Ultrafast uptake of fluoride from coal mining water by aluminum modified activated carbon prepared through one-step solid phase reaction
-
摘要:
矿井水中(F−)超标已成为制约我国西部矿区煤炭绿色开发的主要挑战之一。针对该问题,开发了机械化学法一步固相反应制备Al改性活性炭(AC-Al)的方法,解决了常规水热法改性活性炭产生废液废渣、制备周期长的问题,并实现了矿井水中F−的快速、高效去除。研究了Al添加量、pH、共存阴离子和有机物、吸附剂投加量及反应时间等对除氟性能的影响。AC-Al除氟性能与Al添加量成正比,添加量为0.32 g,吸附反应30 s时,水中F−去除率达到80%以上。pH在3~10范围内,F−去除率均大于80%,具有良好的水质适应性。吸附过程更符合Langmuir模型,即为单层吸附,理论饱和吸附量为1.47 mg/g。吸附过程符合准一级动力学模型。硫酸根离子、氯离子和碳酸氢根离子(1 000 mg/L时)、腐殖酸对F−去除没有影响,氯离子和碳酸氢根离子质量浓度为3 000 mg/L时,除氟率分别降低约21%和11%。AC-Al投加量为10 g/L时,矿井水中F−去除率达84.9%(30 s内),质量浓度从4.85 mg/L降低至0.73 mg/L,满足《地表水环境质量标准》(GB3838—2002)中F−浓度限值(I、II、III类),矿井水中F−吸附过程同样符合准一级动力学模型。元素面分布表明,Al均匀地负载于活性炭表面;F−均匀吸附在AC-Al上,与Al分布特征相似,证明Al是F−吸附潜在活性位点。X射线光电子能谱结果表明,F−吸附前后,AC-Al表面的Al元素结合能从74.20 eV升高至74.28、77.80 eV等2种状态,说明Al与F结合形成了Al-FOH、Al-F化学键,是快速稳定除氟的直接原因。同时,AC-Al吸附剂上的Al溶出量很低(0.34 μg/g)。机械化学法制备的Al改性活性炭除氟效果良好,可为除氟吸附剂制备提供新的普适性技术路径,同时为解决矿井水除氟问题提供技术支撑。
Abstract:High fluoride (F−) level in coal mining water has became one of the major challenges which restricts the green development of coal mining in western China. To resolve this problem, a mechanochemical one-step solid phase reaction method for preparing aluminum modified activated carbon (AC-Al) was developed, which avoid production of liquid and solid waste as well as long preparation period compared with conventional hydrothermal modification methods, as a result, fluoride was removed from coal mining water fast and efficiently. The effects of Al addition amount, pH, coexisting anions and organics, adsorbent dosage and reaction time on the fluorine removal capability were studied. The fluoride removal efficiency of AC-Al was proportional to the addition amount of Al, and when Al addition amount was 0.32 g, the fluoride removal from simulated water reaches >80% within 30 s. Over 80% of fluoride was removed from water under pH from 3 to 10, which showed good applicability of AC-Al for different water quality. The adsorption process fitted well with the Langmuir model, that means monolayer adsorption, and the theoretical saturated adsorption capacity of AC-Al was 1.47 mg/g. The adsorption process conformed to the pseudo-first-order kinetic model. Fluoride removal was not affected by sulfate, chloride and bicarbonate ion (
