高级检索

煤矿采场岩层运动与控制研究进展纪念钱鸣高院士“砌体梁”理论40年

王家臣, 许家林, 杨胜利, 王兆会

王家臣,许家林,杨胜利,等. 煤矿采场岩层运动与控制研究进展−纪念钱鸣高院士“砌体梁”理论40年[J]. 煤炭科学技术,2023,51(1):80−94. DOI: 10.13199/j.cnki.cst.2022-2071
引用本文: 王家臣,许家林,杨胜利,等. 煤矿采场岩层运动与控制研究进展−纪念钱鸣高院士“砌体梁”理论40年[J]. 煤炭科学技术,2023,51(1):80−94. DOI: 10.13199/j.cnki.cst.2022-2071
WANG Jiachen,XU Jialin,YANG Shengli,et al. Development of strata movement and its control in underground mining: In memory of 40 years of Voussoir Beam Theory proposed by Academician Minggao Qian[J]. Coal Science and Technology,2023,51(1):80−94. DOI: 10.13199/j.cnki.cst.2022-2071
Citation: WANG Jiachen,XU Jialin,YANG Shengli,et al. Development of strata movement and its control in underground mining: In memory of 40 years of Voussoir Beam Theory proposed by Academician Minggao Qian[J]. Coal Science and Technology,2023,51(1):80−94. DOI: 10.13199/j.cnki.cst.2022-2071

煤矿采场岩层运动与控制研究进展—纪念钱鸣高院士“砌体梁”理论40年

基金项目: 

国家自然科学基金资助项目(51934008,51904304);国家自然科学基金创新研究群体资助项目(52121003)

详细信息
    作者简介:

    王家臣: (1963—),男,黑龙江方正人,教授,博士。E-mail:wangjiachen@vip.sina.com

    通讯作者:

    王兆会: (1987—),男,山东泰安人,副教授。E-mail:zhwang1024@163.com

  • 中图分类号: TD325

Development of strata movement and its control in underground mining: In memory of 40 years of Voussoir Beam Theory proposed by Academician Minggao Qian

Funds: 

National Natural Science Foundation of China (51934008,51904304); National Natural Science Foundation of China Innovation Research Group Project (52121003)

  • 摘要:

    自1982年钱鸣高院士提出的“砌体梁”理论得到国际公认以来,煤矿采场矿山压力研究实现从定性假说到定量理论的跨越式发展。40年来,我国的采场岩层运动与控制研究已形成较系统的理论与技术体系,服务于煤炭安全、高效、绿色开采。以“砌体梁”理论学术思想为主线,综述了我国煤矿采场岩层运动与控制研究进展,并提出了今后需要发展的研究方向。“砌体梁”理论采用“梁”“薄板”模型分析基本顶破断规律,揭示了顶板断裂线位于采场煤壁前方;煤壁和矸石支撑下基本顶破断岩块回转挤压,咬合形成“砌体梁”结构;发现了“砌体梁”结构的滑落(S)失稳和回转变形(R)失稳模式,建立了S-R失稳的力学条件,提出了基于“砌体梁”结构平衡的顶板压力计算方法,首次实现了支架-围岩关系的定量分析。“砌体梁”结构采场矿山压力力学模型突破了传统定性假说,为保障煤矿的安全和高产高效作出了历史性贡献。“砌体梁”理论指导煤矿采场顶板控制取得系列进展,如支架-围岩三耦合关系、顶板动载荷模型、支架阻力确定的二元准则、中厚板模型、大空间采场远-近场模型等。在“砌体梁”理论的基础上,钱鸣高院士于20世纪90年代中期提出了关键层理论,建立了下至采场、上至地表全覆岩运动过程的力学联系,实现了采场矿压、岩层移动和地表沉陷研究的统一。“砌体梁”理论与关键层理论指导了我国煤矿采场矿山压力与岩层控制研究,在采场矿压控制、覆岩裂隙分布、采动应力分布、岩层移动与开采沉陷等方面取得重要成果,为煤炭绿色开采与科学采矿奠定了基础。岩层运动与控制理论的进一步发展需集中到岩层运动统一场理论,基于采动岩层控制的灾害防治与减损技术,复杂条件岩层运动规律,岩层运动可视化技术和智能岩层控制技术等方面。

    Abstract:

    Since widely accepted by international scholars, Voussoir Beam Theory proposed by Academician Minggao Qian helps the research on underground mining pressure realize leapfrog development from the stage of qualitative hypothesis to quantitative analysis. In the past forty years, an integral system has been formed for strata movement theory and strata control technique, contributing to safe, efficient and green mining of underground coal seams. By underlining the voussoir beam theory, critical developments on strata movement and its control have been reviewed. Important topics are proposed for future research. In the voussoir beam theory, rupture characteristics of main roof are studied with beam and thin plate models. It is revealed fracturing line of main roof locates ahead of the longwall face. Due to supporting effects provided by coal wall and caving materials, the rotation of broken blocks of main roof results in the occurrence of compressive force, forming the voussoir beam structure. Both slipping and rotating instability modes of the structure are identified. The S-R instability conditions are determined. Based on such understanding, determination method for roof load is proposed through keeping the balance of voussoir beam structure, realizing quantitative analysis on the relation between hydraulic support and surrounding rock. Until now, the voussoir beam structure stands as the most impeccable model for explaining underground mining pressure. It is a major breakthrough for conventional qualitative hypothesis, which makes historic contributions to living safety and working efficiency of the miners. The Voussoir Beam Theory further brings about many achievements on strata control, including three-coupling relation between hydraulic support and surrounding rock, dynamic load model for roof control, medium plate model, far-near field model in longwall face with large space etc. Based on the voussoir beam theory, the key stratum theory is moreover proposed by Minggao Qian in the middle of the 1990s. Mechanical relation between different overburden strata is established during movement process. Coordinative analysis on mining pressure, strata movement and surface subsidence is realized. The Voussoir Beam Theory and key stratum theory provide significant guidance on the research of coal mining pressure and strata movement, contributing to a series of theoretical developments, such as mining pressure control at the face area, mining induced fracture distribution in strata, mining induced stress distribution, strata movement and surface subsidence. Such achievements serve as the foundation of green mining and scientific mining. Further development of the theory should pay attention to unified field theory for strata movement, strata movement based accident and damage prevention technique, strata movement under complex mining conditions, visualization of strata movement and intelligent strata control.

  • 近些年,我国聚焦“双碳”目标和绿色发展之路的不断深入推进,选煤是煤炭清洁利用的必经之路,煤泥脱水作为选煤厂生产的核心环节之一,直接影响水资源的和尾煤资源的回收利用,对选煤厂的产品水分、生产效率和环境保护具有重要意义,随着采煤机械化、智能化的发展,细粒煤泥不断增加,原煤煤质变差,煤炭废水的固液分离已经成为行业焦点问题[1-3]

    国内外学者针对煤泥压滤效果、滤饼结构等开展了较多研究,比如任晓汾等[4]研究发现,在加压脱水中添加OP系列的表面活性剂对煤泥有一定的助滤作用,药剂浓度为400 g/t时,滤饼水分降至最低点;夏畅斌等[5]发现在细粒煤浆加入阴离子表面活性剂SDS后,滤饼水分降低至10%,加入阳离子表面活性剂DAB滤饼水分降低至3%~4%;李玉霞等[6]选用不同的表面活性剂对山西选煤厂细粒煤泥水进行了一系列脱水试验研究,研究结果表明,非离子表面活性剂硅油在用量仅为20 g/t脱水效果明显,可降低滤饼水分4.1%。闫奋飞等[7]对比了7种不同表面活性剂的脱水试验,还研究了煤油作为溶剂和表面活性剂混合的新过滤介质对煤泥脱水的影响。结果表明:非离子表面活性剂在试验过程中助滤效率最好,Span-80用量仅为60 g/t时,滤饼水分较空白试验降低3.1%。邓铃等[8-9]通过试验分析了煤泥压滤脱水阶段压力对污泥滤饼水分的影响,结果表明过高的压力会增加固液分离的消耗,加快滤板和滤布的磨损,煤泥水压滤的压力一般控制在0.6~0.8 MPa之间较为合适;石常省[10]等人采用扫描电镜法分析了细粒煤压滤滤饼的微观结构,分析不同粒度细粒煤压滤滤饼结构。赵扬等[11]采用分层切片和扫描电镜法测试了滤饼孔隙率。IRITANI等[12-14]研究了压滤过程中过滤压力和滤饼结构的关系,随着过滤压力的增加,滤饼的平均质量比阻增大,滤饼结构的渗透性能降低。整体而言,针对加压过滤过程的加压脱水效果,尤其是滤饼结构特性仍需进一步研究[15-16]

