高级检索

沁水盆地煤系气含气层段发育特征及其地质控制效应

侯晓伟, 张津铭, 朱炎铭, 周官群, 陈陆望, 王颖晋, 屈晓荣

侯晓伟,张津铭,朱炎铭,等. 沁水盆地煤系气含气层段发育特征及其地质控制效应[J]. 煤炭科学技术,2023,51(S2):141−151

. DOI: 10.13199/j.cnki.cst.2022-2081
引用本文:

侯晓伟,张津铭,朱炎铭,等. 沁水盆地煤系气含气层段发育特征及其地质控制效应[J]. 煤炭科学技术,2023,51(S2):141−151

. DOI: 10.13199/j.cnki.cst.2022-2081

HOU Xiaowei,ZHANG Jinming,ZHU Yanming,et al. Distribution and geological controls on gas-bearing section of coal measure gases in Qinshui Basin[J]. Coal Science and Technology,2023,51(S2):141−151

. DOI: 10.13199/j.cnki.cst.2022-2081
Citation:

HOU Xiaowei,ZHANG Jinming,ZHU Yanming,et al. Distribution and geological controls on gas-bearing section of coal measure gases in Qinshui Basin[J]. Coal Science and Technology,2023,51(S2):141−151

. DOI: 10.13199/j.cnki.cst.2022-2081

沁水盆地煤系气含气层段发育特征及其地质控制效应

基金项目: 

国家自然科学基金资助项目(42102208);中央高校基本科研业务费专项资金资助项目(JZ2023HGTB0236);安徽省高校协同创新资助项目(GXXT-2021-018)

详细信息
    作者简介:

    侯晓伟: (1990—),男,山西灵丘人,讲师,博士。E-mail:xwhou@hfut.edu.cn

  • 中图分类号: P618.11

Distribution and geological controls on gas-bearing section of coal measure gases in Qinshui Basin

Funds: 

National Natural Science Foundation of China(42102208); Basic Research Funds for Central Universities (JZ2023HGTB0236); Anhui Province Collaborative Innovation Funding Project for Universities (GXXT-2021-018)

  • 摘要:

    为揭示煤系气共生成藏特征及其地质控制效应,以沁水盆地石炭-二叠纪太原组-山西组煤系为研究对象,通过资料收集、现场和室内试验测试、理论分析等综合研究手段,厘定了煤系气储层空间叠置特征,定量表征了煤系气储层多尺度储集空间,判识了煤系气共生含气层段空间发育规律,明确了煤系气共生成藏类型及其地质控制效应。结果表明,海陆交互相沉积的岩性多样、旋回性叠置煤系,具备了煤系气共生成藏基础及合探共采条件,目标煤系从“无机储层”至“混合储层”到“有机储层”,有机质丰度逐渐增高,形成一个不存在自然界限的连续岩性序列。煤系气共生含气层段垂向上呈间隔式分布,共生气藏组合类型包括煤系页岩气主导型共生气藏、煤层气主导型共生气藏和多元型煤系气共生气藏。煤系气共生含气层段地质控制效应显著,煤层发育程度决定了共生含气层段的形成基础;埋藏条件造就了优势气藏类型的差异性,煤层固气能力更强,更易形成独立煤层气藏,而煤系页岩气和煤系气砂岩气成藏条件相对更为苛刻,对地质基础与时空配置条件要求极高;储层物性特征限制了煤系页岩气和煤系砂岩气的成藏潜力。研究成果有助于今后进一步深入开展煤系气共生成藏机理研究,系统完善煤系气共探合采评价体系。

    Abstract:

    To study the characteristics of coupled accumulation and determine the geological control effects on coal measures gases (CMGs), coal measures of the Carboniferous-Permian Taiyuan and Shanxi formations at Qinshui Basin were selected as the target formations. Various methods including field data collection, field/lab measurements, and theoretical analyses were applied to described the spatial superposition of CMG reservoirs, quantitatively determine the multi-scale pore system, identify the spatial development pattern of CMGs gas-bearing section, and clarify the types of CMGs coupled accumulation and geological controls. Results show that coal measures deposited at the unique marine-terrigenous depositional environment was characterized by lithological diversity and cyclic superposition which was served as the potential basics for coupled accumulation and co-exploration/development of CMGs. The abundance of the organic matter gradually increased from the “inorganic reservoir” to “organic reservoir”, forming a continuous rock sequence without a natural boundary in target coal measures. Gas-bearing sections was characterized by a vertically intermittent distribution and the dominant coupled accumulation assemblages can be subdivided into: shale gas dominated coupled accumulation type, CBM dominated coupled accumulation type, and multiple CMGs coupled accumulation type. Obviously, the effective gas-bearing sections need the appropriate combination of source, reservoir and cap. Coal reservoirs directly controlled the distribution of effective gas-bearing section. Reservoir burial conditions restricted the possibility of an effective gas-bearing section. Moreover, coals were believed to be more favorable for independent coalbed methane accumulation, whereas shale gas and sandstone gas required extremely strict geological, spatial and temporal conditions. Additionally, both organic-inorganic fabric and physical characteristics limited the potential of effective gas-bearing sections. Inspired by the findings of this study, further studies on the coupled accumulation mechanism and the co-exploration evaluation system of CMGs should be continuously conducted.

