Research progress in the removal of fluoride ions from mine water by adsorption method
-
摘要:
氟离子广泛分布于我国的地表河流与地下水体中,尤其是在西部黄河流域的沿黄矿区,矿井水中普遍存在着氟超标的问题,对当地生态环境和人体健康造成潜在的威胁。我国的氟污染现状多处于低浓度污染水平,常规水处理技术难以有效去除。吸附法凭借其吸附效率高、操作便捷等优点被认为是去除低浓度氟离子的有效方法。综述了目前常用的炭基、矿物类、金属类及金属有机骨架类(MOFs)吸附材料去除氟离子的研究现状,归纳并总结了不同因素对吸附材料的除氟效率和吸附机理的影响。重点分析了吸附法在矿井水处理的应用效果与运行成本,展望了吸附法应用低浓度(<10 mg/L)、大水量的含氟矿井水处理中的发展方向。总体而言,针对吸附法去除氟离子的研究中仍存在较大的改进空间。在吸附机理方面,应从吸附材料特性、氟离子的赋存形态和吸附材料与氟离子之间的相互作用机制等方面继续深入探究。而在吸附法应用方面,应以实际工程需求为导向,开发绿色安全的低成本吸附材料。基于上述研究,提出了吸附法除氟应用矿井水处理的研发方向,在明确当地政策及水质水量的原则下,重点开发以天然/废弃(矿)物和炭基、铝基或其他新型高分子吸附材料为基础的低成本、高效率的环境友好型改性吸附剂。并保证吸附材料在制备加工、投产应用以及循环再生的全生命周期的稳定性、经济性与安全性,从而提高吸附法在实际含氟废水应用的竞争力,提升吸附法的应用潜力。
-
关键词:
- 矿井水处理 /
- 吸附法 /
- 氟离子 /
- 吸附机理 /
- 环境友好型改性吸附剂
Abstract:Fluoride ions are widely distributed in surface rivers and groundwater bodies in China, especially in the mining areas along the Yellow River in the western Yellow River basin that there is a widespread problem of excessive fluoride in the mine water, which poses a potential threat to the local ecological environment and human health. The status quo of fluoride pollution in China is mostly at a low concentration pollution level, which leads to it difficult to remove efficiently through conventional water treatment technologies. The adsorption method is considered to be an effective way to remove low concentration fluoride ions because of its high adsorption efficiency and convenient operation. The research status of fluoride removal by commonly used adsorption materials such as carbon based, minerals, metals and metal organic frameworks (MOFs) was reviewed and summarized before summarizing the influence of different factors on the fluoride removal efficiency and adsorption mechanism of these adsorption materials. Then the application effect and operation cost of adsorption method in mine water treatment were emphatically analyzed, and the development direction of adsorption method in the treatment of low concentration (<10 mg/L) and high water content fluorine-containing mine water was prospected. In general, there are still some deficiencies in the study of fluoride removal by adsorption. In terms of adsorption mechanism, it should be further investigated from three aspects which includes the characteristics of adsorption materials, the occurrence form of fluoride ions and the interaction mechanism between adsorption materials and fluoride ions. For the engineering application of adsorption method, the demand of engineering application should be regarded as the guidance. Based on the above discussion, the research and development direction of removing fluoride ions from mine water by adsorption method is proposed, which is to focus on the development of low cost and high efficiency environment-friendly modified adsorbents based on natural/waste (ore) and carbon-based, aluminum-based or other new polymer adsorption materials under the principle of clarifying local policies and water quality and quantity. In addition, it is necessary not to improve the selective adsorption performance of the modified adsorbent for fluoride ions, but also to ensure the stability, economy and safety of the adsorbent in the whole life cycle of preparation, processing, production and recycling, thereby improving its competitiveness of the adsorption method in the actual application of fluoride containing wastewater and enhancing the application potential of the adsorption method.
