200 m时,边坡滑移位置发生改变。推进距离小于150 m时,以上部剪切圆弧为侧界面–底板基底弱层为底界面相结合的组合滑动,大于200 m时,基底弱层的部分区域形成了塑性贯通,此时边坡的滑坡模式是以下部剪切圆弧为侧界面–底板基底弱层为底界面的组合滑动。随着内排土场继续向前推进,断层对内排土场边坡稳定性的影响逐渐降低,断层效应逐渐消失。

    1) 顺倾软弱起伏基底内排土场边坡稳定性分析应兼顾边坡形态、断层等多重因素;其稳定性与边坡高度、边坡角、基底倾角呈负相关,与断层落差呈先降低后升高、与断层相对坡脚距离L呈先升高后降低关系。

    2) 内排土场边坡滑坡模式随排土工程向前发展,由上部边坡沿下盘基底弱层切层–顺层滑动转变为从下部边坡沿上盘基底弱层切层–顺层滑动。

    3) 霍林河南露天矿内排土场边坡高度216 m、边坡角20°、基底倾角5°的工况下,断层落差为30 m时,其稳定性系数最小。

    4) 霍林河南露天矿内排土场在跨过断层初期,向前推进150 m后,应自下向上逐渐增加平盘宽度,减小边坡角,使边坡成折线形,增大本阶段内排空间,实现露天矿高效安全生产。

  • 图  1   松藻矿区构造与关闭煤矿分布

    Figure  1.   Songzao mining area structure and closed coal mine distribution map

    图  2   K23煤矿剖面图及煤层分布示意

    Figure  2.   Profile and coal seam distribution diagram of K23 coal mine

    图  3   关闭煤矿涌水(流)量监测动态曲线

    Figure  3.   Dynamic curve of water inflow monitoring in closed coal mine

    图  4   关闭煤矿涌水量自相关函数与涌水量−降雨量互相关函数

    Figure  4.   Self-correlation function of water inflow and cross-correlation function of water inflow and rainfall in closed coal mine

    图  5   关闭煤矿涌水主要阴阳离子与TDS含量关系

    Figure  5.   Relationship between TDS content and main anions and cations in water inflow of closed coal mines

    图  6   关闭煤矿涌水水化学成分Piper三线图

    Figure  6.   Piper triplot of chemical composition of coal mine water inrush

    图  7   降雨入渗型涌水示意

    Figure  7.   Schematic diagram of rainfall infiltration water inflow

    图  8   含水层释水型涌水示意

    Figure  8.   Schematic diagram of aquifer releasing water inflow

    图  9   矿坑老空水溢出型涌水示意

    Figure  9.   Schematic diagram of spilling water from old mine water

    表  1   松藻矿区含隔水层划分及特征[19]

    Table  1   Division and characteristics of aquifer in Songzao mining area[19]

    序号地层代号平均厚度/m含水层类型含水性质主要岩性水质类型
    1T1j4−5505强含水层岩溶裂隙承压含水层石灰岩白云岩HCO3 +SO4 2−−Ca2++Mg2+
    2T1j336隔水层钙质泥岩
    3T1j1−2110中等含水层岩溶裂隙承压含水层石灰岩HCO3 −Ca2++Mg2+
    4T1f1−2178隔水层钙质泥岩
    5T1y2−386中等含水层岩溶裂隙承压含水层泥质灰岩石灰岩HCO3 −Ca2++Mg2+
    6T1y141隔水层钙质泥岩,泥质灰岩
    7P3c51弱含水层岩溶裂隙承压含水层石灰岩HCO3 −Ca2+, HCO3 +SO4 2−−K++Na++Ca2+
    8P3l74隔水层碎屑岩、煤层
    9P2m>100弱含水层岩溶裂隙承压含水层石灰岩HCO3 −K++Na++Ca2+, Cl+HCO3 −K++Na++Ca2+
    下载: 导出CSV

    表  2   关闭煤矿涌水水质常规指标及微生物指标统计结果

    Table  2   Statistical results of conventional indexes and microbial indexes of water inflow from closed coal mines