1000 mg/L), as well as humic acid, but the adsorption efficiency decreased by 21% and 11% respectively when the chloride and bicarbonate ion concentration was3000 mg/L. The removal rate of fluoride in the coal mining water reaches 84.9% when AC-Al was 10 g/L within 30 s, and the concentration was reduced from 4.85 mg/L to 0.73 mg/L, which met the requirements of “Environmental Quality Standard for Surface Water” (GB3838-2002) (Class I, II, III). The fluoride adsorption process in coal mining water conformed to the pseudo-first-order kinetic model as well. The element mapping of AC-Al showed that Al was uniformly loaded on the surface of activated carbon; and fluoride was evenly adsorbed on AC-Al which was similar to Al distribution, indicating that Al was the active site for fluoride adsorption. According to the results of X-ray photoelectron spectroscopy, the binding energy of Al increased from 74.20 eV to 74.28 eV and 77.80 eV ( two binding states), implied that the Al-FOH, Al-F were formed on the surface of AC-Al after adsorption, which is the direct cause of rapid and stable defluoridation. Meanwhile,there was very little Al dissolution from the adsorbent (0.34 μg/g). The aluminum modified activated carbon prepared by mechanochemical method had good defluoridation capacity, which could provide a new universal technical route for the preparation of adsorbents, and a support to remove fluoride from coal mining water. -
0. 引 言
氟是一种对人类健康至关重要的微量元素,广泛分布于自然环境中[1],适量摄入有助于人体骨骼和牙齿的发育,过量则会引发氟斑牙和氟骨病等[2]。《生活饮用水卫生标准》(GB5749—2022)和《地表水环境质量标准》(GB3838—2002)规定,水中F−质量浓度限值为1.0 mg/L(I、II、III类)。在我国很多地区存在水中F−超标问题,尤其是北方地区,其主要原因是土壤和地层中F−赋存水平较高。在人类活动影响下,土壤和地层中的氟化物会加速释放到水体中,导致F−超标。矿井水是煤炭开采过程中产生的受污染的地下水[3]。由于煤炭开采对地层的破坏,引起岩石(萤石矿、磷灰石矿等富氟岩石)中的含氟矿物溶解,导致矿井水中F−超标[4]。在我国晋陕蒙宁甘煤炭主产区,矿井水F−超标问题日益严重,制约了我国煤炭开发绿色可持续发展,F−超标问题亟待解决。