  • 摇臂壳体是采煤机的关键部件之一,其疲劳寿命直接影响采煤机的工作性能[1]。项目组基于Matlab软件编制了采煤机不同工况下的载荷计算程序,作为滚筒刚柔耦合模型的外负载,利用人工神经网络预测了各关键零部件的可靠性[2];基于实际工况,在Adams中对采煤机进行刚柔耦合动力学仿真分析,得出摇臂壳体应力分布情况,通过Nsoft疲劳分析软件进行数据处理得出摇臂壳体的疲劳寿命[3]。文献[4]以煤岩截割理论为依据,利用Workbench软件获得Adams中采煤机摇臂壳体刚柔耦合动力学仿真载荷,进而对其进行疲劳寿命估算。文献[5]通过LS−DYNA进行螺旋滚筒割煤仿真,获得采煤机螺旋滚筒载荷,利用ANSYS−nCode软件对采煤机摇臂壳体进行疲劳寿命预估。上述研究多采用单向耦合的方式对采煤机关键部件进行疲劳寿命预测,而夹矸煤岩截割、破碎是多因素耦合作用的结果。工作机构的几何参数、运动学参数以及渐变的特征、被截割煤岩的赋存条件、螺旋滚筒与煤岩相互作用关系等都会直接或间接地影响采煤机的截割破碎过程,采用DEM−MFBD双向耦合技术能够实现煤壁、滚筒和采煤机摇臂壳体三者的实时信息交流,更准确地模拟采煤机螺旋滚筒截割煤岩过程。基于动力学仿真软件提取部件动态应力已成为疲劳分析的一个热点,随机激励载荷作用下结构动应力的提取是准确预测结构疲劳寿命的关键[6]。因此,在疲劳分析中,螺旋滚筒截割含夹矸煤岩时,滚筒所受载荷的动态特性不容忽视。

    笔者基于EDEM和RecurDyn等2个软件,提出利用DEM−MFBD双向耦合技术提取螺旋滚筒截割含夹矸煤岩时动态载荷的方法。以RecurDyn软件自身的Manson−Coffin寿命准则和Goodman平均应力修正方法对采煤机摇臂壳体进行寿命预测,得到了壳体的疲劳损伤值和最小疲劳循环次数,确定了壳体的薄弱环节。

    以MG325型采煤机摇臂为工程对象,其传动系统简图如图1所示,输出端接行星减速器。在Creo 软件中,建立采煤机摇臂三维实体模型,并通过step格式文件导入动力学仿真软件RecurDyn中进行材料赋予、约束、驱动及接触条件的添加。

    图  1  MG325型采煤机摇臂传动系统简图
    A,D—一轴;B、C和E—二轴;F—三轴;G—四轴;H—五轴
    Figure  1.  Schematic of driving system of MG325 shearer rocker arm

    利用RecurDyn柔性化模块中G-manger对采煤机壳体进行基于绝对节点坐标法的Fflex柔性化操作,在Mesher界面下,通过Geo.refine细化模型,利用Assist命令选取刚性区域,采用solid4网格格式并用Automesh进行网格划分。

    采用RecurDyn中基于模态缩减技术R-Flex方法[7]以提高采煤机DEM−MFBD双向耦合的仿真速度,通过Dynamis运算器进行Rflex柔性体的转换,得到的采煤机摇臂刚柔耦合模型如图2所示。

    图  2  采煤机摇臂刚柔耦合模型
    Figure  2.  Rigid flexible coupling model of shearer rocker arm

    在离散元软件EDEM中,以兖州矿区杨村煤矿17层煤为原型建立含夹矸煤壁,中间为夹矸煤层[8],煤岩试样参数及螺旋滚筒材料参数见表1

    表  1  煤岩试样参数及螺旋滚筒材料参数
    Table  1.  Coal and rock sample parameters and spiral drum material parameters
    材料 密度/(kg·m−3 泊松比 剪切模量/MPa 坚固性系数
    螺旋滚筒 7 850 0.31 8 100
    17煤 1 280 0.28 785 1.4
    夹矸 2 460 0.24 1 460 3.4
    下载: 导出CSV 
    | 显示表格