    利用自主设计的新型加压脱水效果智能监测试验装置,对比了加入2种表面活性剂(OP-10、TX-10)后煤泥水的压滤脱水效果,测量分析了过滤速度、滤饼水分、毛细吸水时间、滤饼平均质量比阻、润湿热和压缩脱水指数等,最后采用CT扫描技术结合迂曲度、渗透率等一系列指标,来微观分析滤饼结构,为煤泥高效加压脱水提供理论和技术指导。

    试验所用煤泥采集自山西马兰矿选煤厂浓缩机底流,经烘干、密封保存后备用。此试验根据国家标准对干煤泥进行工业分析(GB/T 212—2008)、小筛分分析(GB/T 477—2008),并对其进行了元素分析,结果见表1表2,由表可知,煤泥灰分为63.83%,矿物成分质量分数较高,煤泥挥发分为18.25%,为中高变质程度烟煤,且亲水性元素S、O、N质量分数较高,0.045~0.074 mm产率为26.78%,而煤泥中−0.074 mm的细粒级质量分数为58.79%,说明马兰矿选煤厂的煤泥中细煤泥质量分数高,总体而言,该煤泥体现出典型的高灰细煤泥特性。

    表  1  煤泥工业和元素分析
    Table  1.  Proximate and ultimate analysis of coal slime %
    工业分析元素分析
    MadAadVdFCdSt,dNdOdHdCd
    2.6863.8318.2515.241.4120.610.021.80222.83
    下载: 导出CSV 
    | 显示表格
    表  2  煤泥粒度组成
    Table  2.  Coal slurry size composition
    粒径/mn产率/%灰分/%正累计/%
    产率灰分
    0.25~0.54.7725.564.7725.56
    0.125~0.2516.9548.3621.7243.35
    0.074~0.12519.4958.2841.2150.41
    0.045~0.07426.7868.6167.9957.58
    −0.04532.0177.12100.0063.83
    合计100.0063.83
    下载: 导出CSV 
    | 显示表格

    试验所用药剂为OP-10(辛基酚聚氧乙烯醚,C34H62O11,非离子表面活性剂)和TX-10(壬基酚聚氧乙烯醚,C32H58O10,非离子表面活性剂)表面活性剂,无锡市亚泰联合化工有限公司生产,均为分析纯AR级别。

    试验用水为马兰矿选煤厂循环水,经过滤除杂后备用。

    自制试验室智能加压过滤脱水装置如图1所示,装置由压力传动装置、多种传感器及终端数据采集软件等构成,空气压缩机压力范围为0~1 MPa,该装置可实时记录脱水过程中的滤饼厚度、滤液量等指标。

    图  1  智能加压脱水机
    1—启动按钮;2—压力表;3—压力传感器及其显示屏;4—位移传感器及其显示屏; 5—重量传感器及其显示屏
    Figure  1.  Intelligent pressurised dewatering machines

    1)采用烘干后的煤泥和选煤厂循环水配置100 mL煤泥水(浓度400 g/L),利用电动搅拌器搅拌30 min,加入定量OP-10或TX-10表面活性剂,继续搅拌30 min;

    2)打开加压脱水机的空气压缩泵,调节压力至0.6 MPa,将搅拌后的煤泥水倒入样品池中,将样品池安装固定至脱水机内;

    3)打开数据采集软件和智能加压脱水机启动开关,开始加压过滤,实时记录滤液体积(Vi)、滤饼厚度。

    CST测试[17-18]采用台式毛细吸水时间测试仪(厂家:天津恒祥科技有限公司,型号:TYPE 304M)进行,取2.5 mL待分析煤泥水,置于装置的特定漏斗内,记录煤泥内水分从内圈探头扩散到外圈探头所用时间,即为该煤泥的毛细吸水时间。测定出煤泥在调理前后的毛细吸水时间,计算毛细吸水时间降低率。

    $$ R = \frac{{{T_{{\rm{CS}},0}} - {T_{{\rm{CS}},1}}}}{{{T_{{\rm{CS}},0}}}} \times 100\text{%} $$ (1)

    式中,R为煤泥毛细吸水时间降低率%;TCS, 0为煤泥调理前毛细吸水时间,s;TCS, 1为煤泥调理后毛细吸水时间,s。

    根据Ruth过滤理论,在恒定的压力作用下,公式如下:

    $$ \int_{0}^{t} {\rm{d}} t=\dfrac{\mu c \alpha}{A^{2} \Delta p}=\int_{0}^{V} V {\rm{d}} V+\dfrac{\mu R_{{\rm{m}}}}{A \Delta p} \int_{0}^{\nu} {\rm{d}} V $$ (2)

    积分并整理后可得到下列的线性化抛物线方程:

    $$ \frac{t}{V}=\dfrac{\mu c \alpha}{2 A^{2} \Delta p} V+\dfrac{\mu R_{{\rm{m}}}}{A \Delta p} $$ (3)

    且有

    $$ c=\dfrac{s \rho}{1-s m} $$ (4)

    式中:V为滤液量,m3t为过滤时间,s;μ为滤液黏度,mPa·s;A为过滤面积,m2c为单位体积滤液的干滤饼质量,kg/m3;ΔP为过滤压力,Pa;Rm为过滤介质的阻力,m−1m为滤饼质量湿干比;s为物料固体颗粒的质量分数,%;ρ为滤液密度,kg/m3α为平均质量比阻,m/kg。

    上式t/V可以看作非独立变量,V为独立变量。需要先做系列压滤试验测得对应公式的对应参数,对应压滤脱水时间t的滤液体积V,进而在直角坐标系中绘制t/V-V线性拟合图,计算斜率和截距,从而得到平均质量比阻α。过滤速度公式为

    $$ \nu=\dfrac{V_{{\rm{i}}}}{{t_{\rm{i}}} {\text{π}} r^{2}} $$ (5)

    式中:v为过滤速度,mL/(s·m2);Vi为滤液体积保持不变,mL;ti为滤液体积保持不变的时间,s;r为样品池半径,cm。

    采用Thermo Scientific Nicolet iS20 FTIR仪器对煤泥样品进行表面官能团分析。测试流程:通过研磨将KBr和样品以质量比10∶1的比例充分混合,置于模具中,在油压机上压成透明薄片,将样品放入红外光谱仪中测试。波数测量范围为4000~400 cm−1

    采用法国Setaram公司的C80微热量仪测定2种表面活性剂OP-10、TX-10与煤样两相物质发生反应的润湿热,设定30 ℃恒温状态[19-20],量热分辨率为0.10 µW。在测试过程中,将200 mg的煤样和2 mL的表面活性剂分别置于膜混合反应池的底部和上部,用锡纸将两者分隔开,反应数小时后等待温度平衡后,刺破锡纸,使二者混合反应即可测量,对记录的热流曲线进行积分,得到OP-10和TX-10的润湿热值。

    样品的CT分析由天津三英精密仪器有限公司nanoVoxel-4000高分辨X射线三维显微镜完成主要由X射线源、平板探测器、精密样品台、图像采集系统、三维图像重建和处理系统等组成。

    传统的微观结构表征方法,如光学显微镜可以对滤饼表面进行二维可视化表征,但是无法对滤饼进行三维结构特征,如滤饼迂曲度和连通性。

    X射线计算机断层扫描技术(CT扫描技术)具有高分辨率、精度高、扫描范围广的特点[21-23],利于三维多平面重建。采用独特的X光光学显微成像技术,利用不同角度的X射线透视图像,结合计算机三维数字重构技术,提供样品内部复杂结构的高分辨率三维数字图像,对样品内部的微观结构进行数字化三维表征。

