高级检索

煤岩电磁辐射理论与技术新进展

何学秋, 韦梦菡, 宋大钊, 李振雷, 邱黎明, 何生全, MAJIDKhan, 王安虎

何学秋,韦梦菡,宋大钊,等. 煤岩电磁辐射理论与技术新进展[J]. 煤炭科学技术,2023,51(1):168−190. DOI: 10.13199/j.cnki.cst.2022-2020
引用本文: 何学秋,韦梦菡,宋大钊,等. 煤岩电磁辐射理论与技术新进展[J]. 煤炭科学技术,2023,51(1):168−190. DOI: 10.13199/j.cnki.cst.2022-2020
HE Xueqiu,WEI Menghan,SONG Dazhao,et al. New progress in theory and technology of electromagnetic radiation in coal and rock[J]. Coal Science and Technology,2023,51(1):168−190. DOI: 10.13199/j.cnki.cst.2022-2020
Citation: HE Xueqiu,WEI Menghan,SONG Dazhao,et al. New progress in theory and technology of electromagnetic radiation in coal and rock[J]. Coal Science and Technology,2023,51(1):168−190. DOI: 10.13199/j.cnki.cst.2022-2020

煤岩电磁辐射理论与技术新进展

基金项目: 

国家自然科学基金资助项目(52174162);山东省重大科技创新工程资助项目(2019SDZY01)

详细信息
    作者简介:

    何学秋: (1961—),男,辽宁辽阳人,教授,博士。E-mail:hexq@ustb.edu.cn

    通讯作者:

    韦梦菡: (1996—),女,安徽六安人,讲师,博士。E-mail:weimh@ustb.edu.cn

  • 中图分类号: TD76

New progress in theory and technology of electromagnetic radiation in coal and rock

Funds: 

National Natural Science Foundation of China (52174162); Major Science and Technology Innovation Project of Shandong Province (2019SDZY01)

  • 摘要:

    煤炭作为我国重要的基础能源和工业原料,其安全开采是保障国家能源安全、支撑经济社会稳定发展的关键。随着浅部煤炭资源的逐渐枯竭,深部开采逐渐成为我国煤炭资源开发新常态,煤岩动力灾害风险随之攀升,严重制约煤炭安全高效开采,对我国煤炭工业可持续发展造成了恶劣的社会负面影响。准确可靠的监测手段是进行煤岩动力灾害防治的必要前提,地球物理监测预警方法通过感知煤岩变形破坏过程中释放的声、电、磁等物理信号来反演煤岩体的损伤破坏状态,已被广泛应用于煤岩动力灾害预警中。其中电磁辐射监测法具有非接触、无损、实时、前兆性强等优势,适用于矿山信息化智能化发展要求。因此,大力推动电磁辐射监测技术的发展,对于煤岩动力灾害防治具有重要意义,可为智慧矿山建设提供重要的技术支持。围绕试验现象、机理模型、技术方法3个方面对电磁辐射理论与技术研究成果进行综述,回顾了电磁辐射现象的发现过程,分析了电磁辐射信号特征、影响因素、力电耦合效应等煤岩电磁辐射特征规律,根据典型电磁辐射机理模型与应力作用、裂纹扩展过程的相关性进行了分类评述,并对现有煤岩电磁辐射监测预警装备及技术方法进行了简要介绍。在此基础上,详细阐述了近年来在煤岩电磁辐射矢量特性研究、煤岩电磁辐射机理微观尺度验证、煤岩电磁辐射定位技术方面取得的新进展。总结了当前煤岩电磁辐射机理未完全揭示和无法实现孕灾区域定位两大理论与技术研究瓶颈,为未来煤岩电磁辐射理论与技术的发展提出了新目标。

    Abstract:

    As an important basic energy and industrial raw material in China, the safe mining of coal is the key to ensuring the national energy security and supporting the stable development of economy and society. With the gradual depletion of shallow coal resources, deep mining has gradually become the new normal of coal resource development in China, and the risk of coal- rock dynamic disasters has risen, which seriously restricts the safety and efficiency of coal mining, and has caused adverse effects on the sustainable development of coal industry. Accurate and reliable monitoring methods are considered as the prerequisite for the prevention and control of coal-rock dynamic disasters. Geophysical methods are widely used in the early warning of coal and rock dynamic disasters by sensing the acoustic, electrical, magnetic and other physical signals released during the deformation and failure process to retrieve the damage and failure state of coal and rock mass. Among those methods, the electromagnetic radiation method is a non-invasive, non-destructive, real-time and strong precursory technique suitable for the development requirements of mine informatization and intellectualization. Therefore, the development of electromagnetic radiation monitoring technology is of great significance for the prevention and control of coal and rock dynamic disasters and can provide important technical support for the construction of intelligent mines. The research achievements of electromagnetic radiation theory and technology are summarized in three aspects: experimental phenomena, mechanism models and technical methods. The discovery process of electromagnetic radiation phenomenon is reviewed. The signal characteristics, influencing factors, electromechanical coupling effects and other electromagnetic radiation characteristics of coal-rock are analyzed. According to the correlation between typical electromagnetic radiation mechanism models, stress action and crack propagation process, a classified review is made. The existing coal and rock electromagnetic radiation monitoring and early warning equipment and technical methods are then briefly introduced. On this basis, the new progress made in recent years is described in detail, including the research on vector characteristics of electromagnetic radiation, micro-scale verification of electromagnetic radiation mechanism, and electromagnetic positioning technology of coal-rock fracture. It summarizes the two current theoretical and technical research bottlenecks that the mechanism is not fully revealed and the location of disaster-prone areas cannot be achieved. Finally, a new target for the future development of electromagnetic radiation theory and technology is proposed.

  • 矿井开拓是煤矿开采的首要任务,矿井建设是保障矿井安全生产和煤炭资源供给的关键技术[1]。随着煤矿智能化建设要求和发展趋势,矿井智能化建设是煤矿智能化建设蓝图必不可缺的重要环节[2],对矿井智能化安全开采、保障产能和企业高质量发展具有重要意义。

    矿井建设需要根据矿井煤炭资源储量、地面地形条件、煤炭资源赋存的地质条件和矿井产能等,并考虑矿井建设工艺、关键技术、核心装备、建设周期、经济效益、安全高效、绿色健康等方面因素,确定合理可行的矿井开拓方案[3],主要包括井筒深度、直径、倾角、用途、掘进技术装备、围岩支护方法与技术、井内提运技术与装备选型等。随着我国煤炭资源开发重心向西部转移,内蒙古、陕西、宁夏、新疆等省份的大型煤矿地层以白垩系、侏罗系地层为主,在过去十几年的发展过程中,已经实践了采用主副风井全立井开拓、主斜副立+风井立井开拓、主副斜井+风井立井的开拓方式。近年来,随着矿井建设技术装备水平的提高,以及大型开采、掘进、运输等技术装备的快速发展,西部中深部煤炭资源开采的矿井采用缓坡斜井作为主运通道的开拓方式得到广泛应用。缓坡斜井开拓可实现矿井主运连续化,辅助运输不换装一次到位的无轨胶轮化,大型采−掘−运装备无需地面拆解和井下大硐室中组装的复杂工序,可采用无轨胶轮车直接下井[4],有助于提高西部矿井中深部煤炭资源的高效生产。我国西部煤矿斜井开拓主要采用钻爆法施工,因地层涌水量大、围岩稳定性差等问题,施工过程中富水地层涌水防治和软弱围岩稳定控制带来很大挑战;尽管采用斜井冻结特殊凿井方法在一定程度上解决了地层涌水难题[5-6],但因斜井冻结施工难度大、投资高、工期长等问题,目前斜井冻结凿井技术依然进展缓慢。随着机械破岩凿井技术装备的发展,部分矿井尝试了采用综掘机或悬臂掘进机施工斜井[7],但因地层岩石强度高,掘进效率低,后又改为采用钻爆法施工;采用全断面掘进机施工缓坡斜井方面,仅神东补连塔煤矿完成了5.5°连续下坡,开挖直径7.62 m,长度2 745 m的斜井工程[8]。因此,适用西部煤矿复杂地质条件的长距离斜井建设技术和装备还需进行深入研究和探索。

    可可盖煤矿位于陕北榆横矿区北部,矿区面积约176.68 km2,设计可采资源/储量1 196.12 Mt,矿井设计生产能力10.0 Mt/a,服务年限85.4 a。可可盖煤矿作为陕西延长石油矿业公司在“十四五”期间重点项目,是到2025年矿业公司煤炭整体产能达到6 050.0 Mt/a,形成千万吨智能化煤矿集群的关键布局。因此,探索可可盖煤矿经济合理的矿井开拓模式,分析复杂地质条件井筒机械化与智能化建设技术和装备可行性,将为矿井安全建设、高效生产和企业高质量发展提供支撑,并为其他同类型矿井开拓方案的确定提供借鉴。

    根据煤炭成因模式、资源聚集与赋存规律、地质与水文地质条件等,现阶段地下煤炭资源开发依然主要采用井工开采的方式[9-10]。矿井开拓方式主要是指服务于地下煤炭资源开采,在地层内开凿的井筒、巷道和硐室等工程的总体布置方式。根据煤炭资源赋存条件、地质条件、经济条件、地理环境等因素,可分为立井开拓、斜井开拓、平硐开拓、综合开拓等方式。矿井开拓方式是煤炭井工开采的首要任务,一方面将直接影响建井技术装备和工艺的研发与选择,以及建井周期、工程总量、投资成本等;另一方面将影响矿井生产时采运、通风、排水、通信、供电等各系统长期安全稳定和高效运行。

    矿井开拓又以井筒为主,井筒工程量一般不超过井巷工程总量的10%,但由于井筒穿越地层的复杂性、井筒结构的特殊性、建井工法的适应性等问题,建井过程中对突水、突泥和围岩失稳等工程风险的防治,导致建井工期约占井巷施工总工期的50%。因此,矿井开拓方式设计和矿井建设技术研究,必然要综合分析区域自然环境、矿区地形地貌、地面运输条件等外部条件,以及井田地质和水文地质、地层构造与岩性、煤层赋存特征、矿井生产能力、开采技术等因素[11-12],确定矿井开拓方式、矿井建设技术装备和工艺、安全服役保障技术等,从而为矿井安全建设、高效高产和企业稳定高质量发展提供根本保障。

    可可盖井田地貌整体西北高、东南低,地表起伏度不大,一般相对高差5~10 m。根据地质钻孔勘查结果,地层自上而下主要为第四系全新统风积沙、上更新统萨拉乌苏组、第四系中下更新统黄土、白垩系下统洛河组、侏罗系中统安定组、侏罗系中统直罗组、侏罗系中统延安组地层;井田内未发现断裂和褶皱构造,地层倾角较小,井田地质构造简单,最大水平主应力范围10.95~19.37 MPa,最小水平主应力范围7.91~13.23 MPa;白垩系和侏罗系地层岩石单轴抗压强度均值为 23.1 MPa,抗压强度一般不超过50 MPa,岩石抗拉强度较低,平均值为2.68 MPa,岩石的耐磨性指数在1.05~2.88,属极低耐磨性等级。井田地质与水文地质剖面示意,如图1所示。

    图  1  可可盖井田地质与水文地质剖面示意
    Figure  1.  Geology and hydrogeology section of the mine

    根据可可盖井田地下水赋存空间结构和含水介质可划分为5个含水岩层(组)和2个隔水岩层(组),其中白垩系洛河组为富水性中等至强的间接含水层,预计涌水量最高可达2 788 m3/d,其余4个含水层涌水量低于100 m3/d,属于弱富水性。侏罗系中统安定组地层以泥岩为主,与粉砂岩含水层不等厚相间分布,泥岩类较厚,粉砂岩较薄且富水性弱,是井田内白垩系下统洛河组砂岩富含水与煤系地层之间相对较好的隔水层,对煤炭开采意义重大。

    通过从地质、技术、经济、安全、高效、绿色等方面,综合分析可可盖煤矿矿井开拓方式的影响因素,提出了4版适用可可盖煤矿的矿井开拓方案。根据不同开拓方案提出的时间顺序,现对其优缺点进行对比分析。