目前,常用的矿井水除氟方法有混凝沉淀法、吸附法、膜法等[5],其中吸附法较其他方法有操作简单、实施方便、能耗低等优点[6-7],而成为工业除氟主要方法。常用的吸附剂有沸石、蒙脱石、活性炭、活性氧化铝、树脂等[8],在众多吸附材料中,活性炭具有比表面积大、孔结构发达和成本低等特点,但未经改性的活性炭对F−的吸附性能不佳[9]。为此,许多学者对活性炭进行改性,以提高除氟性能。改性活性炭的常用方法为浸渍法,即利用含活性金属的水溶液对活性炭进行浸渍,然后通过分离、干燥、热稳定化等步骤制备而成,改性试剂包括镁、铝、铁、镧、锆等金属盐。HE等[10]用氯化镁溶液浸渍经酸化处理的活性炭,采用搅拌、离心、洗涤、干燥等步骤制得氧化镁改性活性炭,研究表明该吸附剂在较宽pH范围内(5.00~8.00)具有良好的除氟效果。SAINI等[11]将经洗涤、干燥、研磨、筛分、碱化等步骤处理的稻杆用硫酸铝和碳酸氢钠溶液浸泡,然后经搅拌、过滤、碳化、洗涤、烘干等步骤制备了Al改性活性炭,该吸附剂可去除水中超过96%的氟离子。胡之阳等[12]用硝酸镧溶液浸渍经预处理的活性炭,通过振荡、焙烧、洗涤、干燥等步骤制备了镧改性活性炭,在pH=4条件下对氟离子具有良好的吸附性能,去除率达96.6%。
浸渍法改性活性炭除氟效果良好,但在制备过程中会产生废液废渣,且制备周期长、成本较高。机械化学法是一种绿色高效的改性方法[13],它是通过外加机械能而直接引发试剂固相反应,该方法可缩短反应时间、节约成本,且避免废水产生,在实际生产中有良好应用前景[14-19]。笔者采用机械化学法制备具有良好除氟性能的Al改性活性炭(AC-Al),并系统研究其对矿井水中F-的去除性能,有望为矿井水中F−去除提供技术支持。
1. 材料与方法
1.1 材料与仪器
氟化钠(NaF,≥99%)、氯化钠(NaCl,≥99.5%)购于国药集团化学试剂有限公司,十八水硫酸铝(Al2(SO4)3·18H2O,≥99%)和无水硫酸钠(Na2SO4,≥98%)购于上海麦克林生化科技有限公司,腐殖酸钠(C9H8Na2O4)和活性炭(≥200目)购于上海阿拉丁生化科技股份有限公司。矿井水采集于内蒙古某矿井。
采用ST-Q200行星式球磨仪(北京旭鑫盛科仪器设备有限公司)制备吸附剂,采用离子色谱仪(美国 Dionex Aquion RFIC)测定水中阴离子浓度,电感耦合等离子发射光谱仪(美国 Thermo iCAP 7000)测定水中Al离子浓度,振荡箱(上海知楚仪器有限公司)用于开展吸附剂除氟性能试验,总有机碳分析仪(日本岛津TOC-L CPH)测定水中有机物浓度,扫描电镜(捷克FEI公司Nova NanoSEM450)用于对吸附剂表面元素进行表征,X射线光电子能谱仪(XPS,英格兰Thermo Scientific ESCALAB 250 Xi)用于分析原子结合能变化。
矿井水主要水质指标见表1。
表 1 矿井水主要水质指标Table 1. The major parameters of coal mining water指标名称 数值 pH 9.30 F−质量浓度/(mg·L−1) 4.85 Cl−质量浓度/(mg·L−1) 390.5 SO42-质量浓度/(mg·L−1) 78.4 HCO3−质量浓度/(mg·L−1) 730.0 Mg2+质量浓度/(mg·L−1) 4.0 Ca2+质量浓度/(mg·L−1) 6.1 Na+质量浓度/(mg·L−1) 578.4 K+质量浓度/(mg·L−1) 4.8 TOC质量浓度/(mg·L−1) 2.4 1.2 吸附剂制备方法
采用机械化学法制备AC-Al:称30.0 g活性炭和4 g Al2(SO4)3·18H2O于不锈钢球磨罐中,球料比500∶17,球磨罐转速为280 r/min,反应时间为10 min后得到AC-Al,烘干后备用。
1.3 AC-Al对F−的吸附
1.3.1 等温吸附试验
移取0.25、0.5、1.1、2.2、4.0、8.8 mL氟化钠储备液(2 g/L)至200 mL超纯水中,控制F−质量浓度分别1.13、2.26、4.98、9.95、18.10、39.81 mg/L,AC-Al投加量为10 g/L,在25 ℃,转速200 rpm条件下振荡,用0.22 μm滤膜过滤上清液用于离子色谱仪测定。
AC-Al对F−的等温吸附线可用Langmuir和Freundlich方程描述:
$$ {q}_{\text{e}}={q}_{\text{m}}\frac{{K}_{\text{L}}{C}_{\text{e}}}{1+{K}_{\text{L}}{C}_{\text{e}}} $$ (1) $$ {q}_{\text{e}}={K}_{\text{F}}{C}_{\text{e}}{}^{\tfrac{\text{1}}{{n}}} $$ (2) 式中:qe为AC-Al在吸附平衡时对F−的吸附量mg/g;qm为理论最大吸附量,mg/g;Ce为吸附平衡时溶液中F−的质量浓度,mg/L;KL为Langmuir等温吸附方程式常数,L/mg;KF为Freundlich吸附常数(mg·g−1)/(mg·L−1)1/n;n为非均质系数。
