Research on technology and equipment system of large diameter shaft drilling based on gravity slagging
-
摘要:
井筒是井工法矿物开采和地下空间开发利用的关键工程,对于拟建井筒下部具备生产系统的有利条件,采用重力排渣的大直径井筒钻掘技术是重要的发展方向之一。针对吊桶式上排渣技术存在的排渣不连续、掘进效率低,且难以与破岩工序协同作业等难题,探索改变凿井工作面的排渣方式,采用重力排渣工艺可提高凿井效率,即通过预先建立连接拟建井筒上下水平的小直径导井,或上水平施工条件不具备时在井筒下水平直接上向钻进导井,破碎岩渣在重力作用下直接掉落至下水平,再利用装载和运输设备进行装运排渣。首先论述了机械破岩钻井流体正循环和反循环上排渣技术工艺的适用性和局限性,提出了基于依靠岩渣自重进行重力排渣的工艺,分析了大直径井筒反井钻井、直接上向反井钻井、导井式竖井掘进机等机械破岩重力排渣技术的发展现状,凝练了基于重力排渣的机械破岩钻井技术现阶段面临的硬岩破碎、钻具稳定可靠、钻井偏斜控制、智能钻进等难题,系统梳理了导孔钻进、导井钻进、钻爆扩大、反井正钻扩大、反井钻机一次扩大和导井式井筒掘进机扩大等技术工艺及装备,构建了不同工序组合的综合成井工艺体系。基于重力排渣的机械破岩凿井技术,将继续在煤矿、金属矿山、水电、交通等领域大直径井筒建设中发挥重要作用,并为无人化、机械化和智能化井筒建设技术发展提供参考和借鉴。
Abstract:The shaft is a key project, including the mining of shaft engineering minerals and the development and utilization of underground space. As the lower part of the proposed shaft has the advantage of a production system, the use of gravity slag removal is one of the important directions for the development of large-diameter shaft drilling technology. Aiming at the problems such as discontinuous slag discharge, low efficiency, and difficult to cooperate with the rock breaking process, the bucket type slag discharge technology exists. It is necessary to explore how to change the slag discharge mode of the working face during shaft sinking. The gravity slag removal process can improve the efficiency of shaft sinking, that is, through the pre establishment of a small diameter pilot shaft connecting the upper and lower levels of the proposed shaft, or when the upper horizontal construction conditions are not available, the pilot shaft can be directly drilled upward horizontally under the shaft. Under the action of gravity, the crushed rock slag will fall directly to the lower level and then be transported and discharged by loading equipment. Firstly, the applicability and limitation of the slag removal technology with positive and reverse fluid circulation in mechanical rock breaking drilling are discussed. Based on the weight of rock slag, the process of gravity slag removal is proposed. The development status of mechanical rock breaking and gravity slag removal technologies such as large-diameter shaft raise drilling, direct upward raise drilling and pilot shaft boringare analyzed.The problems faced by mechanical rock breaking drilling technology based on gravity slag removal at this stage, such as efficient crushing, stable and reliable drilling tools, controllable drilling deflection, and intelligent drilling, are summarized. The technical processes and equipment of pilot hole drilling, pilot shaft drilling, drilling and blasting expansion, raise shaft drilling expansion, raise shaft drill expansion and shaft boring machine expansion are systematically sorted out. A comprehensive well completion process system with different process combinations has been established. Mechanical rock breaking shaft sinking technology based on gravity slagging will continue to play an important role in the construction of large-diameter shafts in coal mines, metal mines, hydropower, transportation and other fields, and provide reference and reference for the technical development of unmanned, mechanized and intelligent shaft construction.