    1)第1版:井田中部全立井开拓方案。根据以往陕北、蒙东等地区同类矿井的开拓方案以及矿井建设经验,可可盖矿井开拓最初设计在井田中部布置主立井、副立井和回风立井,均采用冻结特殊凿井法施工。对于西部富水弱胶结地层煤层埋深530 m的矿井,此方案为传统的保守设计,且现有的冻结法凿井工程实践,已证明此开拓方案的技术可行性,立井冻结法凿井技术成熟,工程造价和工期均相对可控,但是立井提升系统较缓坡斜井更为复杂。

    2)第2版:井田东南部主斜副立开拓方案。初期考虑到可可盖煤矿与东侧紧邻的小纪汗煤矿同为华电煤业,借鉴神东大柳塔煤矿生产能力30.0 Mt/a的“一矿两井”开拓方式,将可可盖煤矿工业广场布置在井田东南部,初步选定主斜副立的开拓方式,井下大巷沿京陕四期天然气管线布置,可避免煤炭损失近1亿t,原煤运至小纪汗煤矿洗煤厂分选后,通过已建成的榆横铁路外运,可节约投资。

    3)第3版:井田中部主斜副立开拓方案。2018年可可盖煤矿归属陕西延长石油矿业有限责任公司后,第2版中“一矿两井”开拓方式的可能性已不存在。因此,变更矿井设计将工业广场选择在井田中部,为缩短建设工期,简化生产系统,设计采用主斜副立开拓方式,即在副井场地内布置两条井筒,分别为副立井、中央回风立井,在主井场地布置有主斜井、地面选煤厂和铁路外运装车系统。其中,主斜井设计倾角14°,斜长2 162 m,但施工难度较大;副井采用立井形式,井筒工程量小,且副井大断面可作为进风井,无需开凿专用进风立井,但是立井提升系统较缓坡斜井复杂;在矿井移交时,该方案3条井筒占用2个场地,不便于管理;且需投资建设较长的进场公路、铁路专用线,占地面积大。

    4)第4版:井田西部主副斜井+中部进回风立井开拓方案。2019年9月可可盖井田西部的靖神铁路建成通车,为资源外运提供了有利条件。因此,再次调整矿井开拓方案,将工业广场布置在井田西部边界附近,采用西部主副斜井+中部进回风立井开拓方案,即在西部工业广场内布置主副斜井,2条斜井均落底到井田中部的2号煤层,在2号煤层沿南北方向布置南翼和北翼大巷至井田南北边界,井下大巷呈“I”字形布置,工作面沿大巷双翼布置;为解决矿井通风问题,在井田中部布置进回风立井,井田北部布置北一风井,后期分别在距离南北井田边界约3.0 km处各布置一个回风立井,即北二回风立井和南部回风立井,实现全矿井的分区通风。

    按照可可盖井田第4版的矿井开拓方案,矿井移交时共布置5个井筒,包括西部主副斜井、中央进回风立井和北一风井。为确定西部主副斜井布置倾角,根据可可盖井田综合条件、外部环境条件以及借鉴其他矿井的斜井工程实践,重点对斜井建设坡度6°和14°全下坡方案进行了对比分析(表1),并初步确定主斜井倾角6°全下坡,设计总长度5 303 m、直径7.13 m、落底深度554.3 m;副斜井倾角5.6°、设计总长度5 302 m、直径7.13 m、落底深度517.4 m,每隔1 000 m设50 m的平坡段缓冲,变坡处设置半径400 m竖曲线过渡。可可盖井田西部主副斜井+中部进回风立井开拓方案示意,如图2所示。

    表  1  斜井建设坡度方案比较
    Table  1.  Comparison of slope schemes for inclined shaft construction
    斜井坡度建井
    周期/月
    工程造价
    /亿元
    工程量/m优缺点对比

    斜井
    172.9岩巷5 420×2斜井落底后直接与井下辅助运输大巷联系,无需设井底车场及井下换装硐室,减少了
    部分车场巷道及部分立井所需的井底硐室;主斜井和副斜井便于施工联络巷;可使用
    无轨胶轮车检修,输送带维护安全方便;不会发生水煤倒流、机尾撕带事故
    14°
    斜井
    312.86岩巷2 160×2

    煤巷6 400×2
    主副斜井联络巷施工困难,斜井长距离独头掘进,通风、运输困难;主斜井落底处需
    施工两条煤巷,分别用于输送带运输和检修,工程造价与6°主斜井相当;需要布置2部
    输送带搭接运输,运输环节复杂;井筒倾角大,输送带维护检修难度大
    下载: 导出CSV 
    | 显示表格
    图  2  西部主副斜井与中部进回风立井开拓方案示意
    Figure  2.  Development scheme of west main and auxiliary inclined shaft and middle inlet and return air shaft

    第4版矿井开拓方案中主、副斜井均采用6°左右的缓坡斜井,井下主运输、辅助运输距离长,运行费用相对较高,以及矿井移交时2条缓坡斜井开拓工程量大。但是,主副缓坡斜井均布置在西部场地内,可实现地面到井下工作面的直达运输,无需换装,便于管理和高效生产;同时,西部场地距离外运的靖神铁路大海则车站近,占地面积小、压煤少、外运投资节省、运营费用低。因此,在考虑外部运输条件便利、场地集中便于管理、缓坡斜井无轨胶轮化和无需换装等优势,初步确定了采用在井田西部布置主、副斜井+中部进回风立井的开拓方案。

    基于矿井地质条件和煤层赋存条件分析,立足于井下开拓简单、首采区开采技术条件好、外部运输距离短、压煤少等原则,从技术性、经济性和安全性等方面考虑,以及智能化矿井建设的发展需求,进一步对煤矿井筒建设技术装备和工艺进行分析和比选。鉴于西部煤系地层中深立井钻爆法凿井技术相对比较成熟,重点梳理煤矿长距离斜井钻爆法与机械破岩施工技术的发展现状与趋势,剖析现有斜井建设技术面临的难题,提出超长斜井采用全断面掘进机施工的技术方案,为可可盖煤矿长距离斜井建设提供参考依据。

    随着我国煤炭资源开发重心向西部转移,在过去十几年的矿井建设过程中,我国西部矿区缓坡斜井掘进主要以钻爆法为主,在软弱破碎地层段和地层涌水段,采用冻结法、注浆法等地层改性加固技术,保障钻爆凿井施工安全。核桃峪煤矿主斜井是国内开拓建设的最长的煤矿斜井[13],斜长5 875 m,倾角7°,采用钻爆法施工,在穿过400 m巨厚富水的白垩系洛河组地层,斜井涌水量曾高达730.4 m3/h,采用工作面预注浆堵水加固技术安全通过;袁大滩煤矿主副斜井均采用冻结特殊凿井法施工[14],主斜井倾角14°,副斜井倾角5.5°,副斜井总长3 615.9 m,冻结段斜长达681 m,是目前国内斜井冻结长度最长的冻结法施工斜井;古城煤矿主斜井采用冻结特殊凿井法施工,倾角15°,斜井总长2 018.8 m,冻结段斜长503.91 m。钻爆法施工的典型煤矿斜井工程,见表2

    表  2  钻爆法施工的典型煤矿斜井工程
    Table  2.  Typical coal mine inclined shaft construction by drilling and blasting method
    井筒井筒倾角/(°)井筒斜长/m施工方法矿井规模/(Mt·a−1)
    核桃峪煤矿主斜井75 875
    钻爆法施工8.0
    棋盘井煤矿副斜井65 588
    钻爆法施工3.0
    枣泉煤矿西翼采区副斜井64 367
    钻爆法施工3.0
    袁大滩煤矿副斜井63 615.9钻爆法+斜井冻结施工
    (冻结段斜长681 m)
    5.0
    古城煤矿主斜井152 018.8钻爆法+斜井冻结施工
    (冻结段斜长503.91 m)
    10
    李家坝煤矿副/风斜井20/241 462/1 345
    钻爆法+斜井冻结施工
    (冻结段斜长167/153 m)
    0.9
    小纪汗煤矿主/副斜井14/61 400/3 651
    钻爆法施工为主10
    大南湖十号煤矿主斜井141 542
    钻爆法+斜井冻结施工
    (冻结段斜长203 m)
    10
    下载: 导出CSV 
    | 显示表格

    尽管钻爆法施工对斜井地质条件的适应好,技术工艺相对比较简单和经济,而且随着钻装锚机组作业线的技术进步和发展,在一定程度上显著减轻了工人劳动强度。但是破岩方式依然采用炸药爆破,存在环境污染、工序较多、掘进效率低、围岩扰动破坏等问题,与绿色、安全、智能化凿井发展趋势不匹配。此外,斜井穿过含水层地段时,井筒涌水可能导致斜井无法施工,而采用冻结法施工段的地层冻结时间长、工艺复杂、工效低、投资高。因此,近年来斜井冻结法施工数量虽有稳定增长,但技术发展进程较为缓慢。

    随着机械破岩技术和装备能力不断提升,机械破岩已成为煤矿井巷掘进技术装备发展的重要方向。机械破岩技术克服了钻爆法破岩的不可控因素,如可有效控制井筒断面形状,避免了超挖和欠挖,减小围岩扰动,充分利用围岩自稳能力、降低人工劳动强度、减少支护材料消耗;同时,非爆破破岩无需使用炸药,破岩掘进过程中无CO、NO、NO2、N2O等有害气体产生[15],改善作业空气环境,减少碳排放。

    以悬臂掘进机和综掘机为代表的煤矿煤/岩巷部分断面机械破岩掘进作业线,寄希望能够为煤矿全岩地层斜井掘进提供技术和装备支撑。典型工程案例如:英国多斯科公司生产的MK3型重型悬臂式掘进机[16],在淮南顾北煤矿完成了掘进距离635.24 m、断面面积24.1 m2的岩巷,最高月进尺208 m,在岩石强度较低时相对钻爆法掘进效率有明显提高,但是遇到坚硬岩石时,悬臂掘进机破岩能力降低,要辅以爆破进行掘进;开滦东欢坨煤矿采用EBZ200 H型悬臂式掘进机,适用岩石抗压强度达到70 MPa,掘进断面15.82 m2,月进尺达200.3 m,但存在刀具消耗量较大、经济成本较高等问题;中煤新集刘庄煤矿采用硬岩悬臂式掘进机掘进岩巷[17],但施工效率较低,后改用德国液压钻车作业线施工;可可盖井田东邻的小纪汗煤矿6°缓坡副斜井[18],斜长3 751 m,曾采用综掘机作业线进行施工,但是侏罗系安定组下部及以下地层岩石坚硬,综掘机已无法掘进,后改为钻爆法施工。

    综上情况分析,国内采用部分断面掘进机在煤矿斜井和岩巷施工过程中,暴露出截割刀具消耗量大、经济成本高、硬岩掘进效率低、掘支工作不协调、粉尘量大等问题。国外奥地利、德国、波兰等国家研制悬臂式掘进机的厂商声称其产品能用于破碎坚硬岩石,但均附加“截割刀具消耗量大,不经济”的条件。因此,将悬臂式掘进机作业线应用到煤矿全岩地层斜井或岩巷掘进工程中,需要面对岩石强度较高时带来的截割刀具消耗量大、经济成本高、硬岩掘进效率低等问题[17]。此外,岩石综掘机施工断面35 m2以上的井巷工程,难以实现一次成巷,掘–支协同性较差,施工进度并不理想,难以克服地质构造、井筒涌水、围岩松软、泥化等特殊地质条件对施工带来的严重影响,必须配合辅助掘进技术工艺。

    根据调研和资料检索,20世纪80年代,在我国“七五”“八五”规划中便开始设计研究矿用全断面岩石掘进机,先后开发出直径3.5 m和5.0 m的矿用全断面掘进机并在铜川矿务局试验应用[17],由于煤矿工程条件复杂,以及设备制造、材料和工艺等方面原因,最高月进尺仅为100 m,应用效果不理想,并于20世纪90年代停止了矿用全断面岩巷掘进机的研发。国外在煤矿采用全断面掘进机也仅进行了少量的井巷掘进工业性试验,掘进长度一般不超过2 000 m,掘进直径范围为3.6~4.1 m。近年来,随着全断面掘进机在交通隧道、引水调水隧道等地下工程的应用,全断面掘进机掘进技术水平和装备性能不断提高,全断面掘进机在煤矿岩巷工程建设的应用亦不断增长。