1.3.2 吸附动力学
移取1.1 mL氟化钠溶液(2 g/L)至200 mL超纯水中配制F−质量浓度为4.98 mg/L的含氟水样,AC-Al投加量为10 g/L,在25℃,转速200 r/min条件下振荡。用0.22 μm滤膜过滤上清液用离子色谱仪测定F−浓度。
称取2 g AC-Al 放入200 mL实际矿井水中(F−为4.85 mg/L), 在25℃,转速200 r/min条件下振荡反应,用0.22 μm滤膜过滤上清液用于离子色谱仪测定F−浓度。
对以上所得数据用准一级动力学和准二级动力学模型拟合,其动力学方程分别为:
$$ {q}_{t}={q}_{\text{e}}\left(1-{\text{e}}^{-{K}_{1}\text{t}}\right) $$ (3) $$ {q}_{t}=\frac{{K}_{2}{q}_{\text{e}}{}^{2}t}{1+{K}_{2}{q}_{\text{e}}t} $$ (4) 式中:qe为AC-Al在吸附平衡时对F-的吸附量,mg/g;qt为时间t时对F-的吸附量,mg/g;t为吸附时间,s;K1为准一级吸附速率常数,1/s;K2为准二级吸附速率常数,g/(mg·s)。
2. 结果与讨论
2.1 Al添加量对AC-Al除氟性能的影响
在25℃,F−质量浓度为4.98 mg/L,AC-Al投加量为10 g/L条件下,研究Al添加量对F−去除率的影响(图1)。由图1可以看出,当活性炭未负载Al时,30 s内,水中F−去除率仅为9.3%,而Al添加量为0.08、0.16、0.32 g时,30 s内水中F−去除率分别达到26.7%、63.6%、84.6%。Al添加量增加,可显著提高AC-Al除氟效果。后续试验中Al添加量均为0.32 g。
2.2 等温吸附线
根据AC-Al在25 ℃条件下吸附F−的等温曲线及Langmuir和Freundlich模型的非线性拟合结果(图2)及相关模型参数(表2)可知,Langmuir的拟合系数(R2=0.984 2)大于Freundlich模型的拟合系数(R2=0.908 0),表明该吸附过程更符合Langmuir模型,且AC-Al对F−的吸附过程以单层的化学吸附为主[20-21]。Freundlich模型中的参数1/n=0.505 0<1,说明该吸附反应是较容易发生的[22]。
表 2 Langmuir和Freundlich吸附等温线模型参数Table 2. Model parameters of Langmuir and Freundlich adsorption isotherm模型 参数 数值 Langmuir qm/(mg·g−1) 1.474 0 KL/(L·mg−1) 0.080 6 R2 0.984 2 Freundlich KF/(mg·g−1·(mg·L−1)(−1/n)) 0.183 8 1/n 0.505 0 R2 0.908 0 2.3 AC-Al对F-的吸附动力学
分别采用准一级和准二级动力学模型对AC-Al除F−进行拟合(图3),吸附在30 s内达到平衡。AC-Al对F-吸附过程更符合准一级动力学模型(表3),该吸附过程或主要为化学吸附。
表 3 AC-Al吸附F−的动力学参数Table 3. Model parameters of F− adsorption kinetics模型 参数 数值 准一级动力学 qe/(mg·g−1) 0.412 2 K1/(s−1) 0.113 6 R2 0.999 0 准二级动力学 qe/(mg·g−1) 0.433 9 K2/(g·mg−1·s−1) 0.590 4 R2 0.997 0 2.4 F−初始浓度对AC-Al除氟性能的影响
研究了F−初始浓度对吸附速率的影响,在初始浓度为5、10、20 mg/L的条件下,AC-Al投加量为10 g/L时,吸附反应均在30 s左右达到平衡(图4),表明F−初始浓度对吸附速率没有影响。与已有研究报道的吸附剂除氟速率相比[23-25],AC-Al除氟速率具有显著优势。
2.5 pH和共存离子对AC-Al除氟性能的影响
在宽范围pH条件下(试验设定为3.0、5.0、7.0和10.0),AC-Al对水中F-去除率均大于80%,pH对AC-Al的除氟性能没有显著影响(图5),表明其具有良好的水质适应性及实际应用潜力。
共存阴离子可能会与F−竞争吸附剂的活性位点,从而影响除氟效果。因此,笔者探究了SO42−、Cl−和HCO3−对F−效果的影响(图6)。发现SO42−对除氟效果影响很小,质量浓度为3 000 mg/L时,F−的去除率可达到80%。但在Cl−和HCO3−质量浓度为3 000 mg/L时,F−的去除率分别降低了约21%和11%。