    CT扫描技术的基本原理是X射线的衰减作为生成X射线图像的信号。这意味着对比度信号与电子密度密切相关。由于X射线衰减成像的信噪比很大程度上取决于3D图像的每个体素检测到的X射线光子数量,即X射线曝光必须随着空间分辨率的增加而增加,因此,它的敏感性最终受到其潜在的辐射损伤的限制。

    图2可知,煤泥中含有大量的高岭石、石英、方解石等矿物质,由于高岭石是亲水性矿物,在煤泥水中发生吸附,颗粒表面有较高的负电荷,进而在煤泥脱水过程中,颗粒的保水性及空间位阻效应,导致煤泥水脱水困难。

    图  2  煤泥中矿物质的 XRD 分析
    Figure  2.  XRD analysis of minerals in coal slime

    为探究煤泥的官能团,对煤样进行了红外分析,如图3所示。在3694 cm−1与3620 cm−1处所观察到的吸收峰为游离羟基(—OH)的伸缩振动;波数为2920 cm−1的谱峰为亚甲基(—CH2)反对称伸缩振动;在1610 cm−1形成的谱峰为羰基(—C=O)的伸缩振动和羰基(—C=O)与羟基(—OH)形成的氢键的共振形成的吸收峰;在1430 cm−1出现谱峰,说明了此处出现了芳香 C=C、—CH2、—CH3的伸缩振动;1040~910 cm−1区域内和797 cm−1、696 cm−1的峰为煤样中脉石矿物所形成的吸收峰,主要是 Si—O—Si、Si—O—Al 等的伸缩振动;754 cm−1的峰为Al3+在铝氧八面体的振动;在537 cm−1处的谱峰为芳香双硫醚(—S—S—)的吸收峰。

    图  3  煤泥的红外光谱图
    Figure  3.  Infrared spectra of coal slime

    从上面的分析可知,本试验样品表面上具有丰富的含氧官能团(—OH、C=O等)以及矿物杂质基团(Si—O—Si、Si—O—Al等),这些基团的存在说明所用样品表面亲水性较强,从而致使过滤脱水困难,滤饼水分偏高。因此,选择合适的脱水药剂来降低滤饼水分是关键因素。

    图4为OP-10和TX-10作用下的煤泥脱水速度曲线,由图可知,未加药剂时,煤泥脱水速度为111.36 mL/(s·m2),进入压缩阶段时间为150 s(拐点位置)。OP-10和TX-10作用下,随着药剂量增加,煤泥脱水速度均呈现先增加后降低的趋势,OP-10在药剂量为200 g/t时,过滤速度达到最大值209.86 mL/(s·m2),进入压缩阶段时间为85 s,在药剂量为100 g/t和500 g/t时,脱水速度分布为154.76 mL/(s·m2)和190.37 mL/(s·m2);TX-10药剂量为400 g/t时,过滤速度达到最大值196.63 mL/(s·m2),进入压缩阶段时间为100 s,在药剂量为100 g/t和500 g/t时,脱水速度分布为134.85 mL/(s·m2)和176.89 mL/(s·m2)。

    图  4  OP-10和TX-10作用下的煤泥脱水速度曲线
    Figure  4.  Dewatering speed curve of coal slurry under the action of OP-10 and TX-10

    图5可知,OP-10和TX-10药剂量对滤饼水分的影响规律与对脱水速度的影响规律较为一致,未加药剂情况下,原煤泥滤饼水分为20.5%,加入OP-10情况下,药剂量200 g/t时,滤饼水分最低(16.7%),比未加药剂情况下降低3.8%,TX-10在药剂浓度为400 g/t时,滤饼水分达到最低值18.2%,相比未加药剂情况下降2.2%。综上所述,2种药剂均起到较为显著的助滤作用,且OP-10比TX-10更有助于提高煤泥水的压滤速度、并降低滤饼水分。

    图  5  OP-10和TX-10作用下的滤饼水分
    Figure  5.  Filter cake moisture in the presence of OP-10 and TX-10

    平均质量比阻和毛细吸水时间是定量评价物料脱水性能的重要指标,由图6可知,2种表面活性剂中,脱水容易的是OP-10。OP-10浓度在0~200 g/t区间,平均质量比阻急速下降,浓度为200 g/t时滤饼平均质量比阻最小,其比阻为5.21×106 m/kg,相比空白试验降低了2.74×107 m/kg。脱水较难得是TX-10,在浓度为400 g/t时比阻达到最低点9.31×106 m/kg,相比浓度200 g/t的OP-10比阻高了4.09×106 m/kg。滤饼平均质量比阻越小,水分就越易从滤饼中脱除,加压脱水速度越快,滤饼水分也越低。

    图  6  滤饼平均质量比阻与毛细吸水时间
    Figure  6.  Average filter cake mass specific resistance vs. capillary wicking time CST

    加入OP-10、TX-10 这2种表面活性剂调理煤泥30 min后,CST降低率均升高,毛细吸水时间反映了煤泥压滤脱水性能[24]。2种表面活性剂中,脱水性能较好的是OP-10,OP-10随着药剂浓度增加CST降低率先增加后降低,浓度在200 g/t CST降低率达到最大值14.25%。脱水性能较差的是TX-10,当TX-10用量为100 g/t时,随着药剂浓度的不断增加,CST降低率随之不断增加,到400 g/t时CST降低率达到最大值13.36%,再减小。

    为研究不同表面活性剂对滤饼厚度的影响,加入不同浓度的TX-10,300、400和500 g/t时达到滤饼厚度稳态时用时较短,同时也研究了表面活性剂不同浓度的影响(图7)。由图7可得,加入TX-10药剂压滤而成的滤饼厚度范围在6.497~6.717 mm,形成的滤饼厚度相比加入OP-10药剂的滤饼厚度较大。随着TX-10的不断加入,滤饼厚度先减小后增大,在浓度为400 g/t时,达到滤饼厚度稳态时用时最短为276 s,滤饼厚度达到同组最小为6.497 mm。李满等[25]以−0.5 mm粒级原煤为试验煤样,分析了随着絮凝剂用量的增加,煤泥水过滤时间显著降低,滤饼水分和滤饼厚度存在正相关的关系。

    图  7  表面活性剂对滤饼厚度的影响
    Figure  7.  Effect of emulsifier on filter cake thickness

    加入不同浓度的OP-10,药剂量为200 g/t时滤饼厚度保持不变的时间最快249.5 s,在煤泥压滤过程中,随着粗重颗粒的快速沉降,细颗粒及水分从颗粒之间的孔隙穿过,脱水速度越快,滤饼水分越小,滤饼厚度越小。OP-10在用量为200 g/t时滤饼厚度最小,仅为6.409 mm。

    根据滤饼的压力−形变曲线可以定义压缩脱水指数(ICD):

    $$ {I_{{\rm{CD}}}} = \frac{{\sigma (R) - \sigma (O)}}{{\varepsilon (R) - \varepsilon (O)}} $$ (6)

    式中,σ(R)、ε(R)为R点对应的压力值和形变值。

    图8为2种表面活性剂的压力位移曲线,O点是压滤脱水阶段结束,也是滤饼压缩阶段开始,R点对应的是滤饼压缩结束时,在滤饼压缩这一阶段计算出压缩脱水指数,来反应滤饼的可压缩性,压缩脱水指数的几何意义是压力位移曲线上直线段的斜率。在压缩脱水时具有弹性的滤饼将通过释放水来减少滤液体积,以便消散多余的应力。由图可以看出过滤速度越快的煤泥,所需的压力越小。加入不同浓度的OP-10,浓度为200 g/t时形成滤饼所需的压差最小,仅需5110.83 Pa。加入不同浓度的TX-10,浓度为400 g/t时形成滤饼所需的压差为5505.73 Pa。

    图  8  压力−形变曲线
    Figure  8.  Pressure-deformation curves

    煤泥水在压缩脱水形成滤饼时是一种弹性材料,是一种可压缩性材料,ICD从宏观角度来说是体积随压力变化的尺度,从微观角度来说是固体颗粒的微观迁移和团聚能力的大小。图9为表面活性剂对压缩脱水指数的影响,根据图9可得,2种表面活性剂的ICD变化趋势与其滤饼水分一致,2种表面活性剂在可压缩性方面,OP-10的效果最好,在药剂浓度在药剂浓度为200 g/t时,ICD由未加药剂空白试验的238.35降低至147.18,降低了91.17。相比可压缩性较差的是TX-10,在药剂浓度为400 g/t时ICD才达到最低点155.35。ICD越小,在相同压力下滤饼厚度降低幅度越大,滤饼水分越低,针对多孔介质压缩性强,更易过滤脱水。