    根据公开资料显示,煤矿用全断面掘进机逐渐应用十几座矿井的斜井、运输岩巷和瓦斯抽放巷等工程施工。在长距离斜井工程方面,仅神华能源神东补连塔煤矿开展了缓坡斜井单护盾全断面掘进机掘进工业性试验[8],掘进长度2 718.2 m,倾角5.5°连续下坡,开挖直径7.62 m,月最高进尺639 m,平均月进尺546 m,补连塔斜井埋深较浅,且采用管片支护提高了掘进速度,但是工程造价较高。在煤矿平硐和岩巷工程方面,塔山煤矿主平峒应用美国罗宾斯公司制造的双护盾全断面掘进机施工[18],掘进直径4.82 m,掘进长度2 911.6 m,最高月进尺662.5 m,应用中发现该机型具有体积大、不易转弯等缺点,对煤矿井下岩巷倾角多变的工程条件适应性差;神华新疆涝坝湾煤矿副平硐采用ZTE6460复合式全断面掘进机施工[19],掘进长度6 200 m,掘进直径6.46 m,最高月进尺364.5 m;晋能控股王村煤矿采用煤矿用三护盾岩巷全断面掘进机施工通风岩巷,掘进长度3 778 m,掘进直径5.8 m,转弯半径70 m,在地层较为破碎的情况下最高月进尺依然达到了406 m;山东能源新巨龙煤矿岩巷采用全断面掘进机施工[20],掘进直径6.33 m,掘进总长度2 816.5 m,最高月进尺超400 m。

    综上情况分析,从岩石地层全断面掘进机施工井巷工程的国内外发展水平及趋势来看,岩石全断面掘进机的开挖断面直径大部分小于7 m,掘进长度小于4 000 m,工程质量较好;月掘进速度可以达到400 m以上,施工速度明显高于钻爆法掘进[21];但是应用过程中发现掘–支作业工序协同、穿越不良地层近工作面快速支护、全断面掘进机调向等技术依然需要针对煤矿地质条件和工程条件进行改进,以期能够进一步提高采用全断面掘进机施工煤矿井巷的施工速度。

    通过对煤矿长距离斜井掘进技术现状分析可知,目前的悬臂式掘进机或综掘机作业线很难在全岩地层斜井或岩巷掘进中取代钻爆法机械化作业线;而若采用钻爆法掘进施工,则斜井穿越萨拉乌苏组及洛河组强风化带等富含水地层时,需要采用地层冻结法辅助施工,井筒冻结段斜长预计将超过413 m,施工难度大、周期长、投资高。鉴于硬岩全断面掘进机在煤矿岩巷掘进速度高于钻爆法掘进速度,以及全断面掘进机施工在机械化、少人化和智能化方面的优势,初步确定了采用全断面掘进机施工可可盖煤矿6°全下坡主副斜井(掘进长度大于5 000 m,掘进断面39.9 m2)。以下根据可可盖煤矿主副斜井穿越地层条件,重点研讨采用全断面掘进机施工技术的可行性。

    1)地表风积沙和萨拉乌苏组施工可行性分析。围绕6°缓坡主副斜井的开拓方案优化的主要任务,通过地面踏勘并结合卫星照片在靖神铁路东侧、井田西部的位置,发现其他生产活动取土挖坑而揭露洛河组砂岩地层,该处地面风积沙、萨拉乌苏组较薄,厚度不超过10 m,洛河组强风化厚度10 m左右。因此,确定将主副斜井井口布置在该取土挖坑附近,因萨拉乌苏组厚度小,可采取提前降水并采用明槽开挖施工该段地层,不需要采用冻结法施工。明槽段采用顺作法施工,分级放坡、水平分段、垂直分层的开挖形式,明槽开挖长度270 m,深度28.2 m,开挖坡面喷射厚度80 mm的C20混凝土面层,底板厚度为300 mm,作为全断面掘进机步进通道。

    2)斜井穿越含水地层施工的可行性分析。根据钻孔资料及邻近矿井揭露情况分析,可可盖矿斜井穿越的洛河组地层为富水性中等至强的间接含水层,预计涌水量不超过100 m3/h,洛河组以下岩层涌水不超过50 m3/h,可采取地层分段疏排水、工作面接续排水、喷浆封闭岩面与围岩注浆堵水等多种掘进环境防治水联合技术[22]。值得注意的是,根据对可可盖煤矿邻近的小纪汗煤矿、巴拉素煤矿调研情况,在揭露2号煤层时地层涌水量较大、水压较高。因此,制定了揭煤遇水防治预案,一方面可在斜井揭煤前提前通过地面钻孔疏放2号煤层水,另一方面中央进回风立井按计划将早于斜井完成施工,可利用立井井下巷道或硐室进行打孔抽水,以降低2号煤层水压和控制涌水量,确保安全顺利揭煤。

    3)斜井穿越破碎软弱地层施工的可行性分析。根据井田地质资料,斜井穿越地层存在软弱围岩、破碎带、交错层理和可能产生的断层等地质情况,为避免围岩坍塌、护盾挤压、掘进机卡机等风险,提出了协同调整刀盘转速、撑靴压力、刀盘扭矩、推进力、换步行程、调向幅度等参数,实现掘进机多动作协同控制技术;提出了地层扩挖、提高液压油缸推力快速通过、超前注浆加固围岩,形成“超前支护、短进尺、勤换步、早封闭、强支护、初期支护一次到位”的安全掘进工艺。

    4)全断面掘进机施工多变坡度斜井的可行性分析。全断面掘进机在理论上可在所有坡度上进行掘进工作,同时全断面掘进机施工5.5°倾角的煤矿斜井在补连塔煤矿已经取得成功。经过与装备制造厂家沟通以及专家论证,提出了加强全断面掘进机的竖曲线调向能力的要求,在保证围岩可提供足够反力的情况下,全断面掘进机可通过相应的调向机构可实现强制调向;全断面掘进机的推进油缸采用双头固定设计,增大撑靴面积以提高撑靴稳定支撑能力;刀盘与护盾偏心设计,使全断面掘进机在掘进过程中有一定的抬头趋势,并采用主动铰接设计,铰接油缸可强制抬起支撑盾体,同时掘进过程可中采取少量多次的换步原则,调整刀盘俯仰姿态,可满足长距离缓坡副斜井多变坡度的施工要求。

    根据可可盖煤矿工程地质与水文地质条件、环境条件、掘进长度、斜井断面及坡度、施工技术与装备等因素的综合分析,可可盖煤矿主副斜井采用全断面掘进机施工方案在技术上总体可行,具有机械化程度高、减人提效、安全可靠的优势。在此基础上,需进一步分析和论证全断面掘进机装备类型及其适用性,以及与地层围岩条件和掘进机功能相适应的斜井围岩快速支护形式与方法,确保实现快速安全掘进与稳定可靠支护协同的长距离斜井建设技术工艺。

    目前,适用岩石地层的全断面掘进机类型主要分为敞开式和护盾式2类,其中护盾式全断面掘进机根据地质条件和工程条件又分为单护盾式、双护盾式和三护盾式,此外对于岩巷穿越破碎地层掘进时,在护盾后可再安装格栅护盾以防顶板围岩大块岩石垮落而导致设备或人员损害。因此,根据可可盖煤矿斜井地质条件和工程条件,斜井必然需要穿越破碎、软弱、富含水等不良地质环境,需对全断面掘进机类型的优缺点进行对比分析,并提出适应可可盖煤矿斜井施工条件的掘进机改进和优化方案。

    斜井穿越破碎地层时,敞开式和护盾式的全断面掘进机都面临被卡、被困的危险,且护盾式全断面掘进机比敞开式全断面掘进机被卡的几率更高,脱困相对难度更大。一方面敞开式全断面掘进机与护盾式全断面掘进机相比,盾壳较短,坡度适应性强,降低了卡机风险[23];敞开式全断面掘进机护盾为分体式,利用千斤顶伸缩功能可实现上护盾和侧护盾能分别主动支撑在井筒顶板和侧帮,可实现主动防护功能,减少空顶距离。另一方面,护盾式全断面掘进机的护盾为整体结构,由于刀盘的扩挖致使护盾范围内始终存在较大范围的空顶区域,对顶板防护效果差;而敞开式全断面掘进机自带钢拱架自动拼装和锚喷装置,有利于实现对不良地层的快速支护,可满足全断面掘进机掘与支之间的协同性要求。敞开式全断面掘进机装备示意,如图3所示。

    图  3  敞开式全断面掘进机装备示意
    Figure  3.  Schematic of open full section boring machine

    斜井穿越软弱大变形地层时,对敞开式全断面掘进机施工有较大影响。敞开式全断面掘进机的破岩推进需要撑靴支撑在井帮上,若围岩过于软弱不足以提供撑靴支撑反力时,将导致全断面掘进机无法前行的技术难题。因此,敞开式全断面掘进机推进需增加底部辅助推进装置,可通过在斜井底铺设的仰拱块提供全断面掘进机推进反力来解决此问题,从而实现全断面掘进机顺利推进。此外可可盖煤矿斜井埋深达530 m左右时,斜井围岩均为软弱岩层,将遭遇软岩大变形地段,护盾式全断面掘进机脱困处理难度较高。

    穿越富含水地层时全断面掘进机装备要承受较大的水头压力,因此全断面掘进机掘进过程中不但应考虑因地层条件变化对全断面掘进机刀盘掘进参数进行随掘调整,同时要求围岩支护结构能够保证围岩稳定。考虑到可可盖煤矿斜井要穿越约2 200 m富水洛河组砂岩,初期提出了采用护盾式和敞开式的复合式全断面掘进机施工工艺,即洛河组地层采用双护盾式全断面掘进机掘进,并采用管片支护围岩,待进入安定组后转换成单护盾式或敞开式,并采用锚网喷进行围岩支护。此种模式不仅可解决承压水下密封寿命不足的问题,又可解决深部管片刚性支护难以适应围岩变形和承压的问题。

    斜井进入白垩系中等风化洛河组后,最初设计曾提出采用综掘机施工一段距离(长度约800 m),并在综掘机掘进过程中随时检测围岩强度,当围岩强度超过2.3 MPa时,且满足全断面掘进机撑靴支撑强度要求时再改为全断面掘进机施工。然而由于已有岩巷或斜井工程采用综掘机施工效率不高、地层涌水等问题,继而提出并论证了采用护盾式和敞开式的复合式全断面掘进机施工工艺,即全断面掘进机采用双护盾模式通过洛河组地层后,再采用单护盾或敞开模模式继续掘进,虽然能够更好地适应可可盖煤矿地层条件,但是存在复合模式工序复杂,模式转换时间长、护盾式卡机风险高等问题。因此,继续探索和论证井口明槽段开挖后,可可盖煤矿斜井采用敞开式全断面掘进机直接进硐施工的可行性。

    通过对邻近小纪汗煤矿洛河组段采用230型综掘机施工井筒的现有状况调研,该段井筒十余年来支护状态良好,未发生围岩失稳坍塌现象。为了进一步论证敞开式全断面掘进机施工洛河组地层的可行性,在斜井场地试挖已经暴露多年的洛河组地层,并进行了现场围岩锚固效果、围岩强度和围岩支撑性能测试。结果表明,现场使用挖掘机挖掘洛河组砂岩,挖掘机挖痕深度只有2 cm左右,很难挖掘洛河组岩石;锚杆拉拔试验测得锚杆拉拔力均能达到100 kN以上,高于煤矿巷道支护锚杆锚固力要求的50 kN,且锚杆托盘与岩体贴合紧密,无松动现象;通过采用DWS25–250/110/90双伸缩悬浮单体液压支柱水平支撑于洛河组围岩上,用以模拟掘进机撑靴与围岩之间的相互作用,试验得到单体油缸压力达到88 MPa,洛河组围岩受压达33 MPa时,围岩仍未产生溃散、崩裂等破坏现象。