2.6 共存有机物对AC-Al除氟性能的影响
腐殖酸是自然水体常见的有机物,其在每升水体中的含量有几毫克至几十毫克不等[26]。研究了不同浓度腐殖酸对AC-Al除氟的影响,结果如图7所示。当溶液中未添加腐殖酸时,F−去除率为84.8%,当向溶液中加入腐殖酸后(TOC质量浓度为6 mg/L),F−去除率几乎没有变化,说明腐殖酸对AC-Al的除氟性能无抑制作用。
2.7 矿井水中F-的吸附动力学
AC-Al对实际矿井水中F−吸附同样在30 s内达到平衡(图8),符合准一级动力学(表4)。矿井水中F−质量浓度从4.85 mg/L降低至0.73 mg/L,满足《地表水环境质量标准》(GB3838—2002)规定的水中F−浓度限值(I、II、III类水)(≤1.0 mg/L)。当反应60 min后,矿井水中Al的质量浓度从0.05 mg/L升高至0.12 mg/L(溶出~0.34 μg/g),低于《生活饮用水卫生标准》(GB5749—2022)Al的质量浓度限值0.20 mg/L,说明机械化学法制备的AC-Al在矿井水除氟过程中具有良好的稳定性且不会带来Al污染问题。
表 4 吸附F-的动力学参数Table 4. Model parameters of F- adsorption kinetics模型 参数 数值 准一级动力学 qe/(mg·g−1) 0.421 4 K1/(s−1) 0.161 6 R2 0.920 5 准二级动力学 qe/(mg·g−1) 0.469 7 K2/(g·mg−1·s−1) 0.455 3 R2 0.877 5 2.8 吸附剂投加量对去除矿井水中F-性能的影响
研究AC-Al投加量对矿井水中F−去除率的影响,结果如图9所示。随着AC-Al投加量的增加,F−去除率显著上升。当投加量为10 g/L时,F−去除率达到最大值84.4%,而投加量增加至15 g/L时,F−去除率为83.0%,基本无变化,或因为投加量过高,使得吸附剂颗粒间相互聚集,造成吸附剂利用率下降[27-28]。
2.9 元素面分布变化
采用扫描电镜能谱仪对吸附前后AC-Al表面元素的分布变化情况进行表征。Al元素均匀地分布在AC-Al表面,S与Al元素的分布特征相似(图10f和图10e),其来源于Al2(SO4)3,表明Al负载于吸附剂表面。吸附后的AC-Al表面Al元素稳定存在,表面S元素略有损失,同时在Al分布较密集的地方,检测出了F元素(图11g),表明Al是F−吸附的活性位点[11]。
2.10 表面元素结合态变化
通过XPS研究了AC-Al在实际矿井水中除氟前后表面主要元素(Al、F等)结合态的变化情况(图12a)。采用表面炭黑C1s轨道电子能量对仪器偏差(0.4 eV)进行了校正。吸附前AC-Al表面Al元素的2p轨道(Al2p)电子结合能为74.2 eV(图12b),吸附后Al元素的2p轨道电子结合态发生了显著变化,结合能升高至74.28 eV和77.80 eV(图12c)。另一方面,吸附后AC-Al表面F元素比例明显上升(图12d),并存在2种键合状态,F1s结合能分别为685.62 eV和687.64 eV。根据已有研究结果,Al和F元素比例及结合能的变化说明吸附剂表面形成了Al-FOH和Al-F等键合方式[29-31]。根据F1s的结合能变化,低结合能ScanA与高结合能ScanB分别占比22.7%和77.3%(图12d),即Al和F结合能更强的化学键(Al-F)比例高于结合能较弱的化学键(Al-FOH),这有利于吸附剂对F的快速稳定吸附,是AC-Al吸附剂抗干扰(pH、共存阴离子、有机物等)能力强,对矿井水除氟效果好的直接原因。
3. 结 论
1)通过机械化学法制备的AC-Al可快速、高效去除水中的F−,吸附过程符合Langmuir模型和准一级动力学模型。
2)强酸/碱溶液条件(pH为3~10)、较低浓度共存SO42−和有机物对F−的去除几乎无抑制作用,但高浓度Cl−和HCO3−可降低AC-Al除氟效果。
3)AC-Al在矿井水中除氟效果良好,30 s内F−去除达84.9%,Al-FOH、Al-F等化学键的形成使AC-Al具良好除氟性能,机械化学法制备的活性炭除氟吸附剂可为矿井水除氟提供技术支持。
-
表 1 矿井水主要水质指标
Table 1 The major parameters of coal mining water
指标名称 数值 pH 9.30 F−质量浓度/(mg·L−1) 4.85 Cl−质量浓度/(mg·L−1) 390.5 SO42-质量浓度/(mg·L−1) 78.4 HCO3−质量浓度/(mg·L−1) 730.0 Mg2+质量浓度/(mg·L−1) 4.0 Ca2+质量浓度/(mg·L−1) 6.1 Na+质量浓度/(mg·L−1) 578.4 K+质量浓度/(mg·L−1) 4.8 TOC质量浓度/(mg·L−1) 2.4 表 2 Langmuir和Freundlich吸附等温线模型参数