    项目pH质量浓度/(mg·L−1菌落总数/
    (CFU·mL−1)
    总大肠菌群/
    (MPN·100 mL−1)
    TDSNa++K+Mg2+Ca2+ClSO4 2−HCO3
    最小值2.87211.603.198.8861.723.4985.240.00未检出未检出
    最大值7.921556.96273.54129.41410.0730.05640.61423.45620.00200.50
    平均值5.92678.8268.7837.26183.8911.34276.01143.7299.2243.43
    标准偏差2.28440.5379.4837.75115.968.72173.75145.24199.7068.06
    下载: 导出CSV

    表  3   矿井水样Pearson相关系数

    Table  3   Pearson correlation coefficient of mine water samples

    煤矿编号K05K07K21K23K27K29K30K33K36
    K051
    K070.980**1
    K210.985**0.960**1
    K230.6090.6670.6551
    K270.822*0.798*0.861**0.867**1
    K290.889**0.893**0.920**0.889**0.973**1
    K300.836**0.855**0.879**0.933**0.959**0.992**1
    K330.6600.6810.719*0.965**0.885**0.909**0.944**1
    K360.964**0.993**0.949**0.6700.797*0.889**0.855**0.6621
    注:*表示在0.05级别(双尾)上显著相关;**表示在0.01级别(双尾)上显著相关;相关性系数大于0.990加粗标下划线。
    下载: 导出CSV

    表  4   研究区关闭煤矿涌水特征及来源

    Table  4   Characteristics and sources of water inrush from closed coal mines in study area

    煤矿编号关停年份矿井口
    所在地层
    矿井口
    高程/m
    开采标高/m涌水动态特征涌水水化学特征涌水主要来源
    K05 P3c 383 涌水量小;与降雨弱相关,滞后响应时间≤15 d pH=2.88;
    TDS含量中等
    矿坑老空水
    K07 P3c 370 涌水量中等;与降雨中等相关,滞后响应时间≤15 d pH=3.03;
    TDS含量较高
    矿坑老空水
    K15 2016 T1y 569 +662~+535 涌水量小;与降雨中等相关,滞后响应时间≤15 d 含水层释水
    K21 2015 P2m 499 涌水量小;与降雨强相关,滞后响应时间≤15 d PH=6.52;
    TDS含量高
    大气降雨
    矿坑老空水
    K23 2015 P3c 980 +1019~+841 涌水量中等;与降雨中等相关,滞后响应时间≤15 d pH=7.44;
    TDS含量低
    微生物含量高
    大气降雨
    K27 2014 P3c 851 +1160~+845 涌水量中等;与降雨中等相关,滞后响应时间约1个月 pH=7.55;
    TDS含量较高;
    微生物含量较高
    含水层释水
    K29 2014 T1y 1148 +1380~+950 涌水量大;与降雨弱相关,滞后响应时间约1个月 pH=7.92;
    TDS含量中等;
    微生物含量较高
    含水层释水
    K30 T1y 1106 涌水量大;与降雨中等相关,滞后响应时间约1个月 pH=7.68;
    TDS含量中等
    含水层释水
    K33 2013 P2m 1316 +1460~+1140 涌水量大;与降雨弱相关,滞后响应时间≤15 d pH=7.39;
    TDS含量低
    含水层释水
    K36 2015 P2m 820 +980~+840 涌水量小;与降雨中等相关,滞后响应时间≤15 d pH=2.87;
    TDS含量高
    矿坑老空水
    下载: 导出CSV
  • [1] 袁 亮,姜耀东,王 凯,等. 我国关闭/废弃矿井资源精准开发利用的科学思考[J]. 煤炭学报,2018,43(1):14−20.

    YUAN Liang,JIANG Yaodong,WANG Kai,et al. Precision exploitation and utilization of closed /abandoned mine resources in China[J]. Journal of China Coal Society,2018,43(1):14−20.