    综合上述分析和现场测试结果判断,可可盖井田白垩系洛河组地层围岩具有一定的自稳性能,能够满足敞开式全断面掘进机撑靴稳定支撑的强度要求,同时为采用锚网喷支护工艺的选择奠定了基础,从而确定了过明槽段后采用敞开式全断面掘进机直接掘进洛河组地层的方案。

    围岩支护类型的选择与全断面掘进机选型密切相关,斜井井筒穿越的地层除表层萨拉乌苏组砂层采用大开挖施工外,其余区段考虑采用敞开式全断面掘进机法施工,自上而下穿越的地层分别洛河组砂岩地层,安定组砂岩、泥岩互层地层,直罗组砂岩地层、延安组砂岩地层。基于斜井穿越地层条件,提出了浅部砌碹支护+深部锚喷支护、浅部管片支护+深部锚喷支护、全斜井管片支护、全锚喷支护4种围岩支护方案。通过对比分析4种围岩支护方案,得到以下3点认识:①锚喷支护施工简单,较管片支护和砌碹支护成本低,在达到安全支护的前提下可降低工程造价;②采用管片支护属于刚性支护,可可盖煤矿斜井穿越地层岩性多变,且随着掘进深度的增加,地层压力不断提高,不同于一般地铁隧道埋藏较浅,地压较小,而锚喷支护属于柔性支护,允许井筒围岩有适当的变形,满足井筒支护安全要求即可;③采用管片支护时,管片重量大,井筒服役过程中若出现管片压裂破坏等情况时,管片支护结构拆装维护困难,而锚喷支护出现离层开裂等情况时,维护相对简单。

    通过设备调研、技术论证、经济分析和施工速度等因素的综合分析,采用敞开式全断面掘进机施工,在技术工艺上可行;同时选择了斜井围岩采用锚网喷支护作为可可盖煤矿斜井围岩支护方式,在局部围岩较破碎区段增设近工作面钢拱架支护;为便于施工车辆通行和提高施工效率,底板采用预制仰拱块铺砌,以减少现浇混凝土底板对车辆通行的影响。

    1.3节提出的4版矿井开拓方案中,经调研和论证进回风立井已确定采用钻井法施工,其建设工期、经济和投资成本相差较小,不作为对比分析的重点对象。因此,本节重点对主副井筒的开拓方案建设工期、经济与投资成本进行分析。

    矿井开拓方案1中,主副立井均采用冻结特殊凿井法施工,经估算分析建井工期约为59.6个月;矿井开拓方案2和方案3中均为主斜副立开拓方案,按照主斜井采用全断面掘进机施工,经估算分析建井工期约为48个月,副立井采用冻结特殊凿井法施工,建井工期约为59.6个月;开拓方案4中主副斜井开拓方案,按照主副斜井均采用全断面掘进机施工,建井工期约为48个月,相对于其他开拓方案,预计可缩短建井工期11.6个月。

    以副立井建设投资为例,若按照采用冻结特殊凿井法施工副立井的方案,投资估算35 712 万元;若按照采用冻结特殊凿井法施工副斜井的方案,投资估算17492万元;若按照采用全断面掘进机施工副斜井的方案,副斜井长度5 500 m,造价按6.33 万元/m计,总投资估算为34 815 万元。因此,全断面掘进机施工副斜井相对于冻结法施工副立井的方案,估算将减少投资897 万元;相对于冻结法施工副斜井的方案,估算将增加投资17 323 万元。

    此外,开拓方案4中将可可盖煤矿工业广场选择西部,位置靠近大海则装车站及进场公路,外部运输条件便利,进场公路、运煤铁路专用线、供电线路距离均较短,节省投资和运营费用,估算可节约铁路投资47 000 万元,节约进场公路投资8 000 万元。同时西部主副斜井方案,斜井落底后不设传统的井底车场,通过一段联络巷直接与辅助运输大巷联系,预计可缩短工期12 个月,提前投产盈利约10 亿元。主副井筒建设工期与投资成本分析结果,见表3

    表  3  主副井筒建设工期与投资成本对比
    Table  3.  Analysis results of construction period and investment cost of main and auxiliary shaft
    开拓方案建井工期/月凿井技术建井投资估算/万元备注
    方案1:
    中部主副立井
    主立井:59.6

    副立井:59.6
    主立井:冻结特殊凿井法
    副立井:冻结特殊凿井法
    主立井:35 712

    副立井:35 712
    运输不便、工期长、
    投资成本高
    方案2:
    东南部主斜副立
    主斜井:48.0

    副立井:59.6
    主斜井:全断面掘进机掘进
    副立井:冻结特殊凿井法
    主斜井:34 815

    副立井:35 712
    运输不便、工期长、
    投资成本高
    方案3:
    中部主斜副立
    主斜井:48.0

    副立井:59.6
    主斜井:全断面掘进机掘进
    副立井:冻结特殊凿井法
    主斜井:34 815

    副立井:35 712
    运输不便、工期长、
    投资成本高
    方案4:
    西部主副立井
    主斜井:48.0

    副斜井:48.0
    主斜井:全断面掘进机掘进

    主斜井:全断面掘进机掘进
    主斜井:34 815

    副斜井:34 815
    节约投资,缩短工期,
    提前投产
    下载: 导出CSV 
    | 显示表格

    1)为满足陕西可可盖煤矿10.0 Mt/a的产能需求,基于矿井开拓方式影响因素的分析,结合可可盖井田地质与水文地质条件,提出了4版不同的矿井开拓方案;考虑外部运输条件、场地集中便于管理,以及缓坡斜井无轨胶轮化和无需换装等优势,初步确定了井田西部主副斜井+中部进回风立井的开拓方案。

    2)针对钻爆法与悬臂掘进机作业线施工长距离斜井均存在掘进效率低、工序复杂、风险高等问题,根据斜井穿越松散覆盖层、富含水地层、软弱破碎地层等不良地层条件,以及主副斜井大断面、超长距离、多变角度的工程条件,论证了采用岩石全断面掘进机施工长距离全下坡斜井技术可行。

    3)针对西部白垩系、侏罗系地层煤矿超长斜井“地层富水、地层多变、岩性软弱”的复杂地层条件和“深埋超长、连续下坡”的工程特点,通过对敞开式、护盾式与复合式全断面掘进机掘进的适应性分析,选择了敞开式全断面掘进机掘进方案,并采用锚网喷支护与局部围岩较破碎区段增设近工作面钢拱架支护的支护方式。

    4)根据可可盖煤矿工程地质与水文地质条件、环境条件、工程条件、建井技术、装备性能、建井工期、投资成本等因素的综合分析,提出的4版矿井开拓方案均具有一定的适用性,但是第1~3方案均存在建设周期长、井筒需要冻结施工、爆破安全性差、生产环节相对复杂等不足;第4版西部主副斜井开拓方案,采用敞开式全断面掘进机施工具有可行性、先进性、经济性等优势且风险可控。

    致谢:本文撰写过程中,陕西延长石油矿业有限公司、天地科技股份有限公司、中国铁建重工集团股份有限公司、中煤西安设计工程有限责任公司、陕西延长石油榆林可可盖煤业有限公司、北京中煤矿山工程有限公司等单位与本项目相关人员参与讨论并提出建议,在此一并表示感谢。

  • 图  1   多种材料受载产生电磁辐射现象

    Figure  1.   Electromagnetic radiation phenomenon produced by various materials under load

    图  2   电磁信号的波形特征[33-35]

    Figure  2.   Characteristics of electromagnetic waveforms[33-35]

    图  3   应力降与电磁信号相关性

    Figure  3.   Correlation between stress drop and electromagnetic signal

    图  4   力–电耦合模型试验验证

    Figure  4.   Experimental verification of force electrical coupling model

    图  5   三轴电磁信号时频特征

    Figure  5.   Time frequency characteristics of three-axis electromagnetic signals

    图  6   煤岩破坏电磁矢量监测系统

    Figure  6.   Electromagnetic vector monitoring system for coal and rock fracture

    图  7   煤岩破坏电磁矢量特征

    Figure  7.   Electromagnetic vector characteristics of coal and rock fracture

    图  8   压电效应示意

    Figure  8.   Schematic of piezoelectric effect

    图  9   应力感应电动势模型

    Figure  9.   Stress induced electromotive force model

    图  10   电荷分离示意

    Figure  10.   Schematic of charge separation

    图  11   电容器模型

    Figure  11.   Capacitor model

    图  12   表面振荡波模型

    Figure  12.   Surface oscillation wave model

    图  13   煤岩微表面电性测试试验系统

    Figure  13.   Test system for electrical property of coal and rock micro surface

    图  14   煤岩微表面电势分布

    Figure  14.   Distribution of micro surface potential of coal and rock

    图  15   煤岩微表面电势–加载载荷变化分布[114-115]

    Figure  15.   Distribution of change of coal and rock micro surface potential load[114-115]

    图  16   俄罗斯EMRR系列电磁辐射监测设备

    Figure  16.   Russian EMRR series electromagnetic radiation monitoring equipment

    图  17   德国Cerescope电磁辐射仪

    Figure  17.   German Cerescope electromagnetic radiometer

    图  18   俄罗斯Angel-M型电磁辐射仪

    Figure  18.   Russian Angel-M electromagnetic radiometer

    图  19   煤岩电磁辐射监测预警装备

    Figure  19.   Monitoring and early warning equipment of coal and rock electromagnetic radiation

    图  20   煤岩电磁辐射监测预警装备应用[129]

    Figure  20.   Application of electromagnetic radiation monitoring and early warning equipment for coal and rock [129]

    图  21   煤岩电磁辐射监测预警方法流程

    Figure  21.   Flow of electromagnetic radiation monitoring and early warning method

    图  22   煤岩动力灾害电磁辐射预警三维图

    Figure  22.   Three dimensional electromagnetic radiation early warning of coal and rock dynamic disasters

    图  23   电磁辐射偏差值对突出危险的响应特征

    Figure  23.   Response characteristics of electromagnetic radiation deviation values to outburst hazards

    图  24   多元融合预警与智能诊断云平台技术架构

    Figure  24.   Technical framework of multi fusion early warning and intelligent diagnosis cloud platform

    图  25   岩石破坏定位试验监测阵列布置方式

    Figure  25.   Arrangement of monitoring array for rock failure location experiment

    图  26   石灰岩破坏试验电磁定位结果

    Figure  26.   Results of electromagnetic positioning for limestone failure experiment

    表  1   煤岩单轴压缩产生的电磁信号强度与频率统计

    Table  1   Intensity and frequency of electromagnetic signals generated from uniaxial compression of coal -rock

    材料类型电磁信号强度电磁信号频率来源及时间
    花岗岩0.5~5 mV10 Hz~100 kHzOGAWA等,日本,1985[36]
    花岗岩、大理岩等0.1~5 V100 Hz~5 MHz刘煜洲等,中国,1997[37]
    石灰岩0.2~2 mV15 kHz~10 MHzRABINOVITCH 等,以色列,2002[38]
    0.2~3 mV3 kHz~2 MHz王恩元、何学秋等,中国,2003[39]
    花岗岩、大理岩等0.1~1.4 mV1 Hz~138 kHz钱书清、郝锦绮等,中国,2003[40,41]
    石灰岩、砂岩0.1~4 V0.8~13 kHzNARDI 等,意大利,2009[42]
    大理岩、混凝土1~2 µT1 Hz~10 kHzLACIDOGNA 等,意大利,2011[43]
    组合煤岩0.1~3 V0~600 kHz聂百胜、何学秋等,中国,2016[44]
    花岗岩1~400 mV1~100 kHzBESPALKO 等,俄罗斯,2018[45]
    0.2~2.5 V1~25 kHz何学秋团队,中国,2019[46]
    下载: 导出CSV

    表  2   煤岩单轴压缩试验中产生电磁信号强度的影响因素

    Table  2   Influencing factors of electromagnetic signal intensity generated in uniaxial compression experiment