-
-
表 1 常见吸附材料在实际废水中的应用效果[26,29,40,46,80,83-93]
Table 1 Application effect of common adsorbent materials in actual wastewater[26,29,40,46,80,83-93]
废水
类别F−初始质
量浓度/
(mg·L−1)吸附材料 应用效果 参考文献 废水
类别F−初始质
量浓度/
(mg·L−1)吸附材料 应用效果 参考文献 工业
废水550 氢氧化钙
纳米棒处理了高酸性电镀工业废水,可以达到99.27%的F−去除效率 [83] 工业
废水5 改性膨润土 处理了含氟矿井水,当吸附剂剂量为1 g/L时,去除率可以达到87.8%,氟化物浓度为0.63 mg/L [90] 工业
废水148.2 铝土矿纳
米复合
材料在高酸性铅锌冶炼废水中进行了评估,结果表明,当Cl−、SO4 2−浓度超过1 000 mg/L和其他重金属(Zn、Pb和Mn)共存时,初始F−的吸附量也能达到80 mg/g [84] 工业
废水5 辉沸石 处理了埃塞俄比亚地区的高浓度含氟废水,去除率可以达到30% [86] 工业
废水98.05 镧改性沸石 处理了工业硫酸锌废水,当吸附剂用量为15 g/L时,可以使初始F−浓度从98.05 mg/L降低至
44.09 mg/L[80] 地下水 > 4000 AC/Al2O3
复合材料吸附容量和去除效率仅为0.48 mg/g和5.05% [91] 工业
废水24.38 活性炭 处理了玻璃行业废水,除氟效率为66.11% [85] 地下水 29.05 镧改性膨润土 处理了天然地下水,使F−浓度从29.05 mg/L降低至1.61 mg/L [40] 工业
废水20.6 辉沸石 处理了埃塞俄比亚地区的高浓度含氟废水,去除率可以达到20% [86] 地下水 4 AC-Al(OH)3(AC由枣茎合成) 处理了地下水,可使F−浓度降低至0.98 mg/L [92] 工业
废水20 改性沸石 处理了矿井水,氟化物去除率达72.7% [87] 地下水 3.10 胺官能化GO 处理了实际地下水样品,使实际F−浓度从3.10 mg/L降低至1.24 mg/L [26] 工业
废水11 活性炭 处理了造船行业废水,除氟效率为65.45% [85] 地表水 3.29 壳基HAP吸附剂 当吸附剂剂量为6 g/L,吸附时间为12 h时,去除效率65% [46] 工业
废水8.79 HA-MWCNTs 处理了兰州铀浓缩厂的实际废水,可使F−浓度由8.79 mg/L降低至
0.25 mg/L[88] 饮用水 4.50 GO/纳米复合材料 F−浓度从4.50 mg/L降低至(0.202 ± 0.05) mg/L [88] 工业
废水8.79 羟基磷灰石/多壁碳纳米管 处理了实际核工业废水,从8.79 mg/L降低至0.25 mg/L(去除率为97.15%) [29] 饮用水 0.2~1.2 多壁碳纳米管 去除效率为
71.8%~83.3%[93] 工业
废水7.59 沸石−锆粉 处理了玻璃工业废水,用沸石−锆粉在脉冲超声、连续超声和搅拌的模式下,分别使F−浓度降低至1.48、1.59和1.71 mg/L [89] 表 2 除氟实际工程应用案例分析
Table 2 Practical engineering application of defluorination
来水
水质出水水质 吸附
材料工艺流程 工艺规模及
成本分析评价 参考
文献矿井水,C(F−)>
1 mg/LC(F−) >
1 mg/L活性氧化铝 总投资2 870.11万元,占地面积2 025 m2,运行成本1.959 元/t,再生成本0.825 3 元/t 易受水中HCO3 −的干扰,出水F−浓度难以达到《地表水环境质量标准》(GB3838—2002)Ⅲ类标准 [94] C(F−) <
1 mg/L羟基磷灰石 总投资1 872.66万,占地面积1 055.25 m2,运行成本1.159 元/t,再生成本0.004 7 元/t 占地面积更小,一次性投资成本低,出水F−浓度可达到《地表水环境质量标准》(GB3838—2002)Ⅲ类标准 [94] 含氟矿井水,C(F−) >
8 mg/L,
水量2万 m3/dC(F−) <
1 mg/L聚合氯化铝 单独使用聚合氯化铝,达标排放成本 2.6元/t 可能产生水中TDS 质量浓度超过1 000 mg /L [95] 羟基磷灰石 单独使用羟基磷灰石,达标排放成本3.39 元/t 羟基磷灰石吸附能力有限,可能造成水质波动时出水不达标的问题,需设置二级吸附系统 聚合氯化铝+羟基磷灰石 聚合氯化铝+羟基磷灰石梯级联用,综合运行成本3.76 元/t 可避免过量加药导致的TDS显著增高和水质波动导致出水不达标的
问题矿井水,C(F−) >1 mg/L,水量
5 000 m3/dC(F−) <
1 mg/L高效碳基磷
石灰石全工艺综合运行成本1.5 元/t,其中需要配备除氟调酸系统、除氟再生系统、高氟废水化学预沉器、再生废水钙基化除氟加药装置等配套设施,一次投资费用较高 [5] -
[1] 张 颖,张 磊,李喜林. 纳米ZrO2-SRB颗粒对酸性铬和氟污染地下水的修复[J]. 环境工程学报,2020,14(5):1170−1179. doi: 10.12030/j.cjee.201907187 ZHANG Ying,ZHANG Lei,LI Xilin. Repair of chromium and fluorine contaminated groundwater by nanoparticles ZrO2-SRB[J]. Chinese Journal of Environmental Engineering,2020,14(5):1170−1179. doi: 10.12030/j.cjee.201907187
[2] 顾大钊,李井峰,曹志国,等. 我国煤矿矿井水保护利用发展战略与工程科技[J]. 煤炭学报,2021,46(10):3079−3089. GU Dazhao,LI Jingfeng,CAO Zhiguo,et al. Technology and engineering development strategy of water protection and utilization of coal mine in China[J]. Journal of China Coal Society,2021,46(10):3079−3089.