Table 2 Model parameters of Langmuir and Freundlich adsorption isotherm
模型 参数 数值 Langmuir qm/(mg·g−1) 1.474 0 KL/(L·mg−1) 0.080 6 R2 0.984 2 Freundlich KF/(mg·g−1·(mg·L−1)(−1/n)) 0.183 8 1/n 0.505 0 R2 0.908 0 表 3 AC-Al吸附F−的动力学参数
Table 3 Model parameters of F− adsorption kinetics
模型 参数 数值 准一级动力学 qe/(mg·g−1) 0.412 2 K1/(s−1) 0.113 6 R2 0.999 0 准二级动力学 qe/(mg·g−1) 0.433 9 K2/(g·mg−1·s−1) 0.590 4 R2 0.997 0 表 4 吸附F-的动力学参数
Table 4 Model parameters of F- adsorption kinetics
模型 参数 数值 准一级动力学 qe/(mg·g−1) 0.421 4 K1/(s−1) 0.161 6 R2 0.920 5 准二级动力学 qe/(mg·g−1) 0.469 7 K2/(g·mg−1·s−1) 0.455 3 R2 0.877 5 -
[1] LIU J,PENG Y,LI C,et al. A characterization of groundwater fluoride, influencing factors and risk to human health in the southwest plain of Shandong Province, North China[J]. Ecotoxicology and Environmental Safety,2021,207(3):111512.
[2] 童 庆, 徐 慧, 樊 华, 等. Al13改性羟基磷灰石的除氟性能研究[J]. 环境科学学报, 2021, 41(7): 2748−2757. TONG Qing, XU Hui, FAN Hua, et al. Study on the fluoride removal performance of Al13 modified hydroxyapatite[J]. Acta Scientiae Circumstantiae, 41(7): 2748−2757.
[3] 顾大钊,李 庭,李井峰,等. 我国煤矿矿井水处理技术现状与展望[J]. 煤炭科学技术,2021,49(1):11−18. doi: 10.13199/j.cnki.cst.2021.01.002 GU Dazhao,LI Ting,LI Jingfeng,et al. Current status and prospects of coal mine water treatment technology in China[J]. Coal Science and Technology,2021,49(1):11−18. doi: 10.13199/j.cnki.cst.2021.01.002
[4] 赵 焰,陆梦楠,孙 斌,等. 含氟矿井水混凝吸附联合除氟技术工业化应用研究[J]. 煤炭科学技术,2020,48(9):166−172. doi: 10.13199/j.cnki.cst.2020.09.021 ZHAO Yan,LU Mengnan,SUN Bin,et al. Research on industrial application of coagulation and adsorption combined with fluorine removal technology in fluorine-containing mine water[J]. Coal Science and Technology,2020,48(9):166−172. doi: 10.13199/j.cnki.cst.2020.09.021
[5] 苏双青,赵 焰,徐志清,等. 我国煤矿矿井水氟污染现状及除氟技术研究[J]. 能源与环保,2020,42(11):5−10. SU Shuangqing,ZHAO Yan,XU Zhiqing,et al. Status quo of fluoride pollution of coal mine water in China and research on fluoride removal technology[J]. China Energy and Environmental Protection,2020,42(11):5−10.