    影响因素试验结果
    弹性模量信号强度随弹性模量增大而增大[48-49]
    破碎程度破碎程度越大,信号强度越大[50]
    加载速率加载速率越大,信号强度越大[51-52]
    预制裂纹倾角试样裂纹倾角增大,信号强度明显增大[53]
    含水率随试样含水率增大,信号强度降低[54]
    孔隙气体孔隙气体使得信号强度整体上降低[55]
    下载: 导出CSV

    表  3   部分基于应力作用的电磁辐射机理的优势与局限

    Table  3   Advantages and limitations of electromagnetic radiation mechanism based on stress

    机理优势局限性
    压电效应压电矿物在岩石中十分普遍取决于材料性质;难以解释电磁辐射矢量特征;产生信号强度过低
    压磁效应可解释瞬态电磁现象取决于材料性质;难以解释电磁辐射矢量特征
    移动带电位错基本不受材料影响;可以解释电磁辐射矢量特征在脆性材料中产生信号强度过低
    应力感应电动势可以解释电磁辐射矢量特征取决于材料性质;必须在非均匀受载条件下
    下载: 导出CSV

    表  4   煤岩微表面等效电荷密度估算结果

    Table  4   Estimation results of equivalent charge density on micro surface of coal and rock

    试样表面电势均值/mV表面电荷密度
    /(µC·m−2)
    花岗岩155.931.17
    页岩47.560.37
    石灰岩241.501.85
    忻州窑矿煤样75.690.58
    火铺矿煤样352.672.70
    金佳矿煤样551.884.23
    下载: 导出CSV

    表  5   岩石破坏定位试验结果统计

    Table  5   Statistics of rock failure location test results

    试验类型岩石类型有效定位点数量/个内部定位点数量/个距试样中心最近距离/cm外部定位点数量/个距试样外表面最远距离/cm
    劈裂破坏试验花岗岩430.3310.48
    石灰岩550.230
    页岩540.2210.51
    砂岩550.310
    玄武岩410.4310.14
    单轴压缩试验花岗岩430.0510.59
    石灰岩540.5310.01
    页岩421.1521.30
    砂岩540.9811.29
    玄武岩440.610
    下载: 导出CSV
  • [1] 彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331−2345. doi: 10.13225/j.cnki.jccs.DZ20.1089

    PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society,2020,45(7):2331−2345. doi: 10.13225/j.cnki.jccs.DZ20.1089

    [2] 赵善坤,齐庆新,李云鹏,等. 煤矿深部开采冲击地压应力控制技术理论与实践[J]. 煤炭学报,2020,45(S2):626−636.

    ZHAO Shankun,QI Qingxin,LI Yunpeng,et al. Theory and practice of rockburst stress control technology in deep coal Mine[J]. Journal of China Coal Society,2020,45(S2):626−636.

    [3] 齐庆新,李一哲,赵善坤,等. 我国煤矿冲击地压发展70年: 理论与技术体系的建立与思考[J]. 煤炭科学技术,2019,47(9):1−40.

    QI Qingxin,LI Yizhe,ZHAO Shankun,et al. Seventy years development of coal mine rockburst in China: establishment and consideration of theory and technology system[J]. Coal Science and Technology,2019,47(9):1−40.

    [4] 何学秋,陈建强,宋大钊,等. 典型近直立煤层群冲击地压机理及监测预警研究[J]. 煤炭科学技术,2021,49(6):13−22. doi: 10.13199/j.cnki.cst.2021.06.002

    HE Xueqiu,CHEN Jianqiang,SONG Dazhao,et al. Study on mechanism of rock burst and early warning of typical steeply inclined coal seams[J]. Coal Science and Technology,2021,49(6):13−22. doi: 10.13199/j.cnki.cst.2021.06.002

    [5] 何学秋. 含瓦斯煤岩流变动力学[M]. 徐州: 中国矿业大学出版社, 1995.

    HE Xueqiu. Rheological dynamics of gas-bearing coal rocks[M]. Xuzhou: China University of Mining and Technology Press, 1995.

    [6] 陈 峰,潘一山,李忠华,等. 基于钻屑法的冲击地压危险性检测研究[J]. 中国地质灾害与防治学报,2013,24(2):116−119.

    CHEN Feng,PAN Yishan,LI Zhonghua,et al. Detection and study of rock burst hazard based on drilling cuttings method[J]. The Chinese Journal of Geological Hazard and Control,2013,24(2):116−119.

    [7] 尹永明,姜福兴,谢广祥,等. 基于微震和应力动态监测的煤岩破坏与瓦斯涌出关系研究[J]. 采矿与安全工程学报,2015,32(2):325−330.

    YIN Yongming,JIANG Fuxing,XIE Guangxiang,et al. Relation between coal-rock failure and methane emission based on microseismic and dynamic stress monitoring[J]. Journal of Mining & Safety Engineering,2015,32(2):325−330.

    [8] 宋大钊,何学秋,窦林名,等. 煤层突出危险微震区域探测技术研究[J]. 中国安全科学学报,2021,31(1):89−94. doi: 10.16265/j.cnki.issn1003-3033.2021.01.013

    SONG Dazhao,HE Xueqiu,DOU Linming,et al. Research on MS regional detection technology for coal and gas outburst hazard[J]. China Safety Science Journal,2021,31(1):89−94. doi: 10.16265/j.cnki.issn1003-3033.2021.01.013

    [9] 高保彬,李回贵,李化敏,等. 声发射/微震监测煤岩瓦斯复合动力灾害的研究现状[J]. 地球物理学进展,2014,29(2):689−697.

    GAO Baobin,LI Huigui,LI Huamin,et al. Current situation of the study on acoustic cmision and microscismic monitoring of coupling dynamic catastrophe for gas-filled coal-rock[J]. Progress in Geophysics,2014,29(2):689−697.

    [10] 王恩元,刘晓斐,李忠辉,等. 电磁辐射技术在煤岩动力灾害监测预警中的应用[J]. 辽宁工程技术大学学报(自然科学版),2012,31(5):642−645. doi: 10.3969/j.issn.1008-0562.2012.05.018

    WANG Enyuan,LIU Xiaofei,LI Zhonghui,et al. Application of electromagnetic radiation technology in monitoring and warning on coal and rock dynamic disasters[J]. Journal of Liaoning Technical University(Natural Science ),2012,31(5):642−645. doi: 10.3969/j.issn.1008-0562.2012.05.018

    [11]

    WANG E,HE X,WEI J,et al. Electromagnetic emission graded warning model and its applications against coal rock dynamic collapses[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(4):556−564. doi: 10.1016/j.ijrmms.2011.02.006

    [12]

    RABINOVITCH A,FRID V,BAHAT D,et al. Fracture area calculation from electromagnetic radiation and its use in chalk failure analysis[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(7):1149−1154. doi: 10.1016/S1365-1609(00)00042-3

    [13] 袁 亮,姜耀东,何学秋,等. 煤矿典型动力灾害风险精准判识及监控预警关键技术研究进展[J]. 煤炭学报,2018,43(2):306−318. doi: 10.13225/j.cnki.jccs.2017.4151

    YUAN Liang,JIANG Yaodong,HE Xueqiu,et al. Research progress of precise risk accurate identification and monitoring early warning on typical dynamic disasters in coal mine[J]. Journal of China Coal Society,2018,43(2):306−318. doi: 10.13225/j.cnki.jccs.2017.4151

    [14]

    SHARMA S K,CHAUHAN V S,SINAPIUS M. A review on deformation-induced electromagnetic radiation detection: history and current status of the technique[J]. Journal of Materials Science,2021,56(7):4500−4551. doi: 10.1007/s10853-020-05538-x

    [15]

    STEPANOW A. On the mechanism of plastic deformation[J]. The European PHYSICAL Journal, A. Hadrons and Nuclei,1933,81(7):560−564.

    [16]

    HADJICONTIS V, MAVROMATOU C, NINOS D. Stress induced polarization currents and electromagnetic emission from rocks and ionic crystals, accompanying their deformation. Natural Hazards and Earth System Sciences, 2004, 4(5/6), 633–639.

    [17]

    KOTHARI A,CHAUHAN V S,KUMAR A,et al. Effect of Peierls stress and strain-hardening parameters on EMR emission in metals and alloys during progressive plastic deformation[J]. International Journal of Materials Research,2016,107(6):503−517. doi: 10.3139/146.111376

    [18]

    GADE S,ALACA B,SAUSE M. Determination of crack surface orientation in carbon fibre reinforced polymers by measuring electromagnetic emission[J]. Journal of Nondestructive Evaluation,2017,36(2):21. doi: 10.1007/s10921-017-0403-y

    [19]

    MALYSHKOV Y P,FURSA T V,GORDEYEV V F,et al. Sources and mechanisms of electromagnetic emission in concretes[J]. Izvestiia-Vysshie Uchebnye Zavedeniia Stroitel'stvo,1996:31−36.

    [20] 王恩元,何学秋,窦林名,等. 煤矿采掘过程中煤岩体电磁辐射特征及应用[J]. 地球物理学报,2005,1:216−221. doi: 10.3321/j.issn:0001-5733.2005.01.029

    WANG Enyuan,HE Xueqiu,DOU Linming,et al. Flectromnagnetic radiation characterisics of coal and mocks during excavation in coal mine and their application[J]. Chinese Journal of Geophysics,2005,1:216−221. doi: 10.3321/j.issn:0001-5733.2005.01.029

    [21]

    Воларович М. П., Пархоменко Э. И.Пьезоэлектрическии эффект горных пород[J]. Изв. АН СССР, сер. геофиз,1955(2):215−222.

    [22]

    NITSAN U. Electromagnetic emission accompanying fracture of quartz-bearing rocks[J]. Geophysics Research letters,1977(4):333−336.

    [23] 徐为民,童芜生,吴培稚. 岩石破裂过程中电磁辐射的实验研究[J]. 地球物理学报,1985,28(2):181−190. doi: 10.3321/j.issn:0001-5733.1985.02.007

    XU Weimin,TONG Wusheng,WU Peizhi. Experimental study of electromagnetic emission during rock rupture[J]. Chinese Journal of Geophysics,1985,28(2):181−190. doi: 10.3321/j.issn:0001-5733.1985.02.007

    [24] 钱书清,张以勤,曹惠馨,等. 岩石破裂时产生电磁脉冲的观测与研究[J]. 地震学报,1986,8(3):301−308.

    QIAN Shuqing,ZHANG Yiqin,CAO Huixin,et al. Electromagnetic radiation generated by the rock rupture during an underground explosion[J]. Acta Seismologica Sinica,1986,8(3):301−308.

    [25] 孙正江,王丽华,高 宏. 岩石标本破裂时的电磁辐射和光发射[J]. 地球物理学报,1986,29(5):491−495.

    SUN Zhengjiang,WANG Lihua,GAO Hong. Electromagnetic emission and light radiation during fracture of rock samples[J]. Chinese Journal of Geophysics,1986,29(5):491−495.

    [26] 郭自强,郭子祺,钱书清,等. 岩石破裂中的电声效应[J]. 地球物理学报,1999,42(1):74−83. doi: 10.3321/j.issn:0001-5733.1999.01.009

    GUO Ziqiang,GUO Ziqi,QIAN Shuqing,et al. Electroacoustic effect in rock rupture[J]. Chinese Journal of Geophysics,1999,42(1):74−83. doi: 10.3321/j.issn:0001-5733.1999.01.009

    [27] 何学秋,周广来,刘贞堂. 含瓦斯煤的能量耗散过程及突出非接触预测[J]. 煤炭科学技术,1993,21(12):18−21.

    HE Xueqiu,ZHOU Guanglai,LIU Zhentang. Energy dissipation process and prominent non-contact prediction of gas-bearing coal[J]. Coal Science and Technology,1993,21(12):18−21.

    [28] 何学秋, 刘明举. 含瓦斯煤岩破坏电磁动力学[M]. 徐州: 中国矿业大学出版社, 1995.

    HE Xueqiu, LIU Mingju. Electromagnetic dynamics of gas-bearing coal rock failure[M]. Xuzhou: China University of Mining and Technology Press, 1995.