-
-
表 1 不同行业领域中具有下部生产系统的井筒工程
Table 1 Shaft with lower production system in different fields
行业领域 具有下部巷道井筒工程 煤矿 采区风井、暗井、煤仓、溜(煤、矸)眼等 金属矿山 中段延深井筒、溜井、矿仓、通风井等 水电行业站 压力管道竖(斜)井、通风竖井、出线竖井、电梯井、调压井、观测井等 公路铁路隧道 通风竖井、施工措施井、检修井等 地下物料储存 流体进料和出料井、通风井、安全出口等 表 2 综合成井工艺及工序系统组成
Table 2 Process combination mode of shaft sinking technology
工艺 作业工序 工序组合 工法 反井钻井
工艺— — C.反井钻机
导孔钻进F.反井钻机
扩孔钻进H.由上向下锚
喷临时支护L.由下向上
滑模砌筑
永久井壁CFHL RB工法
(Raise Boring)定向反井
钻井工艺A.螺杆钻具
定向超前
导孔钻进B.定向钻机
扩大导孔D.反井钻机
钻杆下放ABDFHL DRB工法
(Directional Raise Boring)旋转导向
钻井工艺— — E.反井钻机旋转
导向导孔钻进EFHL RSDRB工法(Rotary
SteeringDrilling
and Raise Boring)导井反井正
钻成井工艺A.螺杆钻具
定向超前
导孔钻进B.定向钻机
扩大导孔D.反井钻机
钻杆下放G.反井钻机扩
孔钻进导井J.正钻成井同步
临时支护ABDGJL DRBFB工法(Directional
Raise Boring
and Forward Boring)导井钻爆
成井工艺— — C.反井钻机
导孔钻进I.钻爆法扩挖
同步临时支护— CGI RBB工法(Raise
Boring andBlasting)导井式竖井掘
进机成井工艺— — E.反井钻机旋转
导向导孔钻进K.掘进机掘进同
步临时支护M.由上向下随掘滑
模砌筑永久井壁EGKM RSDSB工法(Rotary
SteeringDrilling
and Shaft Boring) -
[1] 刘志强,宋朝阳,纪洪广,等. 深部矿产资源开采矿井建设模式及其关键技术[J]. 煤炭学报,2021,46(3):826−845. doi: 10.13225/j.cnki.jccs.yt20.1944 LIU Zhiqiang,SONG Zhaoyang,JI Hongguang,et al. Construction mode and key technology of mining shaft engineering for deep mineral resources[J]. Journal of China Coal Society,2021,46(3):826−845. doi: 10.13225/j.cnki.jccs.yt20.1944
[2] 刘志强, 陈湘生, 蔡美峰, 等. 我国大直径钻井技术装备发展的挑战与思考. 中国工程科学, 2022, 24(2): 132-139. LIU Zhiqiang, CHEN Xiangsheng, CAI Meifeng, et al. Challenges and thoughts on the development of large-diameter drilling technology and equipment[J]. Strategic Study of CAE, 2022, 24(2): 132-139.
[3] 洪伯潜, 刘志强, 姜浩亮. 钻井法凿井井筒支护结构研究与实践[M]. 北京: 煤炭工业出版社, 2015. HONG Boqian, LIU Zhiqiang, JIANG Haoliang. Research and practice of shaft support structure of blind drilling method[M]. Beijing: Coal Industry Press, 2015.
[4] 牛学超,洪伯潜,杨仁树. 充满配重水钻井井壁筒在泥浆中竖向结构稳定的理论研究[J]. 煤炭学报,2005,30(4):463−466. doi: 10.3321/j.issn:0253-9993.2005.04.013 NIU Xuechao,HONG Boqian,YANG Renshu. Theory study on axial structural stability of bored shafts filled with water[J]. Journal of China Coal Society,2005,30(4):463−466. doi: 10.3321/j.issn:0253-9993.2005.04.013
[5] 李功洲,高 伟,李方政. 深井冻结法凿井理论与技术新进展[J]. 建井技术,2020,41(5):10−14,29. doi: 10.19458/j.cnki.cn11-2456/td.2020.05.002 LI Gongzhou,GAO Wei,LI Fangzheng. New progress of theory and technology in deep shaft sinking by artificial ground freezing method[J]. Mine Construction Technology,2020,41(5):10−14,29. doi: 10.19458/j.cnki.cn11-2456/td.2020.05.002
[6] 陈湘生. 深冻结壁时空设计理论[J]. 岩土工程学报,1998,20(5):13−16. doi: 10.3321/j.issn:1000-4548.1998.05.004 CHEN Xiangsheng. Time-space design theory for deep ice wall of short cylinder[J]. Chinese Journal of Geotechnical Engineering,1998,20(5):13−16. doi: 10.3321/j.issn:1000-4548.1998.05.004
[7] 牛秀清,王 桦,刘书杰. 华北煤田下组煤底板岩溶含水层注浆改造技术应用及发展趋势[J]. 建井技术,2017,38(3):24−30. NIU Xiuqing,WANG Hua,LIU Shujie. Application and development trends on grouting reconstruction technology for floor karst aquifers of lower group coal seam in Northern China coal field[J]. Mine Construction Technology,2017,38(3):24−30.
