New energy exploitation in coal-endowed areas under the target of “double carbon”: a new path for transformation and upgrading of coal mines in the future
-
摘要:
“双碳”目标下我国能源结构正加速转型升级,以太阳能、风能、地热能等为代表的新能源正逐步替代传统煤、油、气等化石能源。推动煤炭和新能源优化组合是实现“双碳”目标提出的新要求,也是未来煤矿绿色低碳转型的重要路径。分析我国赋煤区能源分布特点,发现以煤为主的化石能源分布区域,往往也是太阳能、风能、热能等新能源富集区,适宜于在赋煤区大规模开发新能源。研究结果如下:① 提出了赋煤区全生命周期能源开发理念,将赋煤区能源发展历程划分为煤炭、煤炭与新能源优化组合、新能源3个阶段,并搭建了赋煤区新能源开发总体框架;② 在太阳能开发方面,基于赋煤区与太阳能资源富集区的重叠关系对赋煤区太阳能理论储量与开发潜力进行评估,提出了分布式/集中式光伏发电、太阳能热利用和太阳能制氢等光化利用耦合的太阳能分级综合利用方案,实现太阳能多元高效转化与利用以及与煤炭资源的协同开采;③ 在地热能开发方面,基于赋煤区与地热能资源富集区的重叠关系对赋煤区地热能开发潜力进行评估,结合矿井地热形成机理、分布规律和矿井采掘情况,构建深部矿产资源与地热资源协同开发系统,形成包含矿井热水型、岩温型、混合型的矿井地热能分级开采与热用户梯级利用的综合应用方案,实现矿井地热化“害”为“利”的战略转移;④ 在风能开发方面,基于赋煤区与风能资源富集区的重叠关系对赋煤区风能开发潜力进行评估,提出赋煤区风力发电、风力提水、风力致热技术的应用途径,构建了井上井下设施电力供应、水循环动力、供暖自足以及并网发电的风能利用框架;⑤ 考虑到目前煤炭地下开采普遍以垮落法管理顶板,垮落空间无法有效用于地下储能,提出“储能库超前规划→功能性储能库构筑→储释能运行管控”的矿井采空区储能技术路径;⑥ 针对赋煤区多能互补综合能源系统(MCIES)复杂多变特征,建立了赋煤区能源生产、供给单元的异质能量流耦合模型,统一了MCIES内部不同能源集线器的数学表达式,提出了赋煤区MCIES能源管理与优化逻辑方法以及运营模式。旨在探讨煤炭和新能源的组合路径,论证赋煤区规模化开发新能源可行性,赋予赋煤区全生命周期能源供给的功能,形成集“矿—风—光—热—储”一体化的煤炭企业能源产业发展新模式。
Abstract:Under the “dual carbon” goal, China’s energy structure is accelerating transformation and upgrading, and new energy represented by solar energy, wind energy, geothermal energy is gradually replacing traditional coal, oil, gas and other fossil energy. Promoting the optimal combination of coal and new energy is a new requirement for achieving the “double carbon” goal, and also an important path for the green and low-carbon transformation of coal mines in the future. Based on the analysis of the energy distribution characteristics of coal-endowed areas in China, it is found that the fossil energy distribution areas dominated by coal are often also areas rich in solar energy, wind energy, thermal energy and other new energy, which are suitable for large-scale development of new energy in in coal-endowed areas. The research results are as follows: ① Put forward the concept of full life cycle energy development in coal-endowed areas, divide the energy development process in coal-endowed areas into three stages: coal, coal and new energy optimization combination, and new energy, and build a general framework for new energy development in coal-endowed areas; ② In terms of solar energy development, the theoretical reserves and development potential of solar energy in the mining area are evaluated based on the overlapping relationship between