    [29]

    FRID V,SHABAROV A,PROSKURYAKOV V,et al. Formation of electromagnetic radiation in coal stratum[J]. Journal of Mining Science,1992,28(2):139−145. doi: 10.1007/BF00710732

    [30]

    FRID V. Electromagnetic radiation method for rock and gas outburst forecast[J]. Journal of Applied Geophysics,1997,38(2):97−104. doi: 10.1016/S0926-9851(97)00017-7

    [31] 何学秋, 王恩元, 聂百胜, 等. 煤岩流变电磁动力学[M]. 北京: 科学出版社, 2003.

    HE Xueqiu, WANG Enyuan, NIE Baisheng, et al. Rheological electromagnetic dynamics of coal rock[M]. Beijing: Science Press, 2003.

    [32]

    YIN S,SONG D,HE X,et al. Time-frequency evolution law and generation mechanism of electromagnetic radiation in coal friction process[J]. Engineering Geology,2021,294:106377. doi: 10.1016/j.enggeo.2021.106377

    [33]

    O'KEEFE S, THIEL D. A mechanism for the production of electromagnetic radiation during fracture of brittle materials[J]. Physics of the Earth and Planetary Interiors, 1995, 89(1/2): 127–135.

    [34]

    FRID V, BAHAT D, GOLDBAUM J, et al. Experimental and theoretical investigations of electromagnetic radiation induced by rock fracture[J]. Israel Journal of Earth Sciences, 2000, 49(1).

    [35]

    MASTROGIANNIS D,ANTSYGINA T N,CHISHKO K A,et al. Relationship between electromagnetic and acoustic emissions in deformed piezoelectric media: microcracking signals[J]. International Journal of Solids and Structures,2015,56:118−125.

    [36]

    OGAWA T,OIKE K,MIURA T. Electromagnetic radiations from rocks[J]. Journal of Geophysical Research:Atmospheres,1985,90(D4):6245−6249. doi: 10.1029/JD090iD04p06245

    [37] 刘煜洲,刘 因,金安忠,等. 岩矿石震源电磁辐射性质实验研究[J]. 物探与化探,1997(4):269−276.

    LIU Yuzhou,LIU Yin,JIN Anzhong,et al. Experimental study on electromagnetic radiation properties of rock ore source[J]. Geophysical & Geochemical Exploration,1997(4):269−276.

    [38]

    RABINOVITCH A,BAHAT D,FRID V. Similarity and dissimilarity of electromagnetic radiation from carbonate rocks under compression, drilling and blasting[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(1):125−129. doi: 10.1016/S1365-1609(02)00012-6

    [39] 王恩元,何学秋,刘贞堂,等. 受载煤体电磁辐射的频谱特征[J]. 中国矿业大学学报,2003(5):21−24. doi: 10.3321/j.issn:1000-1964.2003.05.005

    WANG Enyuan,HE Xueqiu,LIU Zhentang,et al. Spectral characteristics of electromagnetic radiation of loaded coal[J]. Journal of China University of Mining & Technology,2003(5):21−24. doi: 10.3321/j.issn:1000-1964.2003.05.005

    [40] 钱书清,郝锦绮,周建国,等. 岩石受压破裂的ULF和LF电磁前兆信号[J]. 中国地震,2003(2):7−14. doi: 10.3969/j.issn.1001-4683.2003.02.002

    QIAN Shuqing,HAO Jinqi,ZHOU Jianguo,et al. ULF electric and magnetic anomalies accompanying the cracking of rock sample[J]. Earthquake Research in China,2003(2):7−14. doi: 10.3969/j.issn.1001-4683.2003.02.002

    [41] 郝锦绮,钱书清,高金田,等. 岩石破裂过程中的超低频电磁异常[J]. 地震学报,2003(1):102−111. doi: 10.3321/j.issn:0253-3782.2003.01.013

    HAO Jinqi,QIAN Shuqing,GAO Jintian,et al. Precursory electric and magnetic signals at ulf and lf bands during the fracture of rocks under pressure[J]. Acta Seismologica Sinica,2003(1):102−111. doi: 10.3321/j.issn:0253-3782.2003.01.013

    [42]

    NARDI A,CAPUTO M. Monitoring the mechanical stress of rocks through the electromagnetic emission produced by fracturing[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(5):940−945. doi: 10.1016/j.ijrmms.2009.01.005

    [43]

    LACIDOGNA G,CARPINTERI A,MANUELLO A,et al. Acoustic and electromagnetic emissions as precursor phenomena in failure processes[J]. Strain,2011,47:144−152. doi: 10.1111/j.1475-1305.2010.00750.x

    [44] 聂百胜, 何学秋, 朱郴韦. 煤岩破坏电磁辐射效应及其应用[M]. 北京: 科学出版社, 2016.

    NIE Baisheng, HE Xueqiu, ZHU Chenwei. Electromagnetic radiation effect of coal rock failure and its application[M]. Beijing: Science Press, 2016.

    [45]

    BESPAL’KO A,YAVOROVICH L,EREMENKO A,et al. Electromagnetic emission of rocks after large-scale blasts[J]. Journal of Mining Science,2018,54(2):187−193. doi: 10.1134/S1062739118023533

    [46] 娄 全,何学秋,宋大钊,等. 基于全波形的煤样单轴压缩破坏声电时频特征[J]. 工程科学学报,2019,41(7):874−881.

    LOU Quan,HE Xueqiu,SONG Dazhao,et al. Time-frequency characteristics of acoustic-electric signals induced by coal fracture under uniaxial compression based on full-waveform[J]. Chinese Journal of Engineering,2019,41(7):874−881.

    [47]

    LIN P,WEI P,WANG C,et al. Effect of rock mechanical properties on electromagnetic radiation mechanism of rock fracturing[J]. Journal of Rock Mechanics and Geotechnical Engineering,2021,13(4):798−810. doi: 10.1016/j.jrmge.2021.01.001

    [48]

    YAVOROVICH L, Bespal'Ko A, FEDOTOV P, et al. Study of interrelation between electromagnetic radiation and rock strength[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2016: 012085.

    [49]

    WEI M,SONG D,HE X,et al. Effect of rock properties on electromagnetic radiation characteristics generated by rock fracture during uniaxial compression[J]. Rock Mech Rock Eng,2020,53:5223−5238. doi: 10.1007/s00603-020-02216-x

    [50] 曹惠馨,钱书清,吕 智. 岩石破裂过程中超长波段的电、磁信号和声发射的实验研究[J]. 地震学报,1994(2):235−241.

    CAO Huixin,QIAN Shuqing,LYU Zhi. Experimental study on electrical and magnetic signals and acoustic emission in ultra-long band during rock rupture[J]. Acta Seismosinica,1994(2):235−241.

    [51] 王恩元,何学秋,刘贞堂,等. 煤岩变形破裂的电磁辐射规律及其应用研究[J]. 中国安全科学学报,2000,10(2):38−42.

    WANG Enyuan,HE Xueqiu,LIU Zhentang,et al. Research on electromagnetic radiation law of coal rock deformation and rupture and its application[J]. China Safety Science Journal,2000,10(2):38−42.

    [52]

    FUKUI K,OKUBO S,TERASHIMA T. Electromagnetic radiation from rock during uniaxial compression testing: the effects of rock characteristics and test conditions[J]. Rock Mechanics and Rock Engineering,2005,38(5):411−423. doi: 10.1007/s00603-005-0046-7

    [53]

    SONG D,YOU Q,WANG E,et al. Characteristics of EMR emitted by coal and rock with prefabricated cracks under uniaxial compression[J]. Geomechanics and Engineering,2019,19(1):49−60.

    [54] 李忠辉,王恩元,何学秋,等. 含水量对煤岩电磁辐射特征的影响[J]. 中国矿业大学学报,2006,35(3):362−366. doi: 10.3321/j.issn:1000-1964.2006.03.015

    LI Zhonghui,WANG Enyuan,HE Xueqiu,et al. Effect of water content on electromagnetic radiation characteristics of coal rock[J]. Journal of China University of Mining & Technology,2006,35(3):362−366. doi: 10.3321/j.issn:1000-1964.2006.03.015

    [55] 刘明举,何学秋,许 考. 孔隙气体对断裂电磁辐射的影响及其机理[J]. 煤炭学报,2002,27(5):483−487. doi: 10.3321/j.issn:0253-9993.2002.05.008

    LIU Mingju,HE Xueqiu,XU Kao. Influence and mechanism of pore gas on electromagnetic radiation at break[J]. Journal of China Coal Society,2002,27(5):483−487. doi: 10.3321/j.issn:0253-9993.2002.05.008

    [56] 刘煜洲,刘 因,王寅生,等. 岩石破裂时电磁辐射的影响因素和机理[J]. 地震学报,1997(4):83−90.

    LIU Yuzhou,LIU Yin,WANG Yinsheng,et al. Influencing factors and mechanism of electromagnetic radiation during rock breakage[J]. Acta Seismological Sinica,1997(4):83−90.

    [57]

    MU H,SONG D,YIN S,et al. Time-frequency characteristics and the influence mechanism of the emr from coal with different joint angles[J]. Shock and Vibration,2021:8340076.

    [58] 王恩元,孔 彪,梁俊义,等. 煤受热升温电磁辐射效应实验研究[J]. 中国矿业大学学报,2016,45(2):205−210.

    WANG Enyuan,KONG Biao,LIANG Junyi,et al. Experimental study on electromagnetic radiation effect of coal heating up[J]. Journal of China University of Mining & Technology,2016,45(2):205−210.

    [59]

    KONG B,WANG E,LI Z,et al. Electromagnetic radiation characteristics and mechanical properties of deformed and fractured sandstone after high temperature treatment[J]. Engineering Geology,2016,209:82−92. doi: 10.1016/j.enggeo.2016.05.009

    [60]

    LI C,WANG Q,LYU P. Study on electromagnetic radiation and mechanical characteristics of coal during an SHPB test[J]. Journal of Geophysics and Engineering,2016,13(3):391−398. doi: 10.1088/1742-2132/13/3/391

    [61]

    KOBAYASHI H,HORIKAWA K,OGAWA K,et al. Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2014,372(2023):20130292. doi: 10.1098/rsta.2013.0292

    [62] 李夕兵,万国香,周子龙. 岩石破裂电磁辐射频率与岩石属性参数的关系[J]. 地球物理学报,2009,52(1):253−259.

    LI Xibing,WAN Guoxiang,ZHOU Zilong. Relationship between electromagnetic radiation frequency and rock attribute parameters of rock rupture[J]. Chinese Journal of Geophysics,2009,52(1):253−259.

    [63] 李夕兵. 岩石动力学基础与应用[M]. 北京: 科学出版社, 2014.

    LI Xibing. Fundamentals and applications of rock dynamics[M]. Beijing: Science Press, 2014.

    [64]

    KOKTAVY P,PAVELKA J,SIKULA J. Characterization of acoustic and electromagnetic emission sources[J]. Measurement Science and Technology,2004,15(5):973. doi: 10.1088/0957-0233/15/5/028

    [65]

    MORI Y, OBATA Y. Electromagnetic emission and AE Kaiser Effect for estimating rock in-situ stress[M]. Nihon University, 2008.

    [66]

    SONG D,WANG E,SONG X,et al. Changes in frequency of electromagnetic radiation from loaded coal rock[J]. Rock Mechanics and Rock Engineering,2016,49(1):291−302. doi: 10.1007/s00603-015-0738-6

    [67] 肖红飞,何学秋,王恩元. 受压煤岩破裂过程电磁辐射与能量转化规律研究[J]. 岩土力学,2006,27(7):1097−1100.

    XIAO Hongfei,HE Xueqiu,WANG Enyuan. Study on electromagnetic radiation and energy conversion law during rupture of pressurized coal rock[J]. Rock and Soil Mechanics,2006,27(7):1097−1100.