    图  9  表面活性剂对压缩脱水指数的影响
    Figure  9.  Effect of emulsifier on compression dehydration index

    OP-10和TX-10作用下的润湿热流线和润湿热值如图所示。润湿热反映的是2种物质之间的接触能力,润湿热值越大,说明2种物质之间的作用程度越大,结合的也就越紧密。将200 mg的煤样和2 mL的表面活性剂(OP-10浓度:200 g/t,TX-10浓度:400 g/t)分别置于膜混合反应池的底部和上部,等待温度平衡,刺破锡纸,让两者充分混合反应,用Data acquisition软件记录润湿过程的热流曲线,如图10所示,从图中可以看出TX-10的热流线峰值高于OP-10,表明在润湿过程中TX-10的放热速率大于OP-10。图10b中可以看出,其润湿热值都为负值,表明这是自发的放热过程。

    图  10  OP-10和TX-10的润湿热差异分析
    Figure  10.  Analysis of the difference in the heat of wetting between OP-10 and TX-10

    OP-10的润湿热为1.196 J/g,TX-10的润湿热为4.11 J/g, TX-10比OP-10的润湿热大70.9%,表明煤泥和TX-10之间的亲和力强,煤泥表面容易被TX-10润湿,为亲水性表面,相对OP-10难脱水,因此OP-10表面活性剂的压滤脱水效果好[26]

    为了进一步研究过滤滤饼的特点,选取了原煤和加入浓度为200 g/t的OP-10形成的滤饼,通过nanoVoxel-4000高分辨X射线3维显微镜对所要分析的煤样进行扫描,按照CT试验步骤后,得到相关数据和图像。将数据导入Avizo软件中,进行图像处理,图11为CT的原始二维切片,图12为中值滤波处理效果图,为了更好地区分孔隙和颗粒骨架,因此对图像进行中值滤波的操作,为了保护图像的细节,并且降噪,从而提升了图像的质量,以便于后续的图像处理。

    图  11  原始二维切片
    Figure  11.  Original two-dimensional slice
    图  12  中值滤波处理效果
    Figure  12.  Slice image after Median filter processing

    为了对煤样孔隙结构的分析,通过裁减分割选取合适的分析范围来代表煤样,随后对中值滤波后的样品进行交互式阈值分割[27-28],分割成孔隙可以计算出总孔隙率。图13为对煤样切片使用阈值分割法得到的图像,蓝色代表孔隙,黑色代表颗粒骨架。

    图  13  CT图像阈值分割结果
    Figure  13.  CT image threshold segmentation results

    通过二维的煤样切片进行煤样内部结构研究有一定的难度,所以需要对煤样切片进行三维重建,图14为样品三建重建结果,图15为三维滤饼孔隙空间分割结果,图15a15b是原样分割前后的孔隙空间,图15c15d为OP-10样品分割前后的孔隙空间。在三维重建后的图像中添加Label Analysis命令对滤饼的每个孔隙进行单独分析,通过等效直径可以得到三维滤饼孔隙空间的孔隙数量、孔隙体积及表面积分布[28]。通过计算得到,原样和加了OP-10药剂滤饼孔的数量分别为1448和1352,滤饼的孔体积27964.98 μm3和45025.91 μm3,孔面积为52994.88 μm2和68423.45 μm2,比表面积分别为1.90 μm−1和1.52 μm−1,原样的比表面积大,根据固体表面吸附理论,比表面积大的多孔物,吸附能力强,所以原样滤饼的水分明显高于加了OP-10表面活性剂的样品。

    图  14  样品三维重建结果
    Figure  14.  3D reconstruction results of samples
    图  15  三维滤饼孔隙空间分割结果
    Figure  15.  Pore space segmentation results of the 3D filter cake

    表3可知,压滤脱水成型的滤饼都存在一定的孤立孔隙,加入OP-10所形成的滤饼内部孤立孔隙所占总孔隙体积比例与原样相比很小(OP-10为2.53%,原样为8.14%),它对孔隙的整体连通性影响非常小,而未加药剂的原样中孤立孔隙占据较大的比例8.14%,连通孔体积相比OP-10也少了18198 μm3,导致原样孔隙的连通性较差,其有效孔隙率也明显下降。由上述分析可知,颗粒的粒度对滤饼的连通性也有一定的影响,不加药剂的原样相比加OP-10的过滤速度慢,原样颗粒体积(186885 μm3)大于OP-10作用后的体积(169823 μm3),以致于未加药剂的滤饼孔道较窄,压滤脱水更容易形成孤立的孔隙,有效孔隙占比较低(11.96%),滤液流动的道路减少,导致压滤脱水困难[29]

    表  3  孔隙连通性分析结果
    Table  3.  Analysis results of pore connectivity
    样品连通孔
    体积/μm3
    孤立孔
    体积/μm3
    颗粒
    体积/μm3
    总孔隙
    率/%
    有效孔隙
    率/%
    孤立孔
    比例/%
    原样25691227418688513.0211.968.14
    OP-1043889113716982420.9620.432.53
    下载: 导出CSV 
    | 显示表格

    孔隙的迂曲度是指液体流动的实际长度与压力梯度方向上线距离的比值,流体在多孔介质中的流动不是沿直线前进,迂曲度就是反映这种迂回曲折的程度。图16为孔隙中轴线提取结果,由Avizo计算得原样和OP-10的迂曲度分别为2.37和1.9。加入OP-10样品的滤饼孔隙率大,迂曲度减小,滤饼的渗透率逐渐增大,平均质量比阻就越小,过滤速度就越快。

    图  16  孔隙中轴线提取结果
    Figure  16.  Extraction results of pore central axis

    1)OP-10和TX-10两种表面活性剂对马兰浓缩机底流提取的样品均有良好的助滤效果,与空白试验结果相比,当药剂用量为200 g/t时,OP-10使滤饼水分降低至16.7%,过滤速度提高200%,CST降低率最大为14.25%。

    2)在压缩脱水阶段进一步定义了压缩脱水指数CDI,CDI越低,滤饼可压缩性越高,相同压力下滤饼厚度降低幅度越大,水分越低,最佳浓度下的OP-10和TX-10作用下的压缩脱水指数分别为147.18和155.35。

    3)通过CT扫描技术,利用Avizo软件可以得到三维立体的孔隙结构,微观分析原样和加入OP-10的脱水效果,加入OP-10浓度200 g/t时,可以通过相应的运算模块得到有效孔隙率为20.43%,连通性好,原样的有效孔隙率11.96%,连通性差,孤立孔比例大,过滤脱水困难。

    4)由计算得原样和OP-10的迂曲度分别为2.37和1.9。加入OP-10样品的滤饼孔隙率大,迂曲度减小,滤饼的渗透率逐渐增大,平均质量比阻就越小,过滤速度就越快。

  • 图  1   岩层运动分区模型

    A—煤壁支撑影响区;B—离层区;C—重新压实区;Ⅰ—垮落带;Ⅱ—裂缝带;Ⅲ—弯曲下沉带

    Figure  1.   Zone division for overburden strata movement

    图  2   基本顶“O-X”型破断过程

    Figure  2.   “O-X” typed rupture process of main roof

    图  3   关键层理论模型

    Figure  3.   Model for key stratum theory

    图  4   顶板动载冲击力学模型

    QD—直接顶重力;QA—基本顶重力;q—均布载荷

    Figure  4.   Roof dynamic load impact mechanical model

    图  5   支架-围岩系统刚度模型

    K1K2K3—3个系统的刚度;Kr1Kr2—完整和破碎直接顶刚度;Kc—煤体刚度;Ks—支架刚度;Kg—矸石刚度;Kf—底板刚度

    Figure  5.   Stiffness model of support-surrounding rock system

    图  6   厚硬顶板破断中厚板力学模型

    $\sigma _{x} $、$\sigma _{y}$、$\sigma _{z}$—坐标轴应力分量;$\tau _{xy}$、$\tau _{yz}$、$\tau_{xz}$—剪应力