the coal occurrence and the solar energy resource rich area, and a hierarchical comprehensive utilization scheme of solar energy coupled with photochemical utilization, such as distributed/centralized photovoltaic power generation, solar thermal utilization and solar hydrogen production, is proposed to achieve diversified and efficient conversion and utilization of solar energy and collaborative mining with coal resources; ③ In terms of geothermal energy development, the potential of geothermal energy development in coal-endowed areas is evaluated based on the overlapping relationship between the coal bearing area and the geothermal energy resource rich area. In combination with the formation mechanism, distribution law and mining situation of the mine geothermal, a collaborative development system of deep mineral resources and geothermal resources is established to form a comprehensive application scheme for the graded mining of mine geothermal energy and the cascade utilization of thermal users, including the hot water type, rock temperature type and mixed type of the mine, realizing the strategic transfer of “harm” to “benefit” of mine geothermal; ④ In terms of wind energy development, the potential of wind energy development in the mining area is evaluated based on the overlapping relationship between the coal occurrence and the wind energy resource rich area, and the application approaches of wind power generation, wind water lifting, and wind heating technologies in the coal bearing area are proposed, and the wind energy utilization framework for power supply, water cycle power, heating self-sufficiency, and grid connected power generation of underground and underground facilities is constructed; ⑤ Considering that the roof is generally managed by the caving method in the current underground coal mining, and the caving space cannot be effectively used for underground energy storage, a technical path of energy storage in the goaf of the mine is proposed, which is “advanced planning of energy storage reservoir → construction of energy storage reservoir using functional backfilling→ Energy storage and release operation control”; ⑥ In view of the complex and changeable characteristics of multi energy complementary integrated energy system (MCIES) in coal-endowed areas, a heterogeneous energy flow coupling model of energy production and supply units in coal-endowed areas is established, the