[3] 顾大钊,李 庭,李井峰,等. 我国煤矿矿井水处理技术现状与展望[J]. 煤炭科学技术,2021,49(1):11−18. doi: 10.13199/j.cnki.cst.2021.01.002 GU Dazhao,LI Ting,LI Jingfeng,et al. Current status and prospects of coal mine water treatment technology in China[J]. Coal Science and Technology,2021,49(1):11−18. doi: 10.13199/j.cnki.cst.2021.01.002
[4] 张海琴,包一翔,唐佳伟,等. 神东矿区天然矿物中的氟化物浸出规律研究[J]. 煤炭科学技术,2023,51(2):436−448. ZHANG Haiqin,BAO Yixiang,TANG Jiawei,et al. Study on fluoride leaching regularity of natural minerals in Shendong Mining Area[J]. Coal Science and Technology,2023,51(2):436−448.
[5] 苏双青, 赵 焰, 徐志清, 等. 我国煤矿矿井水氟污染现状及除氟技术研究[J]. 能源与环保, 2020, 42(11): 5−10. SU Shuangqing, ZHAO Yan, XU Zhiqing, et al. Status quo of fluoride pollution of coal mine water in China and research onfluoride removal technology[J]. China Energy and Environmental Protection 2020, 42(11): 5−10.
[6] 桑树勋,袁 亮,刘世奇,等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报,2022,47(4):1430−1451. SANG Shunxun,YUAN Liang,LIU Shiqi,et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society,2022,47(4):1430−1451.
[7] HUANG H,LIU J,ZHANG P,et al. , Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation[J]. Chem Eng J,2017,307:696−706. doi: 10.1016/j.cej.2016.08.134
[8] SAMADI M T,ZARRABI M,SEPSHR M N,et al. Removal of fluoride ions by ion exchange resin: kinetic and equilibrium studies[J]. Environ Eng Manag J,2014,13(1):205−214. doi: 10.30638/eemj.2014.025
[9] MENG C,ZHENG X,HOU J,et al. Preparation and defluoridation effectiveness of composite membrane sorbent MFS-AA-PVDF[J]. Water Air Soil Poll,2020,231(2):1−10.
[10] DEHGHANI M H,HAGHIGHAT G A,YETILMEZSOY K,et al. Adsorptive removal of fluoride from aqueous solution using single- and multi-walled carbon nanotubes[J]. J Mol Liq,2016,216:401−410. doi: 10.1016/j.molliq.2016.01.057
[11] BRAIK S,AMOR T B,MICHELIN L,et al. Natural water defluoridation by adsorption on Laponite clay[J]. Water SCI Technol,2022,85(6):1701−1719. doi: 10.2166/wst.2022.091
[12] GAI W Z, DENG Z Y, A comprehensive review of adsorbents for fluoride removal from water: performance, water quality assessment and mechanism[J]. Environ SCI-Wat Res, 2021, 7, 1362−1386.
[13] RASHID U S, BEZBARUAH A N, Citric acid modified granular activated carbon for enhanced defluoridation[J]. Chemosphere, 2020, 252: 126639.