[8] 程 桦,彭世龙,荣传新,等. 千米深井L型钻孔预注浆加固硐室围岩数值模拟及工程应用[J]. 岩土力学,2018,39(S2):274−284. CHENG Hua,PENG Shilong,RONG Chuanxin,et al. Numerical simulation and en-gineering application of grouting reinforcement for surrounding rocks of chamber in deep of 1 000 m by L-shaped boreholes[J]. Rock and Soil Mechanics,2018,39(S2):274−284.
[9] 董书宁,柳昭星,郑士田,等. 基于岩体宏细观特征的大型帷幕注浆保水开采技术及应用[J]. 煤炭学报,2020,45(3):1137−1149. DONG Shuning,LIU Zhaoxing,ZHENG Shitian,et al. Technology and application of large curtain grouting water conservation mining based on macroscopic and mesoscopic characteristics of rock mass[J]. Journal of China Coal Society,2020,45(3):1137−1149.
[10] 谭 杰,刘志强,宋朝阳,等. 我国矿山竖井凿井技术现状与发展趋势[J]. 金属矿山,2021,50(5):13−24. TAN Jie,LIU Zhiqiang,SONG Zhaoyang,et al. Status and development trend of mine shaft sinking technique in China[J]. Metal Mine,2021,50(5):13−24.
[11] 刘志强,宋朝阳. 我国大直径井筒机械破岩钻井技术与装备新进展[J]. 建井技术,2022,43(1):1−9. LIU Zhiqiang,SONG Zhaoyang. The latest development of mechanical rock breaking drilling technology and equipment for large shaft in China[J]. Mine Construction Technology,2022,43(1):1−9.
[12] 郑康泰,贾连辉,牛梦杰,等. 全断面竖井掘进机研制及关键系统试验[J]. 隧道建设(中英文),2021,41(10):1794−1800. ZHENG Kangtai,JIA Lianhui,NIU Mengjie,et al. Development and key system test of full-face shaft tunneling machine[J]. Tunnel Construction,2021,41(10):1794−1800.
[13] BERNHARD MAIDL, LEONHARDSCHMID, WILLY RITZ, et al. Hardrock Tunnel Boring Machines[M]. Berlin: Ernst & Sohn, 2008.
[14] 刘志强,宋朝阳,程守业,等. 我国反井钻机钻井技术与装备发展历程及现状[J]. 煤炭科学技术,2021,49(1):32−65. LIU Zhiqiang,SONG Zhaoyang,CHENG Shouye,et al. Development and prospects of raise boring technologies in China[J]. Coal Science and Technology,2021,49(1):32−65.
[15] 刘志强,宋朝阳,程守业,等. 全断面竖井掘进机凿井围岩分类指标体系与评价方法[J]. 煤炭科学技术,2022,50(1):86−94. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201007 LIU Zhiqiang,SONG Zhaoyang,CHENG Shouye,et al. Classification grading evaluation index system and evaluation method of surrounding rock for full section shaft boring machine[J]. Coal Science and Technology,2022,50(1):86−94. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201007
[16] RISPOLI A,FERRERO A M,CARDU M,et al. Determining the particle Size of debris from a tunnel boring machine through photographic analysis and comparison between excavation performance and rock mass properties[J]. Rock Mechanics and Rock Engineering,2017(50):2805−2816.
[17] 刘志强,宋朝阳,程守业,等. 千米级竖井全断面科学钻进装备与关键技术分析[J]. 煤炭学报,2020,45(11):3645−3656. LIU Zhiqiang,SONG Zhaoyang,CHENG Shouye,et al. Equipment and key technologies for full-section scientifically drilling of kilometer-level vertical shafts[J]. Journal of China Coal Society,2020,45(11):3645−3656.