mathematical expressions of different energy hubs in MCIES are unified, and the energy management and optimization logic method and operation mode of MCIES in coal-endowed areas are proposed. This paper aims to explore the combination path of coal and new energy, demonstrate the feasibility of large-scale development of new energy in coal-endowed areas, endow coal bearing areas with the function of energy supply in the whole life cycle, and form a new mode of energy industry development of coal enterprises integrating “mine-wind-light-heat-storage”.
-
0. 引 言
水平井完井与增产技术逐渐成为煤层气高效开发的关键技术,并面临更加复杂的煤层条件[1]。在各种地质作用下,煤体内部受破坏变形程度差异导致煤储层垂直方向煤体结构呈现显著差异性,例如沁水盆地南部山西组3号煤层上部煤体结构以原生结构为主,中、下部主要为碎裂与碎粒结构[2-3]。鄂东盆地东南缘的韩城区块山西组5号煤的煤体结构自上而下依次呈现原生、碎裂和碎粒结构,区块平面内三种煤体结构呈现分区、分带特征[4]。同时,煤层水平井钻进过程中地层起伏变化,导致实钻井眼轨迹在不同煤体结构的煤岩之间交互穿行。在碎软煤层顶板钻水平井的成功率明显高于碎软煤层[5-7],配合定向射孔与压裂技术进行煤层改造增产,但是受地质构造及导向仪器精度等因素影响,煤层顶板水平钻进中也经常钻遇碎软煤层。
原生结构或以原生结构为主的碎裂煤体内部破坏变形程度相对较低[8],可通过水平井分段压裂技术进行增产改造,产气过程中煤粉产出量少,在沁水盆地南部、鄂东盆地东缘与阜康地区等煤层水平井分段密集压裂后,平均日产气量超过1×104 m3[2,9]。碎粒和糜棱结构的煤层由于煤体内部结构破碎变形程度较高,水力压裂过程中难以形成有效人工裂缝,压裂后煤粉产出严重,影响单井煤层气产量和采收率 [10-12]。常规油气井针对储层非均质性、含水及出砂问题,相关人员提出了水平井筛管分段完井工艺技术,水平井内完井筛管外安装有管外封隔器,后续下入作业管柱进行管外封隔器胀封作业 [13]。碎裂与碎粒结构的煤体内部裂缝发育、含气量与渗透率相对较高,水平井双管柱筛管完井技术能够提高煤体结构破碎的煤层水平井完井筛管下入成功率,有效支撑井壁、控制煤粉并消除井壁煤岩钻井液伤害 [14-17]。煤层气水平井注氮技术可解除筛管外环空与近井煤层的堵塞,沟通煤层内部裂缝与孔隙,提高煤层渗透性与甲烷采收率[18-19]。但是,研究与实践表明笼统注气方式对水平井段整体增产与提采效率很低[20-22];同时,多种煤体结构交互分布使煤层呈现力学与物性特征的强非均质性,笼统注氮方式无法满足复杂煤体结构煤层水平井增产及提采需求。连续油管带双封隔器拖动压裂技术是油气井增产的成熟工艺技术[23-24],对碎软煤层分段筛管完井后进行注氮,可解决笼统注氮方式无法有效改造强非均质煤层的问题。水平井下入套管(不固井)后水力喷射分段压裂技术被应用于软硬交互煤层增产,原生结构的煤层井段人工压裂形成的裂缝扩展延伸至软煤层,以提高软硬煤的压裂增产效果[3],但是该技术未封隔套管与井壁之间环空,未能消除煤层强非均质性对煤储层改造的影响。
复杂煤体结构煤储层是指同煤层中煤体结构破坏变形差异性强,呈现原生、碎裂、碎粒和糜棱结构交互分布,导致煤储层力学与物性特征呈现强非均质性。现场工程实践表明,复杂媒体结构煤储层中水平井实钻井筒剖面多呈现不同的煤体结构相见分布,单一的完井与增产技术无法适应复杂煤体结构煤层水平井高效开发需求。因此,笔者开展复杂煤体结构煤储层水平井复合管柱完井方法研究,根据煤层的煤体结构、力学及物性特征选择筛管完井或套管射孔完井,并采用管外封隔器分段封隔完井管柱与井壁之间的环空,可为水力喷射、可控冲击波、注氮气和水力压裂等适应性增产作业提供有利条件,为煤层气稳定产出与煤粉控制提供保障。
1. 复合管柱完井技术机理
1.1 复合管柱完井工艺机理
煤层水平井复合管柱完井技术主要包括采用筛管完井与套管完井,根据水平井段煤层煤体结构差异性,首先优化设计完井筛管与套管组合方式,进而确定管外封隔器的数量和安装位置,如图1所示。管外封隔器用于封隔井眼与完井管柱的环空,以实现复杂煤体结构煤层水平井眼分段完井。完井管柱内部为作业油管柱,两层管柱通过悬挂器与上部钻杆连接并延伸至井口。内层管柱在外层复合完井管柱(筛管柱+套管柱)下入过程中可建立井筒水力循环,清除井底堆积的煤屑,保障完井管柱下入安全。完井管柱下至设计位置后,通过内层管柱向煤层井筒注入破胶液,降解滞留的钻井液,清除井壁泥饼,恢复近井煤储层的渗透性。最后,通过内层管柱管底部组合逐个对完井管柱外封隔器进行液压胀封,完成水平井段煤层的分段完井作业。