    [68] 姚精明,闫永业,刘茜倩,等. 基于能量理论的煤岩体破坏电磁辐射规律研究[J]. 岩土力学,2012,33(1):233−237. doi: 10.3969/j.issn.1000-7598.2012.01.037

    YAO Jingming,YAN Yongye,LIU Qianqian,et al. Study of EME rules during coal or rock mass failure base on energy theory[J]. Rock and Soil Mechanics,2012,33(1):233−237. doi: 10.3969/j.issn.1000-7598.2012.01.037

    [69]

    SONG D,WANG E,LI Z,et al. Energy dissipation of coal and rock during damage and failure process based on EMR[J]. International Journal of Mining Science and Technology,2015,25(5):787−795. doi: 10.1016/j.ijmst.2015.07.014

    [70]

    HU S,WANG E,LI Z,et al. Time-varying multifractal characteristics and formation mechanism of loaded coal electromagnetic radiation[J]. Rock Mechanics and Rock Engineering,2014,47(5):1821−1838. doi: 10.1007/s00603-013-0501-9

    [71]

    QIU L,SONG D,HE X,et al. Multifractal of electromagnetic waveform and spectrum about coal rock samples subjected to uniaxial compression[J]. Fractals,2020,28(4):2050061. doi: 10.1142/S0218348X20500619

    [72]

    CARPINTERI A,LACIDOGNA G,MANUELLO A,et al. Mechanical and electromagnetic emissions related to stress-induced cracks[J]. Experimental Techniques,2012,36(3):53−64. doi: 10.1111/j.1747-1567.2011.00709.x

    [73]

    LOU Q,SONG D,HE X,et al. Correlations between acoustic and electromagnetic emissions and stress drop induced by burst-prone coal and rock fracture[J]. Safety Science,2019,115:310−319. doi: 10.1016/j.ssci.2019.02.022

    [74]

    HE X,CHEN W,NIE B,et al. Electromagnetic emission theory and its application to dynamic phenomena in coal-rock[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(8):1352−1358. doi: 10.1016/j.ijrmms.2011.09.004

    [75]

    TAKEUCHI A, NAGAHAMA H. Electric dipoles perpendicular to a stick-slip plane[J]. Physics of the Earth and Planetary Interiors, 2006, 155(3/4): 208–218.

    [76]

    GADE S,SAUSE M. Measurement and study of electromagnetic emission generated by tensile fracture of polymers and carbon fibres[J]. Journal of Nondestructive Evaluation,2017,36(1):1−13. doi: 10.1007/s10921-016-0379-z

    [77]

    GADE S,ALACA B,SAUSE M. Determination of crack surface orientation in carbon fibre reinforced polymers by measuring electromagnetic emission[J]. Journal of Nondestructive Evaluation,2017,36(2):1−7.

    [78]

    WEI M,SONG D,HE X,et al. A three-axis antenna to measure near-field low-frequency electromagnetic radiation generated from rock fracture[J]. Measurement,2021,173:108563. doi: 10.1016/j.measurement.2020.108563

    [79]

    SRIDHAR S,GIANNAKOPOULOS A,SURESH S,et al. Electrical response during indentation of piezoelectric materials: a new method for material characterization[J]. Journal of applied Physics,1999,85(1):380−387. doi: 10.1063/1.369459

    [80]

    YOSHIDA S,OGAWA T. Electromagnetic emissions from dry and wet granite associated with acoustic emissions[J]. Journal of Geophysical Research:Solid Earth,2004,109:B09204.

    [81] 郭 志. 实用岩体力学[M]. 北京: 地震出版社, 1996.

    GUO Zhi. Practical rock mechanics [M]. Beijing: Seismological Publishing House, 1996

    [82]

    FREUND F. Charge generation and propagation in igneous rocks[J]. Journal of Geodynamics, 2002, 33(4–5): 543–570.

    [83]

    YAVOROVICH L,BESPALKO A,FEDOTOV P,et al. Electromagnetic radiation generated by acoustic excitation of rock samples[J]. Acta Geophysica,2016,64(5):1446−1461. doi: 10.1515/acgeo-2016-0081

    [84]

    TEISSEYRE R,ERNST T. Electromagnetic radiation related to dislocation dynamics in a seismic preparation zone[J]. Annals of geophysics,2002,45(2):393−399.

    [85]

    IVANOV V,EGOROV P,KOLPAKOVA L,et al. Crack dynamics and electromagnetic emission by loaded rock masses[J]. Soviet Mining Science,1988,24(5):406−412. doi: 10.1007/BF02498591

    [86]

    IVANOV V,PIMONOV A. Statistical model of electromagnetic emission from a fracture in a rock[J]. Soviet Mining Science,1991,26(2):148−151.

    [87]

    EGOROV P V,IVANOV V V,KOLPAKOVA L A. Patterns in the electromagnetic pulsed radiation of alkali halide crystals and rocks[J]. Journal of Mining Science,1988,24(1):58−61. doi: 10.1007/BF02498075

    [88]

    FREUND F, SORNETTE D. Electro-magnetic earthquake bursts and critical rupture of peroxy bond networks in rocks[J]. Tectonophysics, 2007, 431(1/4): 33–47.

    [89]

    TAKEUCHI A,FUTADA Y,OKUBO K,et al. Positive electrification on the floor of an underground mine gallery at the arrival of seismic waves and similar electrification on the surface of partially stressed rocks in laboratory[J]. Terra Nova,2010,22(3):203−207. doi: 10.1111/j.1365-3121.2010.00935.x

    [90]

    TAKEUCHI A,NAGAO T. Activation of hole charge carriers and generation of electromotive force in gabbro blocks subjected to nonuniform loading[J]. Journal of Geophysical Research:Solid Earth,2013,118(3):915−925. doi: 10.1002/jgrb.50111

    [91] 王恩元, 何学秋. 煤岩变形破裂电磁辐射的实验研究[J]. 地球物理学报, 2000, 43(1): 131–137.

    WANG Enyuan, He Xueqiu Experimental study on electromagnetic radiation from coal and rock deformation and fracture [J]. Chinese Journal of Geophysics, 2000, 43(1): 131–137.

    [92] 王恩元, 何学秋, 李忠辉, 等. 煤岩电磁辐射技术及其应用[M]. 北京: 科学出版社, 2009

    WANG Enyuan, HE Xueqiu, LI Zhonghui, et al Electromagnetic radiation technology of coal and rock and its application [M]. Beijing: Science Press, 2009

    [93]

    KHATIASHVILI N. The electromagnetic effect accompanying the fracturing of alkaline halide crystals and rocks[J]. Physics of the Solid Earth,1984,20(9):656−661.

    [94]

    BRADY B T,ROWELL G A. Laboratory investigation of the electrodynamics of rock fracture[J]. Nature,1986,321(6069):488−492. doi: 10.1038/321488a0

    [95]

    TAKEUCHI A,NAGAHAMA H. Interpretation of charging on fracture or frictional slip surface of rocks[J]. Physics of the Earth and Planetary Interiors,2002,130(3):285−291.

    [96] 潘一山, 唐 治, 李忠华, 等. 不同加载速率下煤岩单轴压缩电荷感应规律研究[J]. 地球物理学报, 2013, 56(3): 1043–1048.

    PAN Yishan, TANG Zhi, LI Zhonghua, et al. Study on charge induction law of coal and rock under uniaxial compression at different loading rates [J]. Chinese Journal of Geophysics, 2013, 56(3): 1043–1048

    [97] 潘一山, 徐连满, 李国臻, 等. 煤矿深井动力灾害电荷辐射特征及应用[J]. 岩石力学与工程学报, 2014, 33(8): 1619–1625.

    PAN Yishan, XU Lianman, LI Guozhen, et al. Characteristics and Application of Dynamic Disaster Charge Radiation in Deep Coal Mines [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(8): 1619–1625

    [98] 潘一山,罗 浩,李忠华,等. 含瓦斯煤岩围压卸荷瓦斯渗流及电荷感应试验研究[J]. 岩石力学与工程学报,2015,34(4):713−719.

    PAN Yishan,LUO Hao,LI Zhonghua,et al. Experimental study on gas seepage and charge induction of gas bearing coal and rock under confining pressure unloading[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(4):713−719.

    [99]

    PETRENKO V. On the nature of electrical polarization of materials caused by cracks. Application to ice electromagnetic emission[J]. Philosophical MAGAZINE B,1993,67(3):301−315. doi: 10.1080/13642819308220134

    [100]

    LV X,PAN Y,XIAO X,et al. Barrier formation of micro-crack interface and piezoelectric effect in coal and rock masses[J]. International Journal of Rock Mechanics and Mining Sciences,2013,64:1−5. doi: 10.1016/j.ijrmms.2013.08.003

    [101]

    FINKEL V M,GOLOVIN Y I,SEREDA V E,et al. Electric effects during fracture of lif crystal in connection with problem of crack control[J]. Fizika Tverdogo Tela,1975,17(3):770−776.

    [102]

    Miroshnichenko M,KUKSENKO V. Study of electromagnetic pulses in initiation of cracks in solid dielectrics[J]. Sov Phys Solid State,1980,22(5):895−896.

    [103]

    CRESS G O,BRADY B T,ROWELL G A. Sources of electromagnetic radiation from fracture of rock samples in the laboratory[J]. Geophysical Research Letters,1987,14(4):331−334. doi: 10.1029/GL014i004p00331

    [104]

    ENOMOTO Y,HASHIMOTO H. Emission of charged particles from indentation fracture of rocks[J]. Nature,1990,346(6285):641−643. doi: 10.1038/346641a0

    [105] 郭自强,尤峻汉,李 高,等. 破裂岩石的电子发射与原子压缩模型[J]. 地球物理学报,1989,32(2):173−177. doi: 10.3321/j.issn:0001-5733.1989.02.006

    GUO Ziqiang,YOU Junhan,LI Gao,et al. Electron emission and atomic compression model of fractured rock[J]. Chinese Journal of Geophysics,1989,32(2):173−177. doi: 10.3321/j.issn:0001-5733.1989.02.006

    [106] 郭自强, 周大庄, 施行觉, 等. 岩石破裂中的电子发射[J]. 地球物理学报, 1988, 31(5): 566–571.

    GUO Ziqiang, ZHOU Dazhuang, SHI Xingjue, et al. Electron emission in rock fracture [J]Chinese Journal of Geophysics, 1988, 31(5): 566–571.

    [107] 郭自强, 刘 斌. 岩石破裂电磁辐射的频率特性[J]. 地球物理学报, 1995(2): 221–226.

    GUO Ziqiang, LIU Bin. Frequency characteristics of electromagnetic radiation from rock fracture [J] Chinese Journal of Geophysics, 1995(2): 221–226.

    [108] 朱元清, 罗祥麟, 郭自强, 等. 岩石破裂时电磁辐射的机理研究[J]. 地球物理学报, 1991, 34(5): 594–601.

    ZHU Yuanqing, LUO Xianglin, GUO Ziqiang, et al. Study on the mechanism of electromagnetic radiation during rock fracture [J] Chinese Journal of Geophysics, 1991, 34(5): 594–601.

    [109]

    FRID V,RABINOVITCH A,BAHAT D. Fracture induced electromagnetic radiation[J]. Journal of physics D:applied physics,2003,36(13):1620−1628. doi: 10.1088/0022-3727/36/13/330

    [110]

    RABINOVITCH A, FRID V, BAHAT D. Surface oscillations-a possible source of fracture induced electromagnetic radiation[J]. Tectonophysics, 2007, 431(1–4): 15–21.

    [111]

    RABINOVITCH A,FRID V,BAHAT D. Directionality of electromagnetic radiation from fractures[J]. International Journal of Fracture,2017,204(2):239−244. doi: 10.1007/s10704-016-0178-7

    [112]

    LIU X,SONG D,HE X,et al. Nanopore structure of deep-burial coals explored by AFM[J]. Fuel,2019,246:9−17. doi: 10.1016/j.fuel.2019.02.090

    [113]

    TIAN X,HE X,SONG D,et al. AFM characterization of surface mechanical and electrical properties of some common rocks[J]. International Journal of Mining Science and Technology,2022,32(2):435−445. doi: 10.1016/j.ijmst.2021.12.008

    [114] 王伟象. 受载煤微表面力电特性及电荷振荡电磁辐射模型研究[D]. 北京: 北京科技大学, 2020.

    Wang Weixiang. Study on the micro-nano electromechanical characteristics of loaded coal and the electromagnetic radiation model of charge oscillation [D]. Beijing: University of Science and Technology Beijing, 2020.