[18] MA Hongsu,GONG Qiuming,WANG Ju,et al. Study on theinfluence of confining stress on TBM performance in graniterock by linear cutting test[J]. Tunnelling and UndergroundSpace Technology,2016,57:145−150. doi: 10.1016/j.tust.2016.02.020
[19] 刘志强,李术才,王杜娟,等. 千米竖井硬岩全断面掘进机凿井关键技术与研究路径探析[J]. 煤炭学报,2022,47(8):3163−3174. LIU Zhiqiang,LI Shucai,WANG Dujuan,et al. Analysis of key technology and research path of full section boring machine for 1 000 m vertical shaft with hard rock strata[J]. Journal of China Coal Society,2022,47(8):3163−3174.
[20] TUNCDEMIR H,BILGIN N,COPUR H,et al. Control of rock cuttingeficiency by muck size[J]. International Journal of Rock Mechanics& Mining Sciences,2008(45):278−288.
[21] 刘志强. 竖井掘进机凿井技术[M]. 北京: 煤炭工业出版社, 2018. LIU Zhiqiang. Mine shaft sinking technique of shaft excavator[M]. Beijing: Coal Industry Press, 2018.
[22] 刘志强,陈湘生,宋朝阳,等. 我国深部高温地层井巷建设发展路径与关键技术分析[J]. 工程科学学报,2022,44(10):1733−1745. doi: 10.3321/j.issn.1001-053X.2022.10.bjkjdxxb202210011 LIU Zhiqiang,CHEN Xiangsheng,SONG Zhaoyang,et al. Development path and key technology analysis of shaft and tunnel construction in deep stratum with high temperature[J]. Chinese Journal of Engineering,2022,44(10):1733−1745. doi: 10.3321/j.issn.1001-053X.2022.10.bjkjdxxb202210011
-
期刊类型引用(11)
1. 王新,齐凯,李文龙. 基于物联网的矿山掘进设备智能化电气控制系统研究. 电气技术与经济. 2025(02): 107-109 . 百度学术
2. 刘志强,宋朝阳,荆国业,程守业,王强,吕政辉. 井筒建设行业格局与智能建井新局发展策略. 建井技术. 2025(01): 1-14 . 百度学术
3. 程桦,郭龙辉,姚直书,杨光,荣传新. 钻井法凿井气-液-固耦合排渣流场及刀盘吸渣口优化. 煤炭学报. 2024(01): 426-441 . 百度学术
4. 李祥龙,颜世骞,王建国,姚永鑫,黄原明. 分层一次爆破成井精确延时爆破参数研究. 高压物理学报. 2024(02): 175-187 . 百度学术
5. 王帅,郭庚鑫,李阁强,董振乐,李东林,韩伟锋,焦雷,宋斌. 基于ADAMS的全断面竖井掘进机锥形刀盘载荷特性. 科学技术与工程. 2024(17): 7122-7130 . 百度学术
6. 宋朝阳,崔泽升,王子雷,王强,荆国业,李英全. 不同钻进参数下反井钻机扩孔钻进速率与岩渣特征试验研究. 建井技术. 2024(03): 68-73+67 . 百度学术
7. 王旭东,乔文俊,赵海,王鹏,董俊亮. 台格庙矿区钻井法凿井钻进工艺可行性研究. 煤炭工程. 2024(06): 73-79 . 百度学术
8. 赵会波,汤正. 煤矿超600 m垂直输料井快速钻井工艺及其关键技术. 煤矿安全. 2024(08): 234-241 . 百度学术
9. 赵一超,宋朝阳,何琪,王文忠,刘渭,张同钊,刘锦玉. 厚基岩地层竖井钻机钻井法钻进技术参数及其速度分析. 建井技术. 2023(05): 68-75 . 百度学术
10. 杨仁树,康一强,杨立云,马飞,姚满,徐辉东. 千米竖井硬岩全断面掘进机装备关键技术研用及展望. 中国矿业大学学报. 2023(06): 1162-1172 . 百度学术
11. 姚直书,许永杰,程桦,方玉,王宗金,王瑞. 西部钻井法“一钻成井”新型高强复合井壁力学特性. 煤炭学报. 2023(12): 4365-4379 . 百度学术
其他类型引用(4)