    [2] 袁 亮. 推动我国关闭/废弃矿井资源精准开发利用研究[J]. 煤炭经济研究,2019,39(5):1.

    YUAN Lianng. Promote the precise development and utilization of closed/abandoned mine resources in China[J]. Coal Economic Research,2019,39(5):1.

    [3] 吴金随,张辞源,尹尚先,等. 近20 a我国煤矿水害事故统计及分析[J]. 煤炭技术,2022,41(6):86−89. doi: 10.13301/j.cnki.ct.2022.06.022

    WU Jinsui,ZHANG Ciyuan,YIN Shangxian,et al. Statistics and analysis of coal mine water damage accidents in China in recent 20 years[J]. Coal Technology,2022,41(6):86−89. doi: 10.13301/j.cnki.ct.2022.06.022

    [4] 姜 本,刘明智. 我国南方典型岩溶煤矿床涌水规律和防治水方向的探讨[J]. 煤炭学报,1982,7(2):70−76.

    JIANG Ben,LIU Mingzhi. Laws of water-inrush and guiding principles for water control in some typical karst coal deposits in south China[J]. Journal of China Coal Society,1982,7(2):70−76.

    [5]

    HUANG Pinghua,WANG Xinyi. Piper-PCA-fisher recognition model of water inrush source: A case study of the jiaozuo mining area[J]. Geofluids,2018:1−10.

    [6] 陈陆望,许冬清,殷晓曦,等. 华北隐伏型煤矿区地下水化学及其控制因素分析—以宿县矿区主要突水含水层为例[J]. 煤炭学报,2017,42(4):996−1004.

    CHEN Luwang,XU Dongqing,YIN Xiaoxi,et al. Analysis on hydrochemistry and its control factors in the concealed coal mining area in North China: A case study of dominant inrush aquifers in Suxian mining area[J]. Journal of China Coal Society,2017,42(4):996−1004.

    [7] 赵利军,曹 恒,朱马别克·达吾力. 复合隔水条件下煤层群涌水控制因素及对瓦斯赋存的影响[J]. 中国安全生产科学技术,2020,16(7):55−60.

    ZHAO Lijun,CAO Heng,DAURI Jumabek. Controlling factors of water inflow in coal seam group under composite water-resisting conditions and their influence on gas occurrence[J]. Journal of Safety Science and Technology,2020,16(7):55−60.

    [8]

    Menendez J,Loredo J,Galdo M,et al. Energy storage in underground coal mines in NW Spain: Assessment of an underground lower water reservoir and preliminary energy balance[J]. Renewable Energy,2019,134:1381−1391. doi: 10.1016/j.renene.2018.09.042

    [9] 虎维岳,周建军,闫兰英. 废弃矿井水位回弹诱致环境与安全灾害分析[J]. 西安科技大学学报,2010,30(4):436−440.

    HU Weiyue,ZHOU Jianjun,YAN Lanying. Study on environment and safety disasters from abandoned coalmines[J]. Journal of Xi’an University of Science and Technology,2010,30(4):436−440.

    [10] 李琰庆,赵华杰,夏抗生. 废弃煤矿诱发的透水机理及防治技术[J]. 煤矿安全,2020,51(6):87−92.

    LI Yanqing,ZHAO Huajie,XIA Kangsheng. Mechanism and control technology of water inrush caused by bandoned coal mines[J]. Safety in Coal Mines,2020,51(6):87−92.

    [11] 史箫笛,康小兵,罗向奎,等. 闭坑煤矿井下空间资源开发利用评价[J]. 煤炭科学技术,2020,48(3):112−119.

    SHI Xiaodi,KANG Xiaobing,LUO Xiangkui,et al. Development and utilization evaluation of underground space resources in closed pit coal mine[J]. Coal Science and Technology,2020,48(3):112−119.

    [12] 巫显钧,李宗福,孙大发. 松藻矿区M8煤层采面涌水特征与对策[J]. 中国煤炭地质,2015,27(4):35−38, 48.