煤层水平井眼的分段与封隔是复合管柱完井与增产的前提,水平井复合管柱完井工艺采用双管柱结构与滑套式注液装置。如图1所示,双管柱外层为筛管、套管、裸眼封隔器、定位套管、密封筒与引鞋(带侧向水眼)组成的完井管柱,简称外层管柱;内层为油管、2个管内封隔器、滑套式注液装置、单向阀与旋转喷头组成的作业管柱,简称内层管柱,双管柱通过悬挂器与上部钻杆连接,并延伸至井口。在双管柱下入过程中,旋转喷头位于密封筒与引鞋之间的套管内,钻井液流经钻杆、膨胀式悬挂器与内管柱后,由引鞋喷射冲洗井底堆积的煤屑,钻井液携带煤屑流经外管柱与井壁之间环空、钻杆与技术套管之间环空后上返至地面。双管柱下至设计位置后,通过悬挂器将外管柱悬挂于技术套管内壁,进而完成双层管柱之间的分离。拖动内层管柱使两个管内封隔器移动至管外封隔器两端定位套管位置,投球后液压剪切滑套式注液装置销钉,一级压力下流体经1号进液孔进入管内封隔器并完成其胀封;继续加压至二级压力,打开注液装置的侧孔,流体经2号、3号进液孔进入管外封隔器。管外封隔器注液压力达到预设值后其内部保压装置关闭3号进液孔,完成管外封隔器胀封后卸载内管柱的压力,注液装置的弹簧推动滑套上行并关闭侧孔,管内封隔器收缩复位,拖动内管柱逐个完成管外封隔器胀封后起出钻杆与内层管柱。
1.2 复合管柱完井技术关键装置及工艺流程
滑套式注液装置是液压式管内封隔器与管外封隔器胀封的关键装置,两个液压式管内封隔器连接于滑套式注液装置两端,其间距不超过液压式裸眼封隔器两端定位套管的长度。双管柱下入过程中,底部组合如图2a所示,进入引鞋与密封筒之间套管内的作业油管(带喷头)长度可补偿双层管柱长度差值。双管柱遇阻或下至设计井深时,由内层管柱建立井筒钻井液循环,清除水平井底堆积煤屑,解除遇阻或完成洗井作业,如图2b所示。完成洗井作业后上提内层管柱,使2个管内封隔器横跨于管外封隔器两侧,向内层管柱投入金属球,并开泵注入洗井液驱动金属球到达滑套式注液装置前端的弧面球座,封闭内层管柱过液通道,如图2c所示。继续向内管柱内泵入洗井液,滑套在一级液压作用下剪断销钉并下行,1号进液孔与内管柱连通,洗井液由1号进液孔进入两个液压式管内封隔器,使其封隔内管柱与外管柱之间环空,如图2d所示。继续向内管柱内泵入洗井液,滑套在二级液压作用下压缩弹簧下行,2号进液孔与侧孔连通,洗井液流经侧孔、2号和3号进液孔进入液压式管外封隔器,其胶筒在液压下膨胀,并封隔外管柱与井壁之间环空,如图2e所示。停泵后卸载内管压力,弹簧推动滑套上行,并关闭2号进液孔,液压式管内封隔器胶筒内液体进入内管柱并回缩,管外封隔器在其内部保压装置下保持胀封状态,如图2f所示。完成单个管外封隔器胀封后,拖动内层管柱,重复上述步骤,逐个完成所有管外封隔器胀封,完成水平段井筒的分段完井。
2. 工程计算模型
软杆模型[25]与刚性模型[26]是井下管柱力学经典计算模型,高德利[27-28]采用有限差分法进一步完善井下管柱力学计算模型,并提出大位移井延伸极限量化计算模型,包括机械延伸极限、裸眼延伸极限和水力延伸极限。基于上述管柱受力模型与水力计算模型,以管柱螺旋屈曲和井下管柱水力损耗为约束条件,优化水平井双管柱受力与水力计算模型,对试验井的双管柱进行管柱力学与水力计算,为煤层水平井复合管柱完井工艺设计与控制提供理论依据。
2.1 假设条件
①完井管柱采用软杆模型;②采用三维井眼轨迹计算模型;③外管柱与井壁完全接触,管柱与井眼曲率相同;④忽略管柱上的剪力;⑤内管柱与外管柱完全接触,忽略管柱接头与刚性井下工具影响;⑥未考虑管柱动载荷的影响;⑦不计流体黏滞阻力对管柱力学与水力学计算影响。
2.2 井下管柱受力计算模型
采用迭代法计算水平井三维井筒的管柱轴向力,将井下管柱自下而上进行均匀离散,管柱微元下端轴向力为Ti+1,侧向力Fn,上端轴向力Ti,管柱微元轴向力计算公式如下[29]:
$$ {T_i} = {T_{i + 1}} + \dfrac{{{L_{\rm{s}}}}}{{\cos \left( {\dfrac{\theta }{2}} \right)}}\left[ {q\cos \overline \alpha \pm \mu \left( {{F_{\rm{E}}} + {F_{\rm{n}}}} \right)} \right] $$ (1) 式中:i为管柱微元编号。
管柱弯曲变形引起的侧向力为
${F_{\rm{E}}}$ ,计算公式如下:$$ {F_{\rm{E}}} = \left\{ {\begin{array}{*{20}{l}} {0 ,T\left( i \right)<{\rm{ }}{F_{{\rm{cr}}}}}\\ {\dfrac{{{r_{\rm{c}}}T{{\left( i \right)}^2}}}{{8EI}},\;\;{F_{{\rm{cr}}}}< T\left( i \right){\rm{ }}<{F_{{\rm{hel}}}}}\\ {\dfrac{{{r_{\rm{c}}}T{{(i)}^2}}}{{4EI}},\;\;T\left( i \right)> {F_{{\rm{hel}}}}} \end{array}} \right.$$ (2) 单位长度管柱侧向力
${F_{\rm{n}}}$ 为计算公式:$$ {F_{\rm{n}}} = \frac{{\sqrt {F_{{\rm{ndp}}}^2 + F_{{\rm{np}}}^2} }}{{{L_{\rm{s}}}}} $$ (3) $$ \left\{ {\begin{array}{*{20}{l}} {q = {q_2} + {q_3},\;\; L \gt {L_{{\rm{dp}}}}} \\ {q = {q_1},\;\; L \leqslant {L_{{\rm{dp}}}}} \end{array}} \right. $$ (4) 式中:
$\overline \alpha $ 为管柱微元长度内井眼轨迹平均井斜角,(°);$\mu $ 为外管柱与井壁之间摩擦因数,无量纲,下钻时取“+”,起钻时取“−”;$\theta $ 为管柱微元全角