    以半径为12 mm的颗粒建立含夹矸煤壁[9],颗粒之间接触半径设为14 mm,采煤机螺旋滚筒截割深度设为600 mm,以采煤机螺旋滚筒完全切入煤壁工况作为研究对象,如图3所示。

    图  3  含夹矸煤壁
    Figure  3.  Coal wall containing gangue

    对杨村煤矿17层的含夹矸煤岩物理、力学性质进行参数测定,按照Hertz-Mindin with bonding模型搭建颗粒之间黏结键[10],基于EDEM中的Hertz理论[11],采用本项目组基于Matlab与VB联合开发的“采煤机工作机构优化设计与计算软件(2014SR102903)”计算颗粒间黏结参数[12],其相关参数见表2

    表  2  相关黏结参数
    Table  2.  Relevant bonding parameters
    项目 法向刚度/
    (108 N·m−3
    切向刚度/
    (108 N·m−3
    法向最大
    应力/MPa
    切向最大
    应力/MPa
    煤与煤 1.2165 0.9732 8.3183 2.3573
    煤与夹矸 1.5519 1.2415 17.003 7.501
    夹矸与夹矸 2.1426 1.714 26.379 13.295
    下载: 导出CSV 
    | 显示表格

    动力学仿真软件RecurDyn和离散元仿真软件EDEM之间通过wall格式文件进行信息交流[13]。采煤机截割煤岩过程中,螺旋滚筒起着装煤和落煤的作用[14],其工作过程中始终与煤壁处于耦合状态,故采煤机螺旋滚筒是RecurDyn和EDEM信息交流的媒介。2个软件通过External SPI接口进行双向耦合,实现煤岩颗粒与几何体模型之间数据的实时交流,EDEM−RecurDyn双向耦合原理如图4所示。采煤机螺旋滚筒作为wall,采煤机螺旋滚筒截割煤岩过程中,EDEM−RecurDyn双向耦合某时刻截煤状态如图5所示,其中两者全局坐标系保持一致,Z轴的正方向为采煤机的牵引方向。

    图  4  EDEM−RecurDyn双向耦合原理示意
    Figure  4.  Schematic of EDEM−RecurDyn bidirectional coupling principle
    图  5  EDEM−RecurDyn双向耦合某时刻截煤状态
    Figure  5.  EDEM−RecurDyn bidirectional coupling coal cutting state at a certain time

    在RecurDyn中,设置采煤机牵引速度为5 m/min,滚筒转速为83.5 r/min,仿真时间为10 s,步数为10 000步。为验证两软件接口效果,在EDEM中设置每0.001 s保存一次数据,并把EDEM和RecurDyn两者后处理数据导入专业绘图软件Origin进行绘图。

    图6图7分别为采煤机螺旋滚筒三向力及合力载荷示意图,2种软件获得的图线规律基本一致由图6可得螺旋滚筒截割煤岩过程中,其侧向力即X方向围绕着零值附近剧烈波动,牵引阻力和截割阻力的合力均大于螺旋滚筒侧向力合力,且螺旋滚筒的牵引阻力合力略大于截割阻力合力,这与采煤机破煤理论及截割含夹矸煤岩载荷具有的非平衡、非线性、时变性和强耦合特点相一致[15]

    图  6  双向耦合螺旋滚筒三向力载荷
    Figure  6.  Three direction force load of bidirectional coupling spiral drum
    图  7  双向耦合螺旋滚筒三向力合力载荷
    Figure  7.  Three direction resultant force load of bidirectional coupling spiral drum

    2个软件后处理相关数据见表3, EDEM与RecurDyn两者后处理数据非常接近,相对误差较小,利用DEM−MFBD双向耦合技术的采煤机螺旋滚筒截割煤岩仿真接口效果较好。

    表  3  2个软件三向力合力后处理相关数据
    Table  3.  Two softwares post-processing relevant data of three-way force resultant N
    软件 均值 标准差 最大值 极差
    EDEM 64 852.66 16 152.23 278 754.91 278 754.91
    RecurDyn 65 034.74 16 025.20 274 909.98 274 909.98
    下载: 导出CSV 
    | 显示表格

    采煤机螺旋滚筒与煤壁的双向刚散耦合仿真后,在RecurDyn软件后处理模块中得到采煤机摇臂壳体的等效应力云图及最大值如图8所示。

    图  8  摇臂壳体等效应力云图
    Figure  8.  The equivalent stress cloud plot for rocker arm shell

    图8可知,采煤机螺旋滚筒截割煤壁过程中,最大等效应力为230.51 MPa,位于图1中代号E的齿轮轴孔处靠近采煤机截煤一侧,节点为785503,小于其壳体材料ZG20SiMn的屈服强度322.8 MPa,安全系数为1.4,该壳体属于高周疲劳。采煤机壳体等效应力较大处集中位于壳体各个齿轮轴孔处、凹槽处以及上下耳过渡处。