[14] VENCES-ALVAREZ E,VELAZQUEZ L H,CHAZARO-RUIZ L F,et al. Fluoride removal in water by a hybrid adsorbent lanthanum–carbon[J]. J Colloid Interf SCI,2015,455:194−202. doi: 10.1016/j.jcis.2015.05.048
[15] CHOONG C E,KIM M,YOON S,et al. Mesoporous La/Mg/Si-incorporated palm shell activated carbon for the highly efficient removal of aluminum and fluoride from water[J]. J Taiwan Insf Chem E,2018,93:306−314. doi: 10.1016/j.jtice.2018.07.035
[16] SAINI A,MAHESHWARI P H,TRIPATHY S S,et al. Processing of rice straw to derive carbon with efficient de-fluoridation properties for drinking water treatment[J]. J Water Process Eng,2020,34:101136. doi: 10.1016/j.jwpe.2020.101136
[17] LEYVA-RAMOS R,RIVERA-UTRILLA J,MEDELLIN-CASTILLO N A,et al. Kinetic modeling of fluoride adsorption from aqueous solution onto bone char[J]. Chem Eng J,2010,158(3):458−467. doi: 10.1016/j.cej.2010.01.019
[18] NIGRI E M,MAYER D A,MARIA A P C,et al. Cow bones char as a green sorbent for fluorides removal from aqueous solutions: batch and fixed-bed studies[J]. Environ SCI Pollut R,2017,24(3):2364−2380. doi: 10.1007/s11356-016-7816-5
[19] ALKURDI S S A,AL-JUBOORI R A,BUNDSCHUH J,et al. Effect of pyrolysis conditions on bone char characterization and its ability for arsenic and fluoride removal[J]. Environ Pollut,2020,262:114221. doi: 10.1016/j.envpol.2020.114221
[20] ZHAO P,HAN E H,SONG Y,et al. Synergistic effect of F−ions and scratch on the dynamic corrosion behavior of ZTi60[J]. Corrosion Sci,2022,203:110355. doi: 10.1016/j.corsci.2022.110355
[21] ZUNIGA-MURO N M,BONILLA-PETRICIOLET A,MENDOZA-CASTILLO D I,et al. Fluoride adsorption properties of cerium-containing bone char[J]. J Fluorine Chem,2017,197:63−73. doi: 10.1016/j.jfluchem.2017.03.004
[22] DELGADILLO-VELASCO L,HERNANDEZ-MONTOYA V,CERVANTES F J,et al. Bone char with antibacterial properties for fluoride removal: Preparation, characterization and water treatment[J]. J Environ Manage,2017,201:277−285. doi: 10.1016/j.jenvman.2017.06.038
[23] NIGRI E M, BHATNAGAR A, ROCHA S D F. Thermal regeneration process of bone char used in the fluoride removal from aqueous solution[J]. J Clean Prod, 2017, 142: 3558−3570.
[24] MIRETZKY P,CIRELLI A F. Fluoride removal from water by chitosan derivatives and composites: a review[J]. J Fluorine Chem,2011,132(4):231−240. doi: 10.1016/j.jfluchem.2011.02.001
[25] XU C,LI J,HE F,et al. Al2O3-Fe3O4-expanded graphite nano-sandwich structure for fluoride removal from aqueous solution[J]. Rsc Adv,2016,6:97376−97384. doi: 10.1039/C6RA19390K
[26] JEYASEELAN A,GHFAR A A,NAUSHAD M,et al. Design and synthesis of amine functionalized graphene oxide for enhanced fluoride removal[J]. J Environ Chem Eng,2021,9(4):105384. doi: 10.1016/j.jece.2021.105384
[27] BOTSA S M, BASAVAIAH K, Defluoridation in aqueous solution by a composite of reduced graphene oxide decorated with cuprous oxide via sonochemical[J]. Arab J Chem, 2020, 13(11): 7970−7977.
[28] ZHANG J,CHEN N,SU P,et al. Fluoride removal from aqueous solution by Zirconium-Chitosan/Graphene Oxide Membrane[J]. React Funct Polym,2017,114:127−135. doi: 10.1016/j.reactfunctpolym.2017.03.008
[29] RUAN Z,YIAN Y,RUAN J,et al. Synthesis of hydroxyapatite/multi-walled carbon nanotubes for the removal of fluoride ions from solution[J]. Appl Surf SCI,2017,412:578−590. doi: 10.1016/j.apsusc.2017.03.215
[30] TANG Q,DUAN T,LI P,et al. Enhanced defluoridation capacity from aqueous media via hydroxyapatite decorated with carbon nanotube[J]. Front Chem,2018,6:104. doi: 10.3389/fchem.2018.00104
[31] SUJANA M G,ANAND S. Fluoride removal studies from contaminated ground water by using bauxite[J]. Desalination,2011,267(2-3):222−227. doi: 10.1016/j.desal.2010.09.030
[32] ARCIBAR-OROZCO,ARCIBAR-OROZCO J A,FLORES-RANGEL J R,et al. Synergistic effect of zeolite/chitosan in the removal of fluoride from aqueous solution[J]. Environ Technol,2018,41(12)
[33] VELAZQUEZ-PENA G C,OLGUIN-GUTIERREZ M T,SOLACHE-RIOS M J,et al. Significance of FeZr-modified natural zeolite networks on fluoride removal[J]. J. Fluorine Chem,2017,202:41−53.
[34] YANG B,SUN G,QUAN B,et al. An Experimental Study of Fluoride Removal from Wastewater by Mn-Ti Modified Zeolite[J]. Water-Sui,2021,13(23):3343.
[35] TEUTLI-SEQUEIRA A,SOLACHE-RiOS M,MARTINEZ-MIRANDA V,et al. Behavior of fluoride removal by aluminum modified zeolitic tuff and hematite in column systems and the thermodynamic parameters of the process[J]. Water Air Soil Poll,2015,226(8):1−15.