    Figure  6.   Medium plate mechanical model for main roof

    图  7   基本顶裂隙分布与分区特征

    Figure  7.   Fracture distribution and zone division in main roof

    图  8   大空间采场远-近场结构模型

    Figure  8.   Far-near field model in longwall face with large space

    图  9   深埋厚冲积薄基岩采场覆岩运动特征

    Figure  9.   Overburden movement in deep face with thick soil layer

    图  10   超前支承压力分布特征

    Figure  10.   Distribution of front abutment stress

    图  11   口孜东矿采动应力旋转轨迹

    $\alpha、\beta $—工作面推进方向、倾斜方向

    Figure  11.   Mining stress rotation trajectory in Kouzidong Mine

    图  12   关键层下“O”形圈离层空间计算模型

    Figure  12.   Model of O-shaped fracture under key stratum

    图  13   西部与东部地表裂隙发育特征

    Figure  13.   Surface fracture features of western and eastern areas

    图  14   地表沉陷区积水边界与水体容积计算

    Figure  14.   Water boundary and water volume calculation in surface subsidence area

  • [1]

    QIAN Minggao. A study of the behaviour of overlying strata in longwall mining and its application to strata control[C]//Proceedings of the Symposium on Strata Mechanics, Elsevier Scientific Publishing Company, 1982: 13-17.

    [2] 王家臣. 基于采动岩层控制的煤炭科学开采[J]. 采矿与岩层控制工程学报,2019,1(2):40−47.

    WANG Jiachen. Sustainable coal mining based on mining ground control[J]. Journal of Mining and Strata Control Enineering,2019,1(2):40−47.

    [3] 钱鸣高, 许家林, 王家臣, 等. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2021.
    [4] 钱鸣高. 采场上覆岩层岩体结构模型及其应用[J]. 中国矿业学院学报,1982,5(2):6−16.

    QIAN Minggao. A structural model of overlying strata in longwall workings and its application[J]. Journal of China University of Mining & Technology,1982,5(2):6−16.

    [5] 钱鸣高,李鸿昌. 采场上覆岩层活动规律及其对矿山压力的影响[J]. 煤炭学报,1982,7(2):1−12. doi: 10.13225/j.cnki.jccs.1982.02.001

    QIAN Minggao,LI Hongchang. The movement of overlying strata in longwall mining and its effect on ground pressure[J]. Journal of China Coal Society,1982,7(2):1−12. doi: 10.13225/j.cnki.jccs.1982.02.001

    [6] 钱鸣高,缪协兴,何富连. 采场“砌体梁”结构的关键块分析[J]. 煤炭学报,1994,12(6):557−563. doi: 10.13225/j.cnki.jccs.1994.06.001

    QIAN Minggao,MIAO Xiexing,HE Fulian. Analysis of key block in the structure of voussoir beam in longwall mining[J]. Journal of China Coal Society,1994,12(6):557−563. doi: 10.13225/j.cnki.jccs.1994.06.001

    [7] 钱鸣高,缪协兴. 采场上覆岩层结构的形态与受力分析[J]. 岩石力学与工程学报,1995,5(2):97−106. doi: 10.3321/j.issn:1000-6915.1995.02.006

    QIAN Minggao,MIAO Xiexing. Theoretical analysis on the structural form and stability of overlying strata in longwall mining[J]. Journal of Mining and Strata Control,1995,5(2):97−106. doi: 10.3321/j.issn:1000-6915.1995.02.006

    [8] 钱鸣高,张顶立,黎良杰,等. 砌体梁的“S-R”稳定及其应用[J]. 矿山压力与顶板管理,1994,9(3):6−11,80.

    QIAN Minggao,ZHANG Dingli,LI Liangjie,et al. “S-R” stability for the voussoir beam and its application[J]. Ground Pressure and Strata Control,1994,9(3):6−11,80.

    [9] 钱鸣高. 老顶的初次断裂步距[J]. 矿山压力,1987,4(1):1−6,64.

    QIAN Minggao. First fracture length of main roof[J]. Mine pressure,1987,4(1):1−6,64.

    [10] 钱鸣高,赵国景. 老顶断裂前后的矿山压力变化[J]. 中国矿业学院学报,1986,8(4):14−22.

    QIAN Minggao,ZHAO Guojing. The influence of the fracture of the main roof on the mining ground pressure[J]. Journal of China Institute of Mining & Technology,1986,8(4):14−22.

    [11] 付国彬,钱鸣高. 利用顶板扰动进行矿压监测预报的探讨[J]. 中国矿业大学学报,1990,8(4):4−10.

    FU Guobin,QIAN Minggao. Application of the roof disturbance to the monitor and prediction of the underground pressure[J]. Journal of China University of Mining & Technology,1990,8(4):4−10.

    [12] 钱鸣高,朱德仁,王作棠. 老顶岩层断裂型式及对工作面来压的影响[J]. 中国矿业学院学报,1986,5(2):12−21.

    QIAN Minggao,ZHU Deren,WANG Zuotang. The fracture types of main roof and their effects on roof pressure in coal face[J]. Journal of China Institute of Mining & Technology,1986,5(2):12−21.

    [13]

    ZHU D R,QIAN M G. Structure and stability of main roof after its fracture[J]. Journal of China University of Mining & Technology,1990:25−34.

    [14] 钱鸣高,刘双跃,殷建生. 综采工作面支架与围岩相互作用关系的研究[J]. 矿山压力,1989,7(2):1−8.

    QIAN Minggao,LIU Shuangyue,YIN Jiansheng. Study on interaction relationship between powered support and surrounding rock in fully-mechanized coal mining face[J]. Mine Pressure,1989,7(2):1−8.

    [15] 钱鸣高,缪协兴. 采场矿山压力理论研究的新进展[J]. 矿山压力与顶板管理,1996,6(2):17−20,72.

    QIAN Minggao,MIAO Xiexing. New progress in the theoretical research of stope mine pressure[J]. Ground Pressure and Strata Control,1996,6(2):17−20,72.

    [16] 钱鸣高,何富连,王作棠,等. 再论采场矿山压力理论[J]. 中国矿业大学学报,1994,9(3):1−9.

    QIAN Minggao,HE Fulian,WANG Zuotang,et al. A further discussion on the theory of the strata behaviors in longwall mining[J]. Journal of China University of Mining & Technology,1994,9(3):1−9.

    [17] 钱鸣高,缪协兴,何富连,等. 采场支架与围岩耦合作用机理研究[J]. 煤炭学报,1996,2(1):40−44. doi: 10.3321/j.issn:0253-9993.1996.01.008

    QIAN Minggao,MIAO Xiexing,HE Fulian,et al. Mechanism of coupling effect between supports in the workings and the rocks[J]. Journal of China Coal Society,1996,2(1):40−44. doi: 10.3321/j.issn:0253-9993.1996.01.008

    [18] 缪协兴,钱鸣高. 综放采场围岩─支架整体力学模型及分析[J]. 煤,1998,12(6):1−5.

    MIAO Xiexing,QIAN Minggao. Surrounding rock-powered support overall mechanical model and analysis in fully-mechanized top coal caving mining face[J]. Coal,1998,12(6):1−5.

    [19] 曹胜根,钱鸣高,刘长友,等. 采场支架-围岩关系新研究[J]. 煤炭学报,1998,12(6):17−21. doi: 10.3321/j.issn:0253-9993.1998.06.004

    CAO Shenggen,QIAN Minggao,LIU Changyou,et al. New research about support and surrounding rock relationship in working face[J]. Journal of China Coal Society,1998,12(6):17−21. doi: 10.3321/j.issn:0253-9993.1998.06.004

    [20] 张顶立,钱鸣高. 综放工作面围岩结构分析[J]. 岩石力学与工程学报,1997,8(4):27−33. doi: 10.3321/j.issn:1000-6915.1997.04.004

    ZHANG Dingli,QIAN Minggao. Theoretical analysis of surrounding rock structure in longwall sub-level caving mining[J]. Chinese Journal of Rock Mechanics and Engineering,1997,8(4):27−33. doi: 10.3321/j.issn:1000-6915.1997.04.004

    [21] 缪协兴,钱鸣高. 采场围岩整体结构与砌体梁力学模型[J]. 矿山压力与顶板管理,1995,12(Z1):3−12,197.