    WU Xianjun,LI Zongfu,SUN Dafa. Coal Seam M8 Stoping Face Water Gushing Characteristics and Countermeasures in Songzao Mining Area[J]. Coal Geology of China,2015,27(4):35−38, 48.

    [13] 周述和,唐 聪. 松藻煤矿综采工作面顶板大型突水原因初探[J]. 低碳世界,2013(16):124−125.

    ZHOU Shuhe,TANG Cong. Preliminary study on the causes of large-scale water inrush in roof of fully mechanized working face in Songzao Coal Mine[J]. Low Carbon World,2013(16):124−125.

    [14] 李永祥. 茅口组石灰岩巷道防治水技术[J]. 建井技术,2015,36(1):18−20, 17. doi: 10.3969/j.issn.1002-6029.2015.01.005

    LI Yongxiang. Technology of Water Prevention and Control for Roadway of Maokou Formation Limestone[J]. Mine Construction Technology,2015,36(1):18−20, 17. doi: 10.3969/j.issn.1002-6029.2015.01.005

    [15]

    LUO Mingming,CHEN Zhihua,ZHOU Hong,et al. Hydrological response and thermal effect of karst springs linked to aquifer geometry and recharge processes[J]. Hydrogeology Journal,2018,26(2):629−639. doi: 10.1007/s10040-017-1664-3

    [16]

    XANKE Julian,GOEPPE Nadine,SAWARIEH Ali,et al. Impact of managed aquifer recharge on the chemical and isotopic composition of a karst aquifer, Wala reservoir, Jordan[J]. Hydrogeology Journal,2015,23(5):1027−1040.

    [17] 吴 超. 松藻矿区构造特征及煤体变形程度定量评价研究[D]. 徐州: 中国矿业大学, 2015.

    WU Chao. Study on structural features and quantitative evaluation of coal deformation degree on Songzao Mining Area[D]. Xuzhou: China University of Mining and Technology, 2015.

    [18]

    ZHAO Lei,Colin R. Ward, David French, et al. Mineralogical composition of Late Permian coal seams in the Songzao Coalfield, southwestern China[J]. International Journal of Ceology,2013,116:208−226.

    [19] 吴国代,曾春林,程 军,等. 松藻矿区地下水动力场特征及其对煤层气富集的影响[J]. 煤田地质与勘探,2018,46(4):55−60.

    WU Guodai,ZENG Chunlin,CHENG Jun. et al. Characteristics of groundwater dynamic field and its effect on coalbed methane accumulation in Songzao mining area[J]. Coal Geology & Exploration,2018,46(4):55−60.

    [20] 梁吉业,冯晨娇,宋 鹏. 大数据相关分析综述[J]. 计算机学报,2016,39(1):1−18.

    LIAN Jiye,FENG Chenjiao,SONG Peng. A survey on correlation analysis of big data[J]. Chinese Journal of Computers,2016,39(1):1−18.

    [21] 韩宝平,郑世书,周笑绿,等. 南桐二井采区突水动态研究[J]. 煤田地质与勘探,1994,23(6):36−40.

    HAN Baoping,ZHENG Shishu,ZHOU Xiaolv,et al. Researches on regime of water inrush in allotment on. 2 of Nantong Coal Mine[J]. Coal Geology & Exploration,1994,23(6):36−40.

    [22] 束龙仓,刘丽红,陶玉飞,等. 贵州后寨典型岩溶小流域水动力特征分析[J]. 河海大学学报(自然科学版),2008,36(4):433−437.

    SHU Llongcang,LIU Lihong,TAO Yufei,et al. Hydrodynamic characteristic analysis of Houzhai karst watershed in Guizhou Province[J]. Journal of Hohai University(Natural Sciences),2008,36(4):433−437.

    [23] 王朋辉,姜光辉,袁道先,等. 岩溶地下水位对降雨响应的时空变异特征及成因探讨—以广西桂林甑皮岩为例[J]. 水科学进展,2019,30(1):56−64.