[36] ZHANG Z, TAN Y, ZhONG M, Defluorination of wastewater by calcium chloride modified natural zeolite[J]. Desalination, 2011, 276(1−3): 246−252.
[37] PENG S,ZENG Q,GUO Y CH,et al. Technology, Biotechnology, Defluoridation from aqueous solution by chitosan modified natural zeolite[J]. J Chem Technol Biotechnol,2013,88(9):1707−1714.
[38] TIAN Z, GAN Y. In situ synthesis of structural hierarchy flowerlike zeolite and its application for fluoride removal in aqueous solution[J]. J Nanomater, 2019, 3: 1−11.
[39] MUDZIELWANA R,GITARI W M,AKINYEMI S A,et al. Synthesis, characterization, and potential application of Mn 2+-intercalated bentonite in fluoride removal: adsorption modeling and mechanism evaluation[J]. Appl Water Sci,2017,7:4549−4561. doi: 10.1007/s13201-017-0608-3
[40] THAKRE D,RAYALU S,KAWADE R,et al. Magnesium incorporated bentonite clay for defluoridation of drinking water[J]. J Hazard Mater,2010,180(1-3):122−130. doi: 10.1016/j.jhazmat.2010.04.001
[41] KAYGUSUZ H,COSKUNIRMAK M H,KAHYA N,et al. Aluminum alginate–montmorillonite composite beads for defluoridation of water[J]. Water Air Soil Poll,2015,226(1):1−9.
[42] MUSCHIN T, ZULCHIN H, JIA M J C, Adsorption Behavior of Polyhydroxy‐Iron‐Modified Coal‐Bearing Kaolin for Fluoride Removal[J]. ChemistrySelect, 2021, 6(13): 3075−3083.
[43] SANI T,ADEM M,FETTER G,et al. Defluoridation performance comparison of nano-hydrotalcite/hydroxyapatite composite with calcined hydrotalcite and hydroxyapatite[J]. Water Air Soil Poll,2016,227(3):1−8.
[44] AYINDE W B,GITARI W M,MUNKOMBWE M,et al. Green synthesis of Ag/MgO nanoparticle modified nanohydroxyapatite and its potential for defluoridation and pathogen removal in groundwater[J]. Phys Chem Earth, Parts A/B/C,2018,107:25−37. doi: 10.1016/j.pce.2018.08.007
[45] FERNANDO M S,WIMALASIRI A,RATNAYAKE S P,et al. Improved nanocomposite of montmorillonite and hydroxyapatite for defluoridation of water[J]. RSC Adv,2019,9(61):35588−35598. doi: 10.1039/C9RA03981C
[46] MTAVANGU S G,MAHENE W,MACHUNDA R L,et al. Cockle (Anadara granosa) shells-based hydroxyapatite and its potential for defluoridation of drinking water[J]. Results in Engineering,2022,13:100379. doi: 10.1016/j.rineng.2022.100379
[47] LYU Y,SU X,ZHANG S,et al. Preparation and characterization of La (III)-Al (III) co-loaded hydrothermal palygorskite adsorbent for fluoride removal from groundwater[J]. Water Air Soil Poll,2016,227(12):1−9.
[48] WANG J,REN C,WANG H,et al. Mechanisms of fluoride uptake by surface-modified calcite: A 19F solid-state NMR and TEM study[J]. Chemosphere,2022,294:133729. doi: 10.1016/j.chemosphere.2022.133729
[49] 周 珊, 武明丽. 粉煤灰−石灰法处理含氟废水的研究[J]. 煤炭科学技术, 2006(2): 60−62. Zhou Shan, Wu Mingli. Research on fly ash limestone method to treat waste water with fluorine content[J]. Coal Science and Technology. 2006(2): 60−62.
[50] BEHERA B, SAHU H. Modified mine waste as an adsorbent for fluoride removal from contaminated water[J]. Petrol Sci Technol, 2022, 41(4): 493−506.
[51] MORIYAM R,TAKEDA S,ONOZAKI M,et al. Large-scale synthesis of artificial zeolite from coal fly ash with a small charge of alkaline solution[J]. Fuel,2005,84(12/13):1455−1461.
[52] 王代芝,周 珊,赵桂芳. 用改性粉煤灰处理含氟废水的试验[J]. 粉煤灰综合利用,2005(4):26−28. doi: 10.3969/j.issn.1005-8249.2005.04.010 WANG Daizhi,ZHOU Shan,ZHAO Guifang. Removal of fluoride from wastewater by adsorption of modified fly ash[J]. Fly Ash Comprehensive Utilization,2005(4):26−28. doi: 10.3969/j.issn.1005-8249.2005.04.010
[53] BAVDA A R,BAPAT P S,JOSHI V B,et al. Investigating the chemistry of alumina based defluoridation using safe H+ source[J]. Int. J. Hydrogen Energy,2018,43(47):21699−21708. doi: 10.1016/j.ijhydene.2018.07.054
[54] CHAUDHARY M, BHATTACHARYA P, MAITI A. Synthesis of iron oxyhydroxide nanoparticles and its application for fluoride removal from water[J], Journal of Enviromental Chemical Engineering, 2016 (4): 4897−4903.