[6] 贺志丽,贺志霞,陈瑞琴. 改性活性炭对水溶液中氟离子的吸附性能[J]. 武汉工程大学学报,2012,34(1):43−47. doi: 10.3969/j.issn.1674-2869.2012.1.009 HE Zhili,HE Zhixia,CHEN Ruiqin. Adsorption of modified activated carbon to fluoride from aqueous solution[J]. Journal of Wuhan Institute of Technology,2012,34(1):43−47. doi: 10.3969/j.issn.1674-2869.2012.1.009
[7] 郑利祥,高 杰,杨建超. 载镧活性氧化铝制备及含氟废水除氟因素研究[J]. 煤炭科学技术,2018,46(9):87−92. doi: 10.13199/j.cnki.cst.2018.09.014 ZHENG Lixiang,GAO Jie,YANG Jianchao. Study on preparation of La-loaded active alumina and factors affecting fluoride removal for fluorine-containing wastewater[J]. Coal Science and Technology,2018,46(9):87−92. doi: 10.13199/j.cnki.cst.2018.09.014
[8] BAKHTA S,SADAOUI Z,LASSI U,et al. Performances of metals modified activated carbons for fluoride removal from aqueous solutions[J]. Chemical Physics Letters,2020,754:137705. doi: 10.1016/j.cplett.2020.137705
[9] HE J,YANG Y,WU Z,et al. Review of fluoride removal from water environment by adsorption[J]. Journal of Environmental Chemical Engineering,2020,8(6):104516. doi: 10.1016/j.jece.2020.104516
[10] HE Z L,HE Z F,HE Z X,et al. Effects of Co-Existing Anions on Fluoride Adsorption onto Magnesia-Amended Activated Carbon[J]. Advanced Materials Research,2012,463-464:47−51. doi: 10.4028/www.scientific.net/AMR.463-464.47
[11] SAINI A,MAHESHWARI P,TRIPATHY S S,et al. Processing of rice straw to derive carbon with efficient de-fluoridation properties for drinking water treatment[J]. Journal of Water Process Engineering,2020,34:101136. doi: 10.1016/j.jwpe.2020.101136
[12] 胡之阳,唐思远,王 静,等. 载镧活性炭对水中氟离子的吸附性能研究[J]. 河南化工,2011,28(19):36−38. doi: 10.3969/j.issn.1003-3467.2011.19.027 HU Zhiyang,TANG Siyuan,WANG Jing,et al. Study on Adsorptive Properties to Fluoride Ion of Lanthanum-loaded Activated Carbon[J]. Henan Chemical Industry,2011,28(19):36−38. doi: 10.3969/j.issn.1003-3467.2011.19.027
[13] 辛思奇,赵通林,李学伟,等. 机械活化蛇纹石吸附除磷性能及机理研究[J]. 环境科学学报,2022,42(7):1−8. XIN Siqin,ZHAO Tonglin,LI Xuewei,et al. Investigation on adsorption capacity and mechanism of phosphorus by mechanochemically activated serpentine[J]. Acta Scientiae Circumstantiae,2022,42(7):1−8.
[14] 朱日欣. 机械化学法制备水滑石及去除水中磷酸盐的性能研究[D]. 济南: 济南大学, 2021. ZHU Rixin. Study on mechanochemical synthesis of layered double hydroxide for the removal of phospahte from aqueous solution[D]. Jinan: Jinan University, 2021.
[15] HUANG Y H,LO W S,KUO Y W,et al. Green and rapid synthesis of zirconium metal–organic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds[J]. Chemical Communications,2017,53:5818−5821. doi: 10.1039/C7CC03105J
[16] MARIO B,DAILY R P,RAFAEL P,et al. Mechanochemistry: Toward Sustainable Design of Advanced Nanomaterials for Electrochemical Energy Storage and Catalytic Applications[J]. ACS Sustainable Chemistry & Engineering,2018,6(8):9530−9544.
[17] DO J L,FRISCIC T. Mechanochemistry: A Force of Synthesis[J]. Acs Cent Sci,2017,3(1):13−19. doi: 10.1021/acscentsci.6b00277
[18] ZHOU X,MIAO Y R,SUSLICK K S,et al. Mechanochemistry of Metal-Organic frameworks under pressure and shock[J]. Accounts of Chemical Research,2020,53(12):2806−2815. doi: 10.1021/acs.accounts.0c00396
[19] 赵 新,乔志华,孙玉绣,等. 机械化学法合成多配体MOF填料用于高效CO2分离[J]. 膜科学与技术,2021,41(5):11−16+25. ZHAO Xin,QIAO Zhihua,SUN Yuxiu,et al. Mechanochemical synthesis of mixed ligands MOF filler for highly efficient CO2 separation[J]. Membrane Science and Technology,2021,41(5):11−16+25.