    MIAO Xiexing,QIAN Minggao. Solid structure and model of voussoir beam of face surrounding rock[J]. Ground Pressure and Strata Control,1995,12(Z1):3−12,197.

    [22] 钱鸣高,缪协兴,许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报,1996,6(3):2−7. doi: 10.13225/j.cnki.jccs.1996.03.001

    QIAN Minggao,MIAO Xiexing,XU Jialin. Theoretical study of key stratum in ground control[J]. Journal of China Coal Society,1996,6(3):2−7. doi: 10.13225/j.cnki.jccs.1996.03.001

    [23] 缪协兴,钱鸣高. 采动岩体的关键层理论研究新进展[J]. 中国矿业大学学报,2000,1(1):25−29. doi: 10.3321/j.issn:1000-1964.2000.01.006

    MIAO Xiexing,QIAN Minggao. Advance in the key strata theory of mining rockmass[J]. Journal of China University of Mining & Technology,2000,1(1):25−29. doi: 10.3321/j.issn:1000-1964.2000.01.006

    [24] 许家林,钱鸣高. 覆岩关键层位置的判别方法[J]. 中国矿业大学学报,2000,9(5):21−25. doi: 10.3321/j.issn:1000-1964.2000.05.005

    XU Jialin,QIAN Minggao. Method to distinguish key strata in overburden[J]. Journal of China University of Mining & Technology,2000,9(5):21−25. doi: 10.3321/j.issn:1000-1964.2000.05.005

    [25] 缪协兴,陈荣华,浦 海,等. 采场覆岩厚关键层破断与冒落规律分析[J]. 岩石力学与工程学报,2005,4(8):1289−1295. doi: 10.3321/j.issn:1000-6915.2005.08.003

    MIAO Xiexing,CHEN Ronghua,PU Hai. Analysis of breakage and collapse of thick key strata around coal face[J]. Chinese Journal of Rock Mechanics and Engineering,2005,4(8):1289−1295. doi: 10.3321/j.issn:1000-6915.2005.08.003

    [26] 钱鸣高,茅献彪,缪协兴. 采场覆岩中关键层上载荷的变化规律[J]. 煤炭学报,1998,4(2):25−29. doi: 10.3321/j.issn:0253-9993.1998.02.005

    QIAN Minggao,MAO Xianbiao,MIAO Xiexing. Variation of loads on the key layer of the overlying strata above the workings[J]. China University of Mining and Technology,1998,4(2):25−29. doi: 10.3321/j.issn:0253-9993.1998.02.005

    [27] 茅献彪,缪协兴,钱鸣高. 采动覆岩中关键层的破断规律研究[J]. 中国矿业大学学报,1998,3(1):41−44. doi: 10.3321/j.issn:1000-1964.1998.01.010

    MAO Xianbiao,MIAO Xiexing,QIAN Minggao. Study on broken laws of key strata in mining overlying strata[J]. Journal of China University of Mining & Technology,1998,3(1):41−44. doi: 10.3321/j.issn:1000-1964.1998.01.010

    [28] 茅献彪,缪协兴,钱鸣高. 软岩层厚度对关键层上载荷与支承压力的影响[J]. 矿山压力与顶板管理,1997,12(Z1):4−6,233.

    MAO Xianbiao,MIAO Xiexing,QIAN Minggao. Influence of soft interlayer on load exerted on key stratum and abutment pressure[J]. Ground Pressure and Strata Control,1997,12(Z1):4−6,233.

    [29] 茅献彪, 缪协兴, 钱鸣高. 采动覆岩中复合关键层的断裂跨距计算[J]. 岩土力学, 1999, 6(2): 1-4.

    MAO Xianbiao, MIAO Xiexing, QIAN Minggao, Calculation for fracture span of compound key strata in mining rocks[J]. Chines Journal of Rock, 1999, 6(2): 1-4.

    [30] 缪协兴,茅献彪,钱鸣高. 采动覆岩中关键层的复合效应分析[J]. 矿山压力与顶板管理,1999,12(Z1):19−21,25.

    MIAO Xiexing,MAO Xianbiao,QIAN Minggao. The analysis of complex effect of key stratum in overlying strata within mining influence[J]. Ground Pressure and Strata Control,1999,12(Z1):19−21,25.

    [31] 钱鸣高,许家林. 覆岩采动裂隙分布的“O”形圈特征研究[J]. 煤炭学报,1998,10(5):20−23. doi: 10.13225/j.cnki.jccs.1998.05.004

    QIAN Minggao,XU Jialin. Study on the “O shape” circle distribution characteristics of mining induced fractures in the overlaying strata[J]. Journal of China Coal Society,1998,10(5):20−23. doi: 10.13225/j.cnki.jccs.1998.05.004

    [32] 缪协兴,陈荣华,白海波. 保水开采隔水关键层的基本概念及力学分析[J]. 煤炭学报,2007,6(6):561−564. doi: 10.3321/j.issn:0253-9993.2007.06.001

    MIAO Xiexing,CHEN Ronghua,BAI Haibo. Fundamental concepts and mechanical analysis of water-resisting key strata in water-preserved mining[J]. Journal of China Coal Society,2007,6(6):561−564. doi: 10.3321/j.issn:0253-9993.2007.06.001

    [33] 许家林, 钱鸣高. 关键层运动对覆岩及地表移动影响的研究[J]. 煤炭学报, 2000, 4(2): 122-126.

    XU Jialin, QIAN Minggao. Study on the influence of key strata movement on subsidence[J]. China University of Mining and Technology. 2000, 4(2): 122-126.

    [34] 许家林,钱鸣高,朱卫兵. 覆岩主关键层对地表下沉动态的影响研究[J]. 岩石力学与工程学报,2005,3(5):787−791. doi: 10.3321/j.issn:1000-6915.2005.05.009

    XU Jialin,QIAN Minggao,ZHU Weibing. Study on influences of primary key stratum on surface dynamic subsidence[J]. Chinese Journal of Rock Mechanics and Engineering,2005,3(5):787−791. doi: 10.3321/j.issn:1000-6915.2005.05.009

    [35] 王国法,庞义辉,李明忠,等. 超大采高工作面液压支架与围岩耦合作用关系[J]. 煤炭学报,2017,42(2):518−526. doi: 10.13225/j.cnki.jccs.2016.0699

    WANG Guofa,PANG Yihui,LI Mingzhong,et al. Hydraulic support and coal wall coupling relationship in ultra large height mining face[J]. Journal of China Coal Society,2017,42(2):518−526. doi: 10.13225/j.cnki.jccs.2016.0699

    [36] 王国法. 工作面支护与液压支架技术理论体系[J]. 煤炭学报,2014,39(8):1593−1601. doi: 10.13225/j.cnki.jccs.2014.9021

    WANG Guofa. Theory system of working face support system and hydraulic roof support technology[J]. Journal of China Coal Society,2014,39(8):1593−1601. doi: 10.13225/j.cnki.jccs.2014.9021

    [37] 王国法,庞义辉. 液压支架与围岩耦合关系及应用[J]. 煤炭学报,2015,40(1):30−34. doi: 10.13225/j.cnki.jccs.2013.1704

    WANG Guofa,PANG Yihui. Relationship between hydraulic support and surrounding rock coupling and its application[J]. Journal of China Coal Society,2015,40(1):30−34. doi: 10.13225/j.cnki.jccs.2013.1704

    [38]

    WANG J C,YANG S L,LI Y,et al. A dynamic method to determine the supports capacity in longwall coal mining[J]. International Journal of Mining Reclamation and Environment,2015,29(4):277−288. doi: 10.1080/17480930.2014.891694

    [39] 王家臣,王兆会. 高强度开采工作面顶板动载冲击效应分析[J]. 岩石力学与工程学报,2015,34(S2):3987−3997. doi: 10.13722/j.cnki.jrme.2014.1148

    WANG Jiachen,WANG Zhaohui. Impact effect of dynamic load induced by roof in high-intensity mining face[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(S2):3987−3997. doi: 10.13722/j.cnki.jrme.2014.1148