[55] KUMAR E,BHATNAGAR A,JI M,et al. Defluoridation from aqueous solutions by granular ferric hydroxide (GFH)[J]. Water Res,2009,43(2):490−498. doi: 10.1016/j.watres.2008.10.031
[56] 杨小洪,魏世勇,李永峰. 几种铁氧化物吸附氟的能力及影响因素的研究[J]. 湖北民族学院学报(自然科学版),2009,27(3):248−253. YANG Xiaohong,WEI Shiyong,LI Yongfeng. Fluoride adsorption capacity and influence factors of several iron oxides[J]. Journal of Hubei Minzu University (Natural Sci Edition),2009,27(3):248−253.
[57] DU J,SABATINI D A,Butler E C,et al. Synthesis, characterization, and evaluation of simple aluminum-based adsorbents for fluoride removal from drinking water[J]. Chemosphere,2014,101:21−27.
[58] YU C, LIU L, WANG X, et al. Fluoride removal performance of highly porous activated alumina[J]. J. Sol-Gel Sci Technol, 2023, 106, 471–479.
[59] YANG C,GAO L L,WANG Y X,et al. Fluoride removal by ordered and disordered mesoporous aluminas[J]. Microporo Mesop Mat,2014,197(10):156−163.
[60] HUANG L,YANG Z H,ZHANG Z X,et al. Enhanced surface hydroxyl groups by using hydrogen peroxide on hollow tubular alumina for removing fluoride[J]. Microporo Mesop Mat,2020,297:110051. doi: 10.1016/j.micromeso.2020.110051
[61] KABIR H,GUPTA A K,DEBNATH D. Synthesis, optimization and characterization of mesoporous Mg-Al-Fe tri-metal nanocomposite targeting defluoridation: Synergistic interaction of molar ratio and thermal activation[J]. J Mol Liq,2018,268:376−385. doi: 10.1016/j.molliq.2018.07.073
[62] NEHRA S,RAGHAV S,KUMAR D. Biomaterial functionalized cerium nanocomposite for removal of fluoride using central composite design optimization study[J]. Environ Pollut,2020,258:113773. doi: 10.1016/j.envpol.2019.113773
[63] LIAO Z,ZHAO S,DAI Y,et al. Removal of Fluorine from Zinc Electrolyte by Cerium Silicate[J]. J Sustain Metall,2021,7(4):1425−1433. doi: 10.1007/s40831-021-00449-w
[64] DONG S,WANG Y. Characterization and adsorption properties of a lanthanum-loaded magnetic cationic hydrogel composite for fluoride removal[J]. Water Res,2016,88:852−860. doi: 10.1016/j.watres.2015.11.013
[65] ZHAO W,CHEN Y,ZHANG W. J. A. P. J. o. C. E. Rapid and convenient removal of fluoride by magnetic magnesium-aluminum-lanthanum composite: Synthesis, performance and mechanism[J]. Aaia-Pac J Chem Eng,2017,12(4):640−650.
[66] ZAIDI R,KHAN S,FAROOQI I,et al. Investigation of kinetics and adsorption isotherm for fluoride removal from aqueous solutions using mesoporous cerium–aluminum binary oxide nanomaterials[J]. Rsc Adv,2021,11(46):28744−28760. doi: 10.1039/D1RA00598G
[67] SINGH P K,SAHARAN V K,GEOEGE S. Studies on performance characteristics of calcium and magnesium amended alumina for defluoridation of drinking water[J]. J Environ Chem Eng,2018,6(1):1364−1377. doi: 10.1016/j.jece.2018.01.053
[68] KUMARI U,BEHERA S K,MEIKAP B C. A novel acid modified alumina adsorbent with enhanced defluoridation property: Kinetics, isotherm study and applicability on industrial wastewater[J]. J Hazard Mater,2019,365:868−882. doi: 10.1016/j.jhazmat.2018.11.064
[69] OLADOJA N A,CHEN S,DREWES J E,et al. Characterization of granular matrix supported nano magnesium oxide as an adsorbent for defluoridation of groundwater[J]. Chem Eng J,2015,281:632−643. doi: 10.1016/j.cej.2015.07.007
[70] XU N,LIU Z,DONG Y,et al. Controllable synthesis of mesoporous alumina with large surface area for high and fast fluoride removal[J]. Ceram Int,2016,42(14):15253−15260. doi: 10.1016/j.ceramint.2016.06.164
[71] LYU L,HE J,WEI M,et al. Factors influencing the removal of fluoride from aqueous solution by calcined Mg–Al–CO3 layered double hydroxides[J]. J Hazard Mater,2006,133:119−128.