    [115]

    LIU H,LI Z,HE X,et al. Dynamic and static electrical characteristics of micro-surface of rocks by coupled use of Atomic Force Microscope and micro-loading device[J]. International Journal of Rock Mechanics and Mining Sciences,2021,148:104977. doi: 10.1016/j.ijrmms.2021.104977

    [116]

    CARPINTERI A,BORLA O. Fracto-emissions as seismic precursors[J]. Engineering Fracture Mechanics,2017,177:239−250. doi: 10.1016/j.engfracmech.2017.03.007

    [117] 钱书清, 张以勤, 曹惠馨, 等. 岩石破裂时产生的电磁脉冲的观测与研究[J]. 地震学报, 1986, 8(3): 301–308

    QIAN Shuqing, ZHANG Yiqin, CAO Huixin, et al. Observation and study of electromagnetic pulse generated during rock fracture [J]Acta Seismology Sinica, 1986, 8(3): 301–308

    [118]

    FRID V. Rockburst hazard forecast by electromagnetic radiation excited by rock fracture[J]. Rock Mechanics and Rock Engineering,1997,30(4):229−236. doi: 10.1007/BF01045719

    [119] 王恩元, 何学秋, 窦林名, 等. 煤矿采掘过程中煤岩体电磁辐射特征及应用[J]. 地球物理学报, 2005, 48(1): 216–216.

    WANG Enyuan, HE Xueqiu, DOU Linming, et al. Electromagnetic radiation characteristics of coal and rocks during excavation in coal mine and their application [J] Chinese Journal of Geophysics, 2005, 48(1): 216–216

    [120]

    HE X, NIE B, CHEN W, et al. Research progress on electromagnetic radiation in gas-containing coal and rock fracture and its applications. Safety Science[J], 2012, 50(4), 728–735.

    [121]

    WANG E,JIA H,SONG D,et al. Use of ultra-low-frequency electromagnetic emission to monitor stress and failure in coal mines[J]. International Journal of Rock Mechanics & Mining ences,2014,70:16−25.

    [122]

    QIU L,WANG E,SONG D,et al. Measurement of the stress field of a tunnel through its rock EMR[J]. Journal of Geophysics and Engineering,2017,14(4):949−959. doi: 10.1088/1742-2140/aa6dde

    [123]

    DAS S,MALLIK J,DHANKHAR S,et al. Application of Fracture Induced Electromagnetic Radiation(FEMR) technique to detect landslide-prone slip planes[J]. Natural Hazards,2020,101:505−535. doi: 10.1007/s11069-020-03883-3

    [124]

    VOSTRETSOV A G,KRIVETSKII A V,BIZYAEV A A,et al. EMR recording equipment for underground mines[J]. Journal of Mining Science,2008,44(2):218−224. doi: 10.1007/s10913-008-0035-9

    [125]

    GREILING R O,OBERMEYER H. Natural electromagnetic radiation(EMR) and its application in structural geology and neotectonics[J]. Journal of the Geological Society of India,2010,75(1):278−288. doi: 10.1007/s12594-010-0015-y

    [126]

    DAS S,MALLIK J,BANDYOPADHYAY K,et al. Evaluation of maximum horizontal near-surface stress(SHmax) azimuth and its distribution along Narmada-SON Lineament, India by geogenic Electromagnetic Radiation(EMR) technique[J]. Journal of Geodynamics,2020,133:101672. doi: 10.1016/j.jog.2019.101672

    [127] 王恩元, 何学秋, 刘贞堂, 等. 煤岩动力灾害电磁辐射监测仪及其应用[J]. 煤炭学报, 2003, 28(4): 366–369.

    WANG Enyuan, HE Xueqiu, LIU Zhentang, et al. Electromagnetic radiation detector of coal or rock dynamic disasters and its application [J] Journal of China Coal Industry, 2003, 28(4): 366–369.

    [128] 王恩元,李忠辉,李德行,等. 电磁辐射监测技术装备在煤与瓦斯突出监测预警中的应用[J]. 煤矿安全,2020,51(10):46−51.

    WANG Enyuan,LI Zhonghui,LI Dexing,et al. Application of Electromagnetic Radiation Monitoring Equipment in Monitoring and Warning of Coal and Gas Outburst[J]. Safety in Coal Mines,2020,51(10):46−51.

    [129]

    SONG D,WANG E,HE X,et al. Use of electromagnetic radiation from fractures for mining-induced stress field assessment[J]. Journal of Geophysics and Engineering,2018,15(4):1093−1103. doi: 10.1088/1742-2140/aaa26d

    [130] 何学秋, 聂百胜, 王恩元, 等. 矿井煤岩动力灾害电磁辐射预警技术[J]. 煤炭学报, 2007, 33(1): 56–59.

    HE Xueqiu, NIE Baisheng, WANG Enyuan, et al. Electromagnetic radiation early warning technology for mine coal and rock dynamic disaster [J]. Journal of China Coal Industry, 2007, 33(1): 56–59

    [131] 窦林名, 王云海, 何学秋, 等. 煤样变形破坏峰值前后电磁辐射特征研究[J]. 岩石力学与工程学报, 2007(5): 908–914.

    DOU Linming, WANG Yunhai, HE Xueqiu, et al. Study on characteristics of electromagnetic radiation before and after peak deformation and failure of coal samples [J]. Chinese Journal of Rock Mechanics and Engineering, 2007(5): 908–914.

    [132] 邹喜正, 窦林名, 徐方军. 分维在电磁幅射技术预测冲击矿压中的应用[J]. 辽宁工程技术大学学报, 2002(4): 452–455.

    ZOU Xizheng, DOU Linming, XU Fangjun. Study and practice of fractal dimension in prediction of rock burst by technology of electromagnetic emmision(eme) [J]. Journal of Liaoning University of Engineering and Technology, 2002(4): 452–455.

    [133] 刘贞堂, 赵恩来, 王恩元, 等. 不同尺度电磁辐射时间序列的混沌特征初步分析[J]. 煤炭学报, 2009, 34(2): 224–227.

    LIU Zhentang, ZHAO Enlai, WANG Enyuan, et al. Chaotic characteristics of electromagnetic radiation of coal or rock time series under different scales [J]. Journal of China Coal Industry, 2009, 34(2): 224–227.

    [134] 蒋金泉, 李 洪. 基于混沌时序预测方法的冲击地压预测研究[J]. 岩石力学与工程学报, 2006, 25(5): 889–895.

    JIANG Jinquan, LI Hong. Study on Rockburst Forecast with Forecast method based on chaotic time series [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 889–895.

    [135] 刘晓斐. 冲击地压电磁辐射前兆信息的时间序列数据挖掘及群体识别体系研究[D]. 徐州: 中国矿业大学, 2008.

    LIU Xiaofei. Study on time series data mining and group recognition system of electronmagnetic precursor information of rock burst [D]. Xuzhou: China University of Mining and Technology, 2008.

    [136] 陈世海. 冲击地压电磁辐射前兆信息识别技术研究[D]. 徐州: 中国矿业大学, 2012.

    CHEN Shihai. Study on the Omen Information Identification of Rock Burst Based on the Electromagnetic Radiation Monitoring [D]. Xuzhou: China University of Mining and Technology, 2012.

    [137] 姜耀东,潘一山,姜福兴,等. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报,2014,39(2):205−213.

    JIANG Yaodong,PAN Yishan,JIANG Fuxing,et al. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society,2014,39(2):205−213.

    [138] 王恩元, 刘晓斐, 何学秋, 等. 煤岩动力灾害声电协同监测技术及预警应用[J]. 中国矿业大学学报, 2018, 47(5): 942–948.

    WANG Enyuan, LIU Xiaofei, HE Xueqiu, et al. Acoustic emission and electromagnetic radiation synchronized monitoring technology and early-warning application for coal and rock dynamic disaster [J]. Journal of China University of Mining & Technology, 2018, 47(5): 942–948

    [139] 贺 虎,孙 昊,王 茜. 冲击矿压危险的电磁–震动耦合评价[J]. 煤炭学报,2018,43(2):364−370.

    HE Hu,SUN Hao,WANG Qian. Electromagnetic emission-microseismicity coupling evaluation method for rockburst[J]. Journal of China Coal Society,2018,43(2):364−370.

    [140] 何学秋, 窦林名, 牟宗龙, 等. 煤岩冲击动力灾害连续监测预警理论与技术[J]. 煤炭学报, 2014, 39(8): 1485–1491.

    HE Xueqiu, DOU Linming, MU Zonglong, et al. Continuous monitoring and warning theory and technology of rock burst dynamiodisaster of coal[J]. Journal of China Coal Society, 2014, 39(8):1485−1491.

    [141] 何生全,何学秋,宋大钊,等. 冲击地压多参量集成预警模型及智能判识云平台[J]. 中国矿业大学学报,2022,51(5):850−862.

    HE Shengquan,HE Xueqiu,SONG Dazhao,et al. Multi-parameter integrated early warning model and an intelligent identification cloud platform of rockburst[J]. Journal of China University of Mining & Technology,2022,51(5):850−862.

    [142] 狄洋阳. 基于深度学习的冲击地压震声电综合预警研究[D]. 徐州: 中国矿业大学, 2022.

    DI Yangyang. Research on early warning of rock burst microseismic, acoustic emission and electromagnetic radiation signals based on deep learning[D]. Xuzhou: China University of Mining and Technology, 2022.

    [143] 宋大钊,何学秋,邱黎明,等. 区域和局部突出危险性动态实时监测预警技术研究[J]. 煤炭科学技术,2021,49(5):110−119. doi: 10.13199/j.cnki.cst.2021.05.014

    SONG Dazhao,HE Xueqiu,QIU Liming,et al. Study on real time monitoring and early warning technology of regional and Local outburst danger[J]. Coal Science and Technology,2021,49(5):110−119. doi: 10.13199/j.cnki.cst.2021.05.014

    [144]

    REUTHER C,MOSER E. Orientation and nature of active crustal stresses determined by electromagnetic measurements in the Patagonian segment of the South America Plate[J]. International Journal of Earth Sciences,2009,98(3):585−599. doi: 10.1007/s00531-007-0273-0

    [145]

    KRUMBHOLZ M,BOCK M,BURCHARDT S,et al. A critical discussion of the electromagnetic radiation(EMR) method to determine stress orientations within the crust[J]. Solid Earth,2012,3(2):401−414. doi: 10.5194/se-3-401-2012

    [146] 张地平. 地下电磁定位测距方法研究[D]. 成都: 电子科技大学, 2018.

    ZHANG Diping. Research on location method of underground electromagnetic positioning [D]. Chengdu: University of Electronic Science and Technology, 2018.

    [147] 张 军. 钻孔瞬变电磁响应规律与水体定位研究[D]. 济南: 山东大学, 2020.

    ZHANG Jun. Study on transient electromagnetic response characteristics of borehole and water body positioning [D].Jinan: Shandong University, 2020.

    [148]

    WEI M,SONG D,HE X,et al. Generation mechanism of fracture-induced electromagnetic radiation and directionality characterization in the near field[J]. Engineering Fracture Mechanics,2022,273:108684. doi: 10.1016/j.engfracmech.2022.108684

    [149] 宋大钊,何学秋,韦梦菡,等. 煤岩破坏电磁辐射定位技术方法[J]. 煤炭学报,2022,47(10):3654−3667. doi: 10.13225/j.cnki.jccs.xr21.1647

    SONG Dazhao,HE Xueqiu,WEI Menghan,et al. Study on electromagnetic radiation location technology for coal and rock failure[J]. Journal of China Coal Society,2022,47(10):3654−3667. doi: 10.13225/j.cnki.jccs.xr21.1647

  • 期刊类型引用(1)

    1. 王明川,汤智德,谢安强,简灵静,林晗,王英姿,陈灿. 低磷胁迫时混合内生真菌对杉木幼苗的促生作用. 东北林业大学学报. 2025(01): 1-9 . 百度学术

    其他类型引用(0)

图(26)  /  表(5)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  22
  • PDF下载量:  364
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-10-24
  • 录用日期:  2022-11-17
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-01-29

目录

/

返回文章
返回