    复杂煤层条件下,采煤机工况恶劣,载荷具有冲击性,摇臂壳体安全系数较低,需对其进行疲劳分析。

    RecurDyn模块Durability求解器提供了Stress Life、Strain Life和Safety Life等3种疲劳算法,根据疲劳准则,采用Stress-Based life算法中的曼森−科芬(Manson−Coffin)应力寿命方程式计算疲劳寿命[16],应力−寿命曲线(S-N曲线)的Manson−Coffin应力疲劳寿命方程如式(1)所示。

    $$ \frac{{\Delta \sigma }}{2} = {\sigma '}_{\mathrm{f}}{(2{N_{\mathrm{f}}})^b} $$ (1)

    式中:$ \Delta \sigma /2 $为应力循环幅值,MPa;$ {\sigma '}_{\mathrm{f}} $为疲劳强度系数,MPa;$ 2{N_{\mathrm{f}}} $为寿命;b为疲劳强度指数。

    在RecurDyn中新建壳体材料ZG20SiMn数据库,通过对ZG20SiMn材料进行疲劳试验并利用Matlab拟合曲线得到疲劳强度系数$ {\sigma '}_{\mathrm{f}} $为861 MPa、疲劳强度指数b为−0.09127、极限抗拉强度为510 MPa、材料弹性模量为2.08×105 MPa、泊松比为0.29[17]等相关数据,对式(1)两端对数求解得式(2),按照对数线性关系生成S-N拟合曲线,并对式(2)的S-N曲线进行修正,加权因子WF计算如式(3)所示,式中缺口系数kf为2;尺寸因子md为0.62;mt加载方式为0.85;表面系数ms为2,其他因素系数mo为1[18],结果如图9所示。

    图  9  ZG20SiMn S-N曲线
    Figure  9.  ZG20SiMn S-N curve
    $$ \lg \left(\frac{{\Delta \sigma }}{2}\right) = \lg (861) - 0.091\,27\lg (2{N_{\mathrm{f}}}) $$ (2)
    $$ {W_{\mathrm{F}}} = \frac{{{k_{\mathrm{f}}}}}{{{m_{\mathrm{d}}} {m_{\mathrm{t}}} {m_{\mathrm{s}}} {m_{\mathrm{o}}}}} $$ (3)

    采用Goodman函数对摇臂壳体平均应力进行保守修正[19-20],如式(4)所示。

    $$ \frac{{{\sigma _{\mathrm{a}}}}}{{{S_{\mathrm{e}}}}} + \frac{{{\sigma _{\mathrm{m}}}}}{{{S_{\mathrm{u}}}}} = 1 $$ (4)

    式中:$ {\sigma _{\mathrm{a}}} $为应力幅,MPa;$ {S_{\mathrm{e}}} $为失效时最大应力幅,MPa;$ {\sigma _{\mathrm{m}}} $为平均应力,MPa;$ {S_{\mathrm{u}}} $为极限强度,MPa。

    采取Bi-Axial模式并应用于Manson-Coffin应力疲劳寿命分析标准定义横向载荷[21],通过式(5)确定应力载荷比。

    $$ \gamma = \frac{{\displaystyle\sum\limits_i^n {{{({\sigma _{{x}}} {\sigma _{{y}}})}_i}} }}{{\displaystyle\sum\limits_i^n {{{({\sigma _{{x}}} {\sigma _{{x}}})}_i}} }} $$ (5)

    式中:i为每个时间步长;n为时间步长总数;$ {\sigma _{{x}}} $和$ {\sigma _{{y}}} $分别为主要和次要加载方向。

    对主要加载方向上的应力进行雨流计数,得到每个循环的应力幅和平均应力后,按照式(6)和式(7)分别对其应力幅和平均应力进行更新。

    $$ \frac{{\Delta \overline \sigma }}{2} = (\sqrt {1 - \gamma + {\gamma ^2}} )\frac{{\Delta \sigma }}{2} $$ (6)
    $$ \overline {{\sigma _m}} = (1 + \gamma ){\sigma _m} $$ (7)

    以采煤机螺旋滚筒转动一转作为采煤机工作最小循环,进行雨流计数并按照Palmgren-Miner准则进行计算,求出壳体薄弱环节循环次数及疲劳寿命云图,如图10所示。

    图  10  摇臂壳体疲劳寿命云图
    Figure  10.  Cloud chart of fatigue life of rocker arm shell