    WANG Penghui,JIANG Ganghui,YUAN Daoxian,et al. Characteristics and cause of spatial and temporal variability of karst groundwater level’s response to rainfall—a case study of Zengpiyan cave site in Guilin, Guangxi, China[J]. Advances in Water Science,2019,30(1):56−64.

    [24]

    CAI Zuansi,OFTERDINGER Ulrich. Analysis of groundwater-level response to rainfall and estimation of annual recharge in fractured hard rock aquifers, NW Ireland[J]. Journal of Hydrology,2016,535:71−84. doi: 10.1016/j.jhydrol.2016.01.066

    [25]

    HOCKING Mark,KELLY Bryce F. J. Groundwater recharge and time lag measurement through vertosols using impulse response functions[J]. Journal of Hydrology,2016,535:22−35. doi: 10.1016/j.jhydrol.2016.01.042

    [26] 曹慧丽,李 伟,苏春利,等. 水化学及硫同位素对大冶矿区地下水硫酸盐污染的指示[J]. 地球科学,2023,48(9):3432−3443.

    CAO Huili,LI Wei,SU Chunli,et al. Indication of hydrochemistry and δ34S-SO42−on sulfate pollution of groundwater in Daye Mining Area[J]. Earth Science,2023,48(9):3432−3443.

    [27] 马燕华,苏春利,刘伟江,等. 水化学和环境同位素在示踪枣庄市南部地下水硫酸盐污染源中的应用[J]. 环境科学,2016,37(12):4690−4699. doi: 10.13227/j.hjkx.201604182

    MA Yanhua,SU Chunli,LIU Weijiang,et al. Identification of Sulfate Sources in the Groundwater System of Zaozhuang: Evidences from Isotopic and Hydrochemical Characteristics[J]. Environmental Science,2016,37(12):4690−4699. doi: 10.13227/j.hjkx.201604182

    [28]

    SUN Jing,Kobayashi T,STROSNIDER Willian H J,et al. Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in Karst Waters[J]. Journal of Hydrology,2017,551:245−252.

    [29] 尹 恒,姜丽丽,裴尼松,等. 基于水化学和多元统计的煤矿采空积水识别[J]. 科学技术与工程,2020,20(27):11051−11058. doi: 10.3969/j.issn.1671-1815.2020.27.011

    YIN Heng,Jiang Lili,PEI Nisong,et al. Identification of coalmine goaf groundwater based on hydrogeochemistry and multivariate statistics[J]. cience Technology and Engineering,2020,20(27):11051−11058. doi: 10.3969/j.issn.1671-1815.2020.27.011

    [30] 王 月,安 达,席北斗,等. 某基岩裂隙水型危险废物填埋场地下水污染特征分析[J]. 环境化学,2016,35(6):1196−1202. doi: 10.7524/j.issn.0254-6108.2016.06.2015111602

    WANG Yue,AN Da,XI Beidou,et al. Groundwater pollution characteristics of the hazardous waste landfill built upon bedrock fissure water[J]. Environmental Chemistry,2016,35(6):1196−1202. doi: 10.7524/j.issn.0254-6108.2016.06.2015111602

  • 期刊类型引用(3)

    1. 王学文,王孝亭,谢嘉成,王雪松,李娟莉,李婷,李素华,刘曙光. 综采工作面XR技术发展综述:从虚拟3D可视化到数字孪生的演化. 绿色矿山. 2024(01): 75-84 . 百度学术
    2. 李济军. 浅析智能化综采技术在开采含夹矸中厚煤层的应用. 煤. 2024(09): 51-54 . 百度学术
    3. 刘双勇,刘维洲,赵永刚,闫俊宇,郁彦彬,尹海丽,吴孟武. 工业元宇宙技术在高压铸造岛全生命周期中的应用研究. 特种铸造及有色合金. 2024(11): 1489-1497 . 百度学术

    其他类型引用(0)

图(9)  /  表(4)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  15
  • PDF下载量:  23
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-10-07
  • 网络出版日期:  2023-09-24
  • 刊出日期:  2023-10-19

目录

/

返回文章
返回