[20] 万克记,范津津,王国强,等. 煤系腐植酸磁性颗粒对水中Pb2+和Hg2+的选择性吸附[J]. 煤炭学报,2021,46(9):2746−2754. WAN Keji,FAN Jinjin,WANG Guoqiang,et al. Humic acid magnetic nanoparticles for the selective removal of Pb2+ tand Hg2+ in water[J]. Journal of China Coal Society,2021,46(9):2746−2754.
[21] 陈红红,黄丽玫,毋福海,等. 载铝改性人造沸石对含氟水除氟效果的研究[J]. 环境科学与技术,2011,34(7):42−45,190. doi: 10.3969/j.issn.1003-6504.2011.07.012 CHEN Honghong,HUANG Limei,WU Haifu,et al. Removing fluoride from water using modified permutite[J]. Environmental Science & Technology,2011,34(7):42−45,190. doi: 10.3969/j.issn.1003-6504.2011.07.012
[22] 卢 伟,桑稳姣,李 敏,等. 介质阻挡放电等离子体老化微塑料及对Zn(II)吸附的影响[J]. 中国环境科学,2022,42(8):3744−3754. LU Wei,SANG Wenjiao,LI Min,et al. Dielectric barrier discharge plasma aging of microplastics and its effect on Zn(II) adsorption[J]. China Environmental Science,2022,42(8):3744−3754.
[23] VENCES-ALVAREZ E,VELAZQUEZ-JIMENEZ L H,CHAZARO-RUIZ L F,et al. Fluoride removal in water by a hybrid adsorbent lanthanum–carbon[J]. Journal of Colloid And Interface Science,2015,455:194−202. doi: 10.1016/j.jcis.2015.05.048
[24] MULLICK A,NEOGI S. Acoustic cavitation induced synthesis of zirconium impregnated activated carbon for effective fluoride scavenging from water by adsorption[J]. Ultrasonics sonochemistry,2018,45:65−77. doi: 10.1016/j.ultsonch.2018.03.002
[25] ZHANG J,CHEN N,TANG Z,et al. A study of the mechanism of fluoride adsorption from aqueous solutions onto Fe-impregnated chitosan[J]. Physical chemistry chemical physics:PCCP,2015,17(18):12041−12050. doi: 10.1039/C5CP00817D
[26] 施 萍. 腐殖酸对SBR中活性污泥吸附去除铜离子的影响试验研究[D]. 重庆: 重庆大学, 2016. SHI Ping. Experiment of the impact of humic acid on adsorption of copper ion by activated sludge in SBR[D]. Chongqing: Chongqing University, 2016.
[27] DAIFULLAH A A M,YAKOUT S M,ELREEFY S A. Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw[J]. Journal of Hazardous Materials,2007,147(1-2):633−643. doi: 10.1016/j.jhazmat.2007.01.062
[28] SINGH K,LATAYE D H,WASHEWAR K L et al. Removal of fluoride from aqueous solution by using bael (Aegle marmelos) shell activated carbon: Kinetic, equilibrium and thermodynamic study[J]. Journal of Fluorine Chemistry,2017,194:23−32. doi: 10.1016/j.jfluchem.2016.12.009
[29] GAO M,WANG W,CAO M,et al. Hierarchical hollow manganese-magnesium-aluminum ternary metal oxide for fluoride elimination[J]. Environmental Research,2020,188:109735. doi: 10.1016/j.envres.2020.109735
[30] HUANG L,YANG Z,LEI D,et al. Experimental and modeling studies for adsorbing different species of fluoride using lanthanum-aluminum perovskite[J]. Chemosphere,2021,263:128089. doi: 10.1016/j.chemosphere.2020.128089
[31] CHAI L,WANG Y,ZHAO N,et al. Sulfate- doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water[J]. Water Research,2013,47(12):4040−4049. doi: 10.1016/j.watres.2013.02.057
-
期刊类型引用(1)
1. 杨欢欢,王占辉,李依霖,李彩云,吴艳玲,董玉. 2020—2021年承德市生活饮用水中氟化物检测结果分析. 医学动物防制. 2024(05): 517-521 . 百度学术
其他类型引用(0)