[72] ZHAO X,ZHENG M,GAO X,et al. The application of MOFs-based materials for antibacterials adsorption, Coord[J]. Chem. Rev.,2021,440:213970.
[73] LIU B, LIU M, XIE Z, LI Y, ZHANG A. Performance of defective Zr-MOFs for the adsorption of anionic dyes[J], J Mater Sci, 2022, 57: 5438−5455.
[74] 赵瑨云,胡家朋,刘瑞来,等. La-金属有机骨架化合物的制备及其除氟性能研究[J]. 化学通报,2021,84(1):75−80. ZHAO Jinyun,HU Jiapeng,LIU Ruilai,et al. Fabrication of La-MOFs adsorbents and its fluorine removal performance[J]. Chemistry,2021,84(1):75−80.
[75] 朱 晖. Al-MOF吸附材料的制备及其去除水中氟离子的研究[D]. 镇江: 江苏科技大学, 2021. ZHU Hui. Study on the preparation of Al-MOF adsorption material and its removal of fluoride from water[D]. Zhenjiang: Jiangsu University of Science and Technology, 2021.
[76] 张 曼,李多松,王 可. 吸附法去除火电厂冲灰水氟离子的研究[J]. 广东化工,2011,38(3):152−153. ZHANG Man,LI Duosong,WANG Ke. Study on removing fluoride ion in ash sluicing water of thermal power plant by adsoption process[J]. Guangdong Chemical Industry,2011,38(3):152−153.
[77] 郜玉楠,茹雅芳,王 静,等. 微米氧化锆/沸石分子筛处理高氟地下水的研究[J]. 中国给水排水,2020,36(3):49−53. GAO Yunan,RU Yafang,WANG Jing,et al. Treatment of high fluoride groundwater by micron zirconia/zeolite molecular sieve[J]. China Water & Wastewater,2020,36(3):49−53.
[78] 凌 梅. 两种La2O2CO3吸附剂对氟离子的吸附研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. LING Mei. Research on F− adsorption by two types of La2O2CO3 adsorbent[D]. Harbin Institute of Technology, 2016.
[79] 张艳素. 铁锆复合氧化物去除砷氟的性能研究及机制探讨[D]. 北京林业大学, 2012. ZHANG Yansu. Arsenic and Fluoride Removal from Water by an Iron-Zirconium Oxide: Performance and Mechanism[D]. BeiJing Forestry University, 2012.
[80] LAI Y,KAI Y,CHAO Y,et al. Thermodynamics and kinetics of fluoride removal from simulated zinc sulfate solution by La(III)-modified zeolite[J]. T Nonferr Metal Soc,2018,28(4):783−793. doi: 10.1016/S1003-6326(18)64711-9
[81] CHEN P,ZHANG W,LI M,et al. Facile synthesis of magnetic La-Zr composite as high effective adsorbent for fluoride removal[J]. Rsc Adv,2016,6(42):35859−35867. doi: 10.1039/C5RA27929A
[82] 刘 航,彭 稳,陆继长,等. 吸附法处理含氟水体的研究进展[J]. 水处理技术,2017,43(9):13−18. doi: 10.16796/j.cnki.1000-3770.2017.09.003 LIU Hang,PENG Wen,LU Jizhang,et al. Research progress of fluoride-containing wasterwater treatment by adsorption method[J]. Technology of Water Treatment,2017,43(9):13−18. doi: 10.16796/j.cnki.1000-3770.2017.09.003
[83] CHAUDHARY M,and MAITI A. Defluoridation by highly efficient calcium hydroxide nanorods from synthetic and industrial wastewater[J]. Colloid Surface A,2019,561:79−88. doi: 10.1016/j.colsurfa.2018.10.052
[84] ALHASSAN S I,WANG H,HE Y,et al. Fluoride remediation from on-site wastewater using optimized bauxite nanocomposite (Bx-Ce-La@500): Synthesis maximization, and mechanism of F- removal[J]. J Hazard Mater,2022,430:128401. doi: 10.1016/j.jhazmat.2022.128401
[85] BONYADI Z,KUMAR P S,FORONTAN R,et al. Ultrasonic-assisted synthesis of Populus alba activated carbon for water defluorination: application for real wastewater[J]. Korean J Chem Eng,2019,36(10):1595−1603. doi: 10.1007/s11814-019-0373-0
[86] GOMEZ-HORTIGUELA L,PINAR A B,PEREZ-PARIENTE J,et al. Ion-exchange in natural zeolite stilbite and significance in defluoridation ability[J]. Micropor Mesopor Mat,2014,193:93−102. doi: 10.1016/j.micromeso.2014.03.014
[87] 翟 宇,李占五,邓寅生,等. 改性沸石吸附矿井水中氟离子的试验研究[J]. 煤炭科学技术,2010,38(9):121−124. ZHAI Yu,LI Zhanwu,DENG Yansheng,et al. Experiment research on modified zeolite applied to adsorb fluorine ion from mine water[J]. Coal Science and Technology,2010,38(9):121−124.