    图10可见,采煤机摇臂壳体循环次数最小节点为827496,循环次数为8.3215×106次,位于图1中代号E的齿轮轴孔靠近采煤机截煤一侧,疲劳损伤值为1.2017×10−7,最大等效应力节点785503循环次数为1.2015×107次,疲劳损伤值为8.3226×10−8,采煤机壳体疲劳寿命云图规律与应力云图规律相近,可为后续壳体进一步优化提供参考。

    1)基于DEM−MFBD双向耦合技术模拟采煤机螺旋滚筒截割含夹矸煤壁的动态过程,获得采煤机摇臂壳体的最大等效应力为230.51 MPa,其零件最小寿命循环次数为8.3215×106次,位于采煤机摇臂壳体齿轮轴孔处,其等效应力云图和疲劳寿命云图可为后续壳体进一步优化提供参考。

    2)研究表明采用DEM−MFBD双向耦合技术模拟煤岩截割动态过程,其仿真曲线在EDEM和RecurDyn两款不同的仿真软件中耦合效果较好,验证了此方法的可行性,且能够较好地实现零件动态应力的疲劳分析,很好地避免了不同软件之间信息交互而导致的数据部分丢失现象,可以及时发现大型设备在复杂载荷作用下的薄弱环节,为其后续优化提供参考,可有效降低研发成本,提高企业经济效益。

    3)基于虚拟样机技术、离散元理论和多柔体动力学分析方法,构建采煤机截割复杂煤岩体双向耦合模型,可为复杂煤层赋存条件下工作的大型工矿装备关键部件的疲劳寿命分析与预测提供一种新的方法和手段,本研究方法可为复杂条件下工矿装备大型结构件的优化设计提供参考。

  • 图  1   研究区构造发育特征及煤系气储层发育特征

    Figure  1.   Geological structure and reservoir distribution of study area

    图  2   煤系气储层有机−无机组分连续性评价图谱

    Figure  2.   Precession diagram of organic-inorganic fabric for coal measures

    图  3   沁水盆地区域目标层煤系气共生成藏有效含气层段空间发育特征

    Figure  3.   Spatial development characteristics of effective gas-bearing sections within coal measures in Qinshui Basin

    图  4   沁水盆地煤系气气体组分随埋深的递变规律

    Figure  4.   Gas composition variation of CMGs with changing in burial depth

    图  5   含气层段和贫气层段间煤系泥页岩中全尺度孔隙发育特征差异对比

    Figure  5.   Difference of full scale pore structures between gas-bearing and gas-free sections in mud-shale reservoirs

    图  6   含气层段和贫气层段间煤系砂岩中全尺度孔隙发育特征差异对比

    Figure  6.   Difference of full scale pore structures between gas-bearing and gas-free sections in sandstone reservoirs

    图  7   含气层段和贫气层段间煤系泥页岩和煤系砂岩中物质组分含量对比

    Figure  7.   Difference of organic and inorganic matter contents between gas-bearing and gas-free sections in mud-shales and sandstones

    表  1   沁水盆地榆社-武乡Y5井煤系气共生含气层段分布及发育特征

    Table  1   Distribution of effective gas-bearing sections in well Y5 in Yushe-Wuxiang Block, Qinshui Basin

    含气层段井段/m厚度/m层位岩性组合气测显示解译结果
    层段11 464.68~1 476.3511.67山西组煤、泥页岩、粉砂岩全烃由1.384%增到7.206%,净增值:5.822%含气层
    层段21 492.5~1 50714.50山西组煤、泥页岩、粉砂岩、细砂岩全烃由2.157%增到13.576%,净增值:11.419%气层
    层段31 527~1 54417太原组砂质泥岩、泥岩、粉砂岩、细砂岩及煤全烃由5.685%增到12.364%,净增值:6.679%含气层
    层段41 592.72~1 611.5218.8太原组煤、粉砂岩、泥岩及石灰岩全烃由8.822%增到22.525%,净增值:13.703%气层
    层段51 639.12~1 654.4215.30太原组泥页岩、煤及炭质泥页岩全烃由7.166%增到38.883%,净增值:31.717%气层
    下载: 导出CSV
  • [1] 邹才能,杨智,黄士鹏,等. 煤系天然气的资源类型、形成分布与发展前景[J]. 石油勘探与开发,2019,46(3):433−442.

    ZOU Caineng,YANG Zhi,HUANG Shipeng,et al. Resource types,formation,distribution and prospects of coal-measure gas[J]. Petroleum Exploration and Development,2019,46(3):451−462.

    [2] 邹才能,杨 智,董大忠,等. 非常规源岩层系油气形成分布与前景展望[J]. 地球科学,2022,47(5):1517−1533.

    ZOU Caineng,YANG Zhi,DONG Dazhong,et al. Formation,distribution,and prospect of unconventional hydrocarbons in source rock strata in China[J]. Earth Science,2022,47(5):1517−1533.