    [40] 王家臣,王兆会. 浅埋薄基岩高强度开采工作面初次来压基本顶结构稳定性研究[J]. 采矿与安全工程学报,2015,32(2):175−181. doi: 10.13545/j.cnki.jmse.2015.02.001

    WANG Jiachen,WANG Zhaohui. Stability of main roof structure during the first weighting in shallow high-intensity mining face with thin bedrock[J]. Journal of Mining & Safety Engineering,2015,32(2):175−181. doi: 10.13545/j.cnki.jmse.2015.02.001

    [41] 杨胜利,王兆会,吕华永. 大采高采场周期来压顶板结构稳定性及动载效应分析[J]. 采矿与安全工程学报,2019,36(2):315−322. doi: 10.13545/j.cnki.jmse.2019.02.013

    YANG Shengli,WANG Zhaohui,LYU Huayong. Analysis of structure stability of main roof and dynamic loading effect during periodic weighting in a large mining height stope[J]. Journal of Mining & Safety Engineering,2019,36(2):315−322. doi: 10.13545/j.cnki.jmse.2019.02.013

    [42] 王家臣,王 蕾,郭 尧. 基于顶板与煤壁控制的支架阻力的确定[J]. 煤炭学报,2014,39(8):1619−1624. doi: 10.13225/j.cnki.jccs.2014.9027

    WANG Jiachen,WANG Lei,GUO Yao. Determining the support capacity based on roof and coal wall control[J]. Journal of China Coal Society,2014,39(8):1619−1624. doi: 10.13225/j.cnki.jccs.2014.9027

    [43]

    WANG J C,WANG Z H. Systematic principles of surrounding rock control in longwall mining within thick coal seams[J]. International Journal of Mining Science and Technology,2019,29(1):65−71. doi: 10.1016/j.ijmst.2018.11.014

    [44] 杨胜利,王家臣,李良晖. 基于中厚板理论的关键岩层变形及破断特征研究[J]. 煤炭学报,2020,45(8):2718−2727. doi: 10.13225/j.cnki.jccs.2020.0366

    YANG Shengli,WANG Jiachen,LI Lianghui. Deformation and fracture characteristics of key strata based on the medium thick plate theory[J]. Journal of China Coal Society,2020,45(8):2718−2727. doi: 10.13225/j.cnki.jccs.2020.0366

    [45] 王家臣,杨胜利,杨宝贵,等. 深井超长工作面基本顶分区破断模型与支架阻力分布特征[J]. 煤炭学报,2019,44(1):54−63. doi: 10.13225/j.cnki.jccs.2018.5139

    WANG Jiachen,YANG Shengli,YANG Baogui,et al. Roof sub-regional fracturing and support resistance distribution in deep longwall face with ultra-large length[J]. Journal of China Coal Society,2019,44(1):54−63. doi: 10.13225/j.cnki.jccs.2018.5139

    [46] 王国法,张金虎,徐亚军,等. 深井厚煤层长工作面支护应力特性及分区协同控制技术[J]. 煤炭学报,2021,46(3):763−773. doi: 10.13225/j.cnki.jccs.yt20.1971

    WANG Guofa,ZHANG Jinhu,XU Yajun,et al. Supporting stress characteristics and zonal cooperative control technology of long working face in deep thick coal seam[J]. Journal of China Coal Society,2021,46(3):763−773. doi: 10.13225/j.cnki.jccs.yt20.1971

    [47]

    WANG Zhaohui, YANG Shengli, TANG Yuesong, et al. A stress rotation based method for improving roof stability of a deep longwall panel [J]. International Journal of Geomechanics, 2022, in press.

    [48] 王家臣,张 剑,姬刘亭,等. “两硬”条件大采高综采老顶初次垮落力学模型研究[J]. 岩石力学与工程学报,2005,24(S1):5037−5042.

    WANG Jiachen,ZHANG Jian,JI Liuting,et al. Study on mechanics model of the first cave in main roof for the large cutting height fully mechanized mining under the two hard conditions[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(S1):5037−5042.

    [49] 许家林,朱卫兵,鞠金峰. 浅埋煤层开采压架类型[J]. 煤炭学报,2014,39(8):1625−1634. doi: 10.13225/j.cnki.jccs.2014.9006

    XU Jialin,ZHU Weibing,JU Jinfeng. Supports crushing types in the longwall mining of shallow seams[J]. Journal of China Coal Society,2014,39(8):1625−1634. doi: 10.13225/j.cnki.jccs.2014.9006

    [50] 朱卫兵, 许家林, 鞠金峰. 浅埋煤层开采压架机理及防治[M]. 北京: 科学出版社, 2022.
    [51] 于 斌,杨敬轩,高 瑞. 大同矿区双系煤层开采远近场协同控顶机理与技术[J]. 中国矿业大学学报,2018,47(3):486−493. doi: 10.13247/j.cnki.jcumt.000854

    YU Bin,YANG Jingxuan,GAO Rui. Mechanism and technology of roof collaborative controlling in the process of Jurassic and Carboniferous coal mining in Datong mining area[J]. Journal of China University of Mining & Technology,2018,47(3):486−493. doi: 10.13247/j.cnki.jcumt.000854

    [52] 于 斌,高 瑞,孟祥斌,等. 大空间远近场结构失稳矿压作用与控制技术[J]. 岩石力学与工程学报,2018,37(5):1134−1145. doi: 10.13722/j.cnki.jrme.2017.1105

    YU Bin,GAO Rui,MENG Xiangbin,et al. Near-far strata structure instability and associate strata behaviors in large space and corresponding control technology[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(5):1134−1145. doi: 10.13722/j.cnki.jrme.2017.1105

    [53] 王家臣,王兆会,唐岳松,等. 深埋弱胶结薄基岩厚煤层开采顶板动载冲击效应产生机制试验研究[J]. 岩石力学与工程学报,2021,40(12):2377−2391. doi: 10.13722/j.cnki.jrme.2021.0340

    WANG Jiachen,WANG Zhaohui,TANG Yuesong,et al. Experimental study on mining-induced dynamic impact effect of main roofs in deeply buried thick coal seams with weakly consolidated thin bed rock[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(12):2377−2391. doi: 10.13722/j.cnki.jrme.2021.0340

    [54] 王兆会,唐岳松,李 猛,等. 深埋薄基岩采场覆岩冒落拱与拱脚高耸岩梁复合承载结构形成机理与应用研究[J]. 煤炭学报,2022:1−12.

    WANG Zhaohui,TANG Yuesong,LI Meng,et al. Development and application of overburden structure composed of caving arch and towering roof beam in deep longwall panel with thin bedrock[J]. Journal of China Coal Society,2022:1−12.

    [55] 许家林,钱鸣高,金宏伟. 岩层移动离层演化规律及其应用研究[J]. 岩土工程学报,2004,10(5):632−636. doi: 10.3321/j.issn:1000-4548.2004.05.012

    XU Jialin,QIAN Minggao,JIN Hongwei. Study and application of bed separation distribution and development in the process of strata movement[J]. Chinese Journal of Geotechnical Engineering,2004,10(5):632−636. doi: 10.3321/j.issn:1000-4548.2004.05.012

    [56] 许家林,钱鸣高. 岩层采动裂隙分布在绿色开采中的应用[J]. 中国矿业大学学报,2004,3(2):17−20,25. doi: 10.3321/j.issn:1000-1964.2004.02.004

    XU Jialin,QIAN Minggao. Study and application of mining-induced fracture distribution in green mining[J]. Journal of China University of Mining & Technology,2004,3(2):17−20,25. doi: 10.3321/j.issn:1000-1964.2004.02.004

    [57] 许家林,秦 伟,陈晓军,等. 采动覆岩卸荷膨胀累积效应的影响因素[J]. 煤炭学报,2022,47(1):115−127. doi: 10.13225/j.cnki.jccs.yg21.1866

    XU Jialin,QIN Wei,CHEN Xiaojun,et al. Influencing factors of accumulative effect of overburden strata expansion induced by stress relief[J]. Journal of China Coal Society,2022,47(1):115−127. doi: 10.13225/j.cnki.jccs.yg21.1866

    [58] 许家林,朱卫兵,王晓振. 基于关键层位置的导水裂隙带高度预计方法[J]. 煤炭学报,2012,37(5):762−769.