[88] SINGH N,KUMARI S,KHAN S. Improved fluoride removal efficiency using novel defluoridation pencil[J]. Mater Today Commun,2021,28:102521. doi: 10.1016/j.mtcomm.2021.102521
[89] SAVARI A,HASHEMI S,ARFAEINIA H,et al. Physicochemical characteristics and mechanism of fluoride removal using powdered zeolite-zirconium in modes of pulsed& continuous sonication and stirring[J]. Adv Powder Technol,2020,31(8):3521−3532. doi: 10.1016/j.apt.2020.06.039
[90] 何瑞敏,苏双青,赵 焰,等. 环境矿物材料对矿井水中氟化物的吸附性能研究[J]. 煤炭技术,2022,41(8):111−114. doi: 10.13301/j.cnki.ct.2022.08.025 HE Ruimin,SU Shuangqing,ZHAO Yan,et al. Adsorption performance research of environmental minerals on fluoride ion in mine water[J]. Coal Technology,2022,41(8):111−114. doi: 10.13301/j.cnki.ct.2022.08.025
[91] FIORITO S,EPIFANO F,PALUMBO L,et al. Efficient removal of tartrazine from aqueous solutions by solid sorbents[J]. Sep Purif Technol,2022,290:120910. doi: 10.1016/j.seppur.2022.120910
[92] BAKHTA S,SADAOUI Z,BOUAZIZI N,et al. Functional activated carbon: from synthesis to groundwater fluoride removal[J]. Rsc Adv,2022,12(4):2332−2348. doi: 10.1039/D1RA08209D
[93] ANSARI M,KAZEMIPOUR M,DEHGHANI M,et al. The defluoridation of drinking water using multi-walled carbon nanotubes[J]. J Fluorine Chem,2011,132(8):516−520. doi: 10.1016/j.jfluchem.2011.05.008
[94] 莫文锋. 某矿矿井水处理厂除氟工艺探讨[J]. 建材与装饰, 2019(8): 199−200. MO Wenfeng, Discussion on defluorination technology of mine water treatment plant[J]. Construction Materials & Decoration, 2019(8): 199−200.
[95] 刘奇林,张 鑫,金红亮,等. 一体化除铁除氟技术在农村饮水安全工程中的运用[J]. 河南水利与南水北调,2018,47(5):54−55. LIU Qilin,ZHANG Xin,JIN Hongling,et al. Application of intergrade defluoridation technology for iron removal to rural drinking water safety project[J]. Henan Water Resources and South-to-North,2018,47(5):54−55.
-
期刊类型引用(10)
1. 宋大钊,赵丹,纪润清,康忠全,王孟霞,罗思宇,何生全. 不同硬度煤样微观表面力学性质差异性研究. 晋控科学技术. 2024(02): 1-7 . 百度学术
2. 牛艳奇,陈泰龙,胡相捧,商德勇,李占平,薛卓. 基于双量化评价指标的千米深井大采高液压支架适应性分析. 采矿与岩层控制工程学报. 2024(05): 119-131 . 百度学术
3. 耿铭,孙静. 厚硬顶板悬顶致灾机理及切顶控制技术研究. 工矿自动化. 2024(11): 132-141 . 百度学术
4. 康智斌. 大采高工作面坚硬顶板致灾防控技术研究. 煤. 2023(03): 53-57 . 百度学术
5. 解盘石,吴少港,罗生虎,伍永平,陈建杰. 大倾角大采高开采支架动载失稳机理及控制. 煤炭科学技术. 2023(02): 58-71 . 本站查看
6. 郭靖. 厚煤层疏水风化损伤规律及微爆破治理片帮技术. 矿业安全与环保. 2023(02): 109-113 . 百度学术
7. 张浩,伍永平,解盘石. 大倾角大采高采场塑性区分布及主控因素分析. 煤炭科学技术. 2023(09): 55-64 . 本站查看
8. 杨艺,谷雷. 大倾角煤层软岩底板破坏滑移规律及控制研究. 煤炭技术. 2022(06): 22-25 . 百度学术
9. 刘程,李志华,杨科,池小楼,周鹏,赵士虎. 大倾角智能开采工作面矿压显现相似模拟研究. 矿业研究与开发. 2022(07): 86-91 . 百度学术
10. 时昌鹏. 坚硬顶板大倾角软煤综采安全技术探析. 江西煤炭科技. 2021(04): 4-6 . 百度学术
其他类型引用(4)