    [3] 侯晓伟,朱炎铭,付常青,等. 沁水盆地压裂裂缝展布及对煤系“三气”共采的指示意义[J]. 中国矿业大学学报,2016,45(4):729−738.

    HOU Xiaowei,ZHU Yanming,FU Changqing,et al. Fractures distribution of Qinshui basin and its indicative significance to unconventional gas co-exploration in coal measures[J]. Journal of China University of Mining & Technology,2016,45(4):729−738.

    [4] 屈晓荣,朱炎铭,张庆辉. 海陆过渡相煤系非常规天然气储层特征及共探共采浅析—以榆社-武乡区块为例[J]. 西安石油大学学报,2017,32(3):1−8.

    QU Xiaorong,ZHU Yanming,ZHANG Qinghui. Reservoir Characteristics and co-exploration and concurrent production analysis of unconventional natural gases in transitional facies coal measures:taking Yushe-Wuxiang block as an example[J]. Journal of Xi’an Shiyou,2017,32(3):1−8.

    [5] 林中月,刘 亢,魏迎春. 沁水盆地中北部石炭-二叠纪煤系构造演化特征[J]. 煤田地质与勘探,2020,68(3):1−7.

    LIU Zhongyue,LIU Ka ng,WEI Yingchun. characteristics of tectonic evolution of carboniferous-permian coal measures in the north-central Qinshui basin[J]. Coal Geology & Exploration,2020,68(3):1−7.

    [6]

    LI Ruirui,HOU Xiaowei,CHEN Luwang,et al. Multifractal investigation on multi-scale pore structure heterogeneity of high rank coal reservoirs[J]. Natural Resources Research,2022,31(3):1665−1685. doi: 10.1007/s11053-022-10046-7

    [7] 蔡益栋,高国森,刘大锰,等. 鄂尔多斯盆地东缘临兴中区煤系气富集地质条件及成藏模式[J]. 天然气工业,2022,42(11):25−36.

    CAI Yidong,GAO Guosen,LIU Dameng,et al. Geological conditions for coal measure gas enrichment and accumulation models in Linxingzhong Block along the eastern margin of the Ordos Basin[J]. Natural Gas Industry,2022,42(11):25−36.

    [8] 侯晓伟. 沁水盆地深部煤系气储层控气机理及共生成藏效应[D]. 徐州:中国矿业大学,2020.

    HOU Xiaowei. Study on gas controlling mechanism and coupled accumulation of deep coal measure gases in Qinshui Basin [J]. Xuzhou:China University of Mining and Technology,2020.

    [9]

    LI Yong,YANG Jianghao,PAN Zhejun,et al. Unconventional natural gas accumulations in stacked deposits:a discussion of upper paleozoic coal-bearing strata in the east margin of the Ordos basin,China[J]. Acta Geologica Sinica (English Edition),2019,93(1):111−129. doi: 10.1111/1755-6724.13767

    [10] 曹代勇,聂 敬,王安民,等. 鄂尔多斯盆地东缘临兴地区煤系气富集的构造-热作用控制[J]. 煤炭学报,2018,43(6):1526−1532.

    CAO Daiyong,NEI Jing,WANG Anmin,et al. Structural and thermal control of enrichment conditions of coal measure gases in Linxing block of eastern Ordos Basin[J]. Journal of China Coal Society,2018,43(6):1526−1532.

    [11] 胡进奎,杜文凤. 浅析煤系地层“三气合采”可行性[J]. 地质论评,2017,63(S1):83−84.

    HU Jinkui,DU Wenfeng. Analysis on Feasibility of Three Gas Co-Exploration in Coal Measure Strata[J]. Geological Review,2017,63(S1):83−84.

    [12] 傅雪海,张 苗,张庆辉,等. 山西省域石炭二叠纪煤系泥页岩气储层评价指标体系[J]. 煤炭学报,2018,43(6):1654−1660.

    FU Xuehai,ZHANG Miao,ZHANG Qinghui,et al. Evaluation index system for the Permo-Carboniferous mud shale reservoirs of coal measures in Shanxi Province[J]. Journal of China Coal Society,2018,43(6):1654−1660.

    [13] 秦 勇,吴建光,李国璋,等. 煤系气开采模式探索及先导工程示范[J]. 煤炭学报,2020,45(7):2513−2522.

    QIN Yong,WU Jianguo,LI Guozhang,et al. Patterns and pilot project demonstration of coal measures gas production[J]. Journal of China Coal Society,2020,45(7):2513−2522.