    XU Jialin,ZHU Weibing,WANG Xiaozhen. New method to predict the height of fractured water-conducting zone by location of key strata[J]. Journal of China Coal Society,2012,37(5):762−769.

    [59] 钱鸣高,许家林. 煤炭开采与岩层运动[J]. 煤炭学报,2019,44(4):973−984.

    QIAN Minggao,XU Jialin. Behaviors of strata movement in coal mining[J]. Journal of China Coal Society,2019,44(4):973−984.

    [60] 杨胜利,王兆会,蒋 威,等. 高强度开采工作面煤岩灾变的推进速度效应分析[J]. 煤炭学报,2016,41(3):586−594.

    YANG Shengli,WANG Zhaohui,JIANG Wei,et al. Advancing rate effect on rock and coal failure format in high-intensity mining face[J]. Journal of China Coal Society,2016,41(3):586−594.

    [61] 王家臣,王兆会. 综放开采顶煤裂隙扩展的应力驱动机制[J]. 煤炭学报,2018,43(9):2376−2388.

    WANG Jiachen,WANG Zhaohui. Propagating mechanism of top-coal fracture in longwall top-coal caving mining[J]. Journal of China Coal Society,2018,43(9):2376−2388.

    [62] 王家臣,王兆会. 综放开采顶煤在加卸载复合作用下的破坏机理[J]. 同煤科技,2017,6(3):1−8.

    WANG Jiachen,WANG Zhaohui. Failure mechanism of fully mechanized top-coal caving mining under the composite effect of loading and unloading[J]. Science and Technology of Datong Coal Mining Administration,2017,6(3):1−8.

    [63] 王家臣,王兆会,杨 杰,等. 千米深井超长工作面采动应力旋转特征及应用[J]. 煤炭学报,2020,45(3):876−888. doi: 10.13225/j.cnki.jccs.SJ20.0147

    WANG Jiachen,WANG Zhaohui,YANG Jie,et al. Mining-induced stress rotation and its application in longwall face with large length in kilometer deep coal mine[J]. Journal of China Coal Society,2020,45(3):876−888. doi: 10.13225/j.cnki.jccs.SJ20.0147

    [64] 王兆会,孙文超,水艳婷,等. 千米深井超长工作面采动应力旋转轨迹及其推进方向效应[J]. 煤炭学报,2022,47(2):634−650. doi: 10.13225/j.cnki.jccs.xr21.1549

    WANG Zhaohui,SUN Wenchao,SHUI Yanting,et al. Mining-induced stress rotation trace and its sensitivity to face advance direction in kilometer deep longwall panel with large face length[J]. Journal of China Coal Society,2022,47(2):634−650. doi: 10.13225/j.cnki.jccs.xr21.1549

    [65] 李树刚,钱鸣高,石平五. 综放开采覆岩离层裂隙变化及空隙渗流特性研究[J]. 岩石力学与工程学报,2000,10(5):604−607. doi: 10.3321/j.issn:1000-6915.2000.05.012

    LI Shugang,QIAN Minggao,SHI Pingwu. Study on bed separated fissures of overlying stratum and interstice permeability in fully-mechanized top coal caving[J]. Chinese Journal of Rock Mechanics and Engineering,2000,10(5):604−607. doi: 10.3321/j.issn:1000-6915.2000.05.012

    [66] 缪协兴,王 安,孙亚军,等. 干旱半干旱矿区水资源保护性采煤基础与应用研究[J]. 岩石力学与工程学报,2009,28(2):217−227. doi: 10.3321/j.issn:1000-6915.2009.02.001

    MIAO Xiexing,WANG An,SUN Yajun,et al. Research on basic theory of mining with water resources protection and its application to arid and semi-arid mining areas[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):217−227. doi: 10.3321/j.issn:1000-6915.2009.02.001

    [67] 许家林,连国明,朱卫兵,等. 深部开采覆岩关键层对地表沉陷的影响[J]. 煤炭学报,2007,7(7):686−690. doi: 10.3321/j.issn:0253-9993.2007.07.003

    XU Jialin,LIAN Guoming,ZHU Weibing,et al. Influence of the key strata in deep mining to mining subsidence[J]. Journal of China Coal Society,2007,7(7):686−690. doi: 10.3321/j.issn:0253-9993.2007.07.003

    [68] 刘 辉,朱晓峻,程 桦,等. 高潜水位采煤沉陷区人居环境与生态重构关键技术: 以安徽淮北绿金湖为例[J]. 煤炭学报,2021,46(12):4021−4032.

    LIU Hui,ZHU Xiaojun,CHENG Hua,et al. Key technology of human environment and ecological reconstruction in high submersible level coal mining subsidence area: A case study from Lüjin Lake, Huaibei[J]. Journal of China Coal Society,2021,46(12):4021−4032.

    [69] 钱鸣高,许家林,缪协兴. 煤矿绿色开采技术[J]. 中国矿业大学学报,2003,7(4):5−10. doi: 10.3321/j.issn:1000-1964.2003.04.001

    QIAN Minggao,XU Jialin,MIAO Xiexing. Green technique in coal mining[J]. Journal of China University of Mining & Technology,2003,7(4):5−10. doi: 10.3321/j.issn:1000-1964.2003.04.001

    [70] 钱鸣高. 煤炭的科学开采[J]. 煤炭学报,2010,35(4):529−534. doi: 10.13225/j.cnki.jccs.2010.04.007

    QIAN Minggao. On sustainable coal mining in China[J]. Journal of China Coal Society,2010,35(4):529−534. doi: 10.13225/j.cnki.jccs.2010.04.007

    [71] 伍永平,贠东风,解盘石,等. 大倾角煤层长壁综采: 进展、实践、科学问题[J]. 煤炭学报,2020,45(1):24−34.

    WU Yongping,YUN Dongfeng,XIE Panshi. Progress, practice and scientific issues in steeply dipping coal seams fully-mechanized mining[J]. Journal of China Coal Society,2020,45(1):24−34.

    [72] 王家臣,杨胜利,李良晖. 急倾斜煤层水平分段综放顶板“倾倒-滑塌”破坏模式[J]. 中国矿业大学学报,2018,47(6):1175−1184.

    WANG Jiachen,YANG Shengli,LI Lianghui. Toppling-slumping failure mode in horizontal sublevel top-coal caving face in steeply-inclined seam[J]. Journal of China University of Mining & Technology,2018,47(6):1175−1184.

    [73] 杨胜利,王家臣,李 明. 煤矿采场围岩智能控制技术路径与设想[J]. 矿业科学学报,2022,7(4):403−416. doi: 10.19606/j.cnki.jmst.2022.04.002

    YANG Shengli,WANG Jiachen,LI Ming. Technology path and assumptions of intelligent surrounding rock control at longwall working face[J]. Journal of Mining Science and Technology,2022,7(4):403−416. doi: 10.19606/j.cnki.jmst.2022.04.002

  • 期刊类型引用(5)

    1. 马晓敏,孙筱淞,董宪姝,樊玉萍,常明. 压滤过程中煤泥滤饼结构演化规律及组合药剂优化机理. 煤炭学报. 2024(03): 1611-1624 . 百度学术
    2. 杨长华,董宪姝,陈茹霞,樊玉萍,马晓敏,冯泽宇. 气泡对浮选精煤压滤压力及脱水性能影响机理. 洁净煤技术. 2024(05): 172-179 . 百度学术
    3. 史博文,骆建营,郑利祥,王建,郭中权,韩朝. 响应面法优化CTAB-APAM复合助滤剂强化煤泥脱水效果. 煤炭技术. 2024(12): 264-268 . 百度学术
    4. 宋洋,王宏帅,李昂,王鑫,肖作明,杜春生,李志新. 富水粉细砂层盾尾同步注浆滤饼生长速率研究. 铁道科学与工程学报. 2023(08): 2974-2986 . 百度学术
    5. 冯泽宇,董宪姝,陈茹霞. 基于分形特征的煤泥滤饼孔渗关系模型研究. 煤炭科学技术. 2023(10): 312-322 . 本站查看

    其他类型引用(0)

图(14)
计量
  • 文章访问数:  479
  • HTML全文浏览量:  48
  • PDF下载量:  1226
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-11-29
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-01-29

目录

/

返回文章
返回