    [14]

    CUMELLA S P,WOODRUFF W F,REVIL A. Piceance Basin Mesaverde anomalous self-potential response:Identification of capillary seals in a basin-centered gas accumulation[J]. AAPG Bulletin.,2017,101(1):19−37. doi: 10.1306/06201615130

    [15]

    HOU Bing,CUI Zhuang,DING Jihui,et al. Perforation optimization of layer-penetration fracturing for commingling gas production in coal measure strata[J]. Petroleum Science,2022,19(7):1718−1734.

    [16] 张 健,申 建,朱苏阳,等. 鄂尔多斯盆地东缘煤系气合采接替方案优化[J]. 煤炭学报,2022,47(11):3965−3974.

    ZHANG Jian,SHEN Jian,ZHU Suyang,et al. Productivity prediction and gas production technology of superimposed coal measure gas in the eastern margin of Ordos Basin[J]. Journal of China Coal Society,2022,47(11):3965−3974.

    [17]

    HOU Xiaowei,WANG Yang,ZHU Yanming,et al. Pore structure complexity and its significance to the petrophysical properties of coal measure gas reservoirs in Qinshui Basin,China[J]. Frontiers of Earth Science,2021,15(4):860−875. doi: 10.1007/s11707-021-0919-4

    [18] 刘 闯. 鄂尔多斯盆地东缘上古生界煤系气共生组合模式[J]. 复杂油气藏,2022,15(2):1−7.

    LIU Chuang. Symbiotic combination model of coal measures and gas in Upper Paleozoic in the eastern margin of Ordos Basin[J]. Complex Hydrocarbon Reservoirs,2022,15(2):1−7.

    [19]

    HOU Xiaowei,ZHU Yanming,YAO Haipeng. Coupled Accumulation Characteristics of Carboniferous-Permian Coal Measure Gases in the Northern Ordos Basin,China[J]. Arabian Journal of Geosciences,2018,11(7):156. doi: 10.1007/s12517-018-3512-8

    [20] 朱炎铭,侯晓伟,崔兆帮,等. 河北省煤系天然气资源及其成藏作用[J]. 煤炭学报,2016,41(1):202−211.

    ZHU Yanming,HOU Xiaowei,CUI Zhaobang,et al. Resources and reservoir formation of unconventional gas in coal measure,Hebei Province[J]. Journal of China Coal Society,2016,41(1):202−211.

    [21] 谢英刚,孟尚志,万 欢,等. 临兴地区煤系地层多类型天然气储层地质条件分析[J]. 煤炭科学技术,2015,43(9):71−75.

    XIE Yinggang,MENG Shangzhi,WAN Huan,et al. Analysis on geological conditions of multi type natural gas reservoir in coal measure strata of Linxing area[J]. Coal Science and Technology,22015,43(9):71−75.

    [22]

    HOU Xiaowei,LIU Shimin,ZHU Yanming,et al. Experimental and Theoretical Investigation on Sorption Kinetics and Hysteresis of Nitrogen,Methane,and Carbon Dioxide in Coals[J]. Fuel,2020,268:117349. doi: 10.1016/j.fuel.2020.117349

    [23] 钟建华,刘 闯,吴建光,等. 鄂尔多斯盆地东缘临兴地区煤系气共生成藏特征[J]. 煤炭学报,2018,43(6):1517−1525.

    ZHONG Jianhua,LIU Chuang,WU Jianguang,et al. Symbiotic accumulation characteristics of coal measure gas in Linxing Block,eastern Ordos Basin[J]. Journal of China Coal Society,2018,43(6):1517−1525.

    [24] 郑力会,魏攀峰,张 峥,等. 联探并采:非常规油气资源勘探开发持续发展自我救赎之路[J]. 天然气工业,2017,37(5):126−140.

    ZHENG Lihui,WEI Panfeng,ZHANG Zheng,et al. Joint exploration and development:A self-salvation road to sustainable development of unconventional oil and gas resources[J]. Natural Gas Industry,2017,37(5):126−140.

    [25] 秦 勇,申 建,史 锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报,2022,47(1):371−387.

    QIN Yong,SHEN Jian,SHI Rui. Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society,2022,47(1):371−387.

    [26] 毕彩芹,周 阳,姚忠岭,等. 鸡西盆地梨树井田煤系气储层特征及改造工艺探索[J]. 煤炭科学技术,2021,49(12):127−137.

    BI Caiqin,ZHOU Yang,YAO Zhongling,et al. Exploration of coal-measure gas reservoir characteristics and reforming technology in Lishu Mine Field of Jixi Basin[J]. Coal Science and Technology,2021,49(12):127−137.

    [27] 郭 晨,秦 勇,易同生,等. 煤层气合采地质研究进展述评[J]. 煤田地质与勘探,2022,50(3):42−57.

    GUO Chen,QIN Yong,YI Tongsheng,et al. Review of the progress of geological research on coalbed methane co-production[J]. Coal Geology & Exploration,2022,50(3):42−57.

    [28]

    HOU Xiaowei,ZHU Yanming,CHEN Shangbin,et al. Gas flow mechanisms under the effects of pore structures and permeability characteristics in source rocks of coal measures in Qinshui Basin,China[J]. Energy Exploration & Exploitation,2017,35(3):338−355.

    [29] 秦 勇. 中国煤系气共生成藏作用研究进展[J]. 天然气工业,2018,38(4):26−36.

    QIN Yong. Research progress of symbiotic accumulation of coal measure gas in China[J]. Natural Gas Industry,2018,38(4):26−36.

    [30] 杨玉平,钟建华,孙玉凯,等. 吐哈盆地水西沟群“近生近储”型致密砂岩气藏特征及其成藏机制[J]. 中国石油大学学报,2014,38(4):34−41.

    YANG Yuping,ZHONG Jianhua,SUN Yukai,et al. Discussion on characteristics and accumulation mechanisms of “proximal-generation and proximal storage” type tight sandstone gas accumulations in Shuixigou Group,Turpan-Hami Basin[J]. Journal of China University of Petroleum,2014,38(4):34−41.

    [31] 秦 勇. 煤系气聚集系统与开发地质研究战略思考[J]. 煤炭学报,2021,46(8):2387−2399.

    QIN Yong. Strategic thinking on research of coal measure gas accumulation system and development geology[J]. Journal of China Coal Society,2021,46(8):2387−2399.

    [32]

    HOU Xiaowei,LIU Shimin,LI Guofu,et al. Quantifying and modeling of in situ stress evolutions of coal reservoirs for helium,methane,nitrogen and CO2 Depletions[J]. Rock Mechanics and Rock Engineering,2021,54(8):3701−3719. doi: 10.1007/s00603-021-02511-1

    [33] 张吉振,李贤庆,张学庆,等. 煤系页岩储层孔隙结构特征和演化[J]. 煤炭学报,2019,44(S1):195−204.

    ZHANG Jizhen,LI Xianqing,ZHANG Xueqing,et al. Microscopic characteristics of pore structure and evolution in the coal-bearing shale[J]. Journal of China Coal Society,2019,44(S1):195−204.

    [34]

    HOU Xiaowei,ZHU Yanming,CHEN Shangbin,et al. Investigation on Pore Structure and Multifractal of Tight Sandstone Reservoirs in Coal Bearing Strata Using LF-NMR Measurements[J]. Journal of Petroleum Science and Engineering,2020,187:106757. doi: 10.1016/j.petrol.2019.106757

    [35] 龚 卓,陈尚斌,李学元,等. 基于AFM的巫溪2井页岩储层孔隙特征研究[J]. 煤炭科学技术,2022,50(7):216−223.

    GONG Zhuo,CHEN Shangbin,LI Xueyuan,et al. Research on pore characteristics of shale reservoir in Wuxi No. 2 well based on AFM[J]. Coal Science and Technology,2022,50(7):216−223.

    [36] 宋 岩,高凤琳,唐相路,等. 海相与陆相页岩储层孔隙结构差异的影响因素[J]. 石油学报,2020,41(12):1501−1512.

    Song Yan,Gao Fenglin,Tang Xianglu,et al. Influencing factors of pore structure differences between marine and terrestrial shale reservoirs[J]. Acta Petrolei Sinica,2020,41(12):1501−1512.

    [37] 张曼婷,付 炜,姜秉仁,等. 黔北煤田上二叠统龙潭组煤系页岩气储层特征与勘探潜力评价[J]. 煤炭科学技术,2022,50(8):133−139.

    ZHANG Manting,FU Wei,JIANG Bingren,et al. Shale gas reservoir characteristics and exploration potential analysis of Longtan Formation of the upper Permian Series in Qianbei Coalfield[J]. Coal Science and Technology,2022,50(8):133−139.

  • 期刊类型引用(3)

    1. 曹现刚,段雍,王国法,赵江滨,任怀伟,赵福媛,杨鑫,张鑫媛,樊红卫,薛旭升,李曼. 煤矿设备全寿命周期健康管理与智能维护研究综述. 煤炭学报. 2025(01): 694-714 . 百度学术
    2. 业巧云. 采煤机螺旋滚筒工作性能优化分析. 山东煤炭科技. 2024(07): 93-97 . 百度学术
    3. 宋羽. 中厚煤层大功率采煤机摇臂壳体力学分析. 机械管理开发. 2024(11): 28-30 . 百度学术

    其他类型引用(0)

图(7)  /  表(1)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  11
  • PDF下载量:  25
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-11-30
  • 网络出版日期:  2024-02-01
  • 刊出日期:  2023-12-29

目录

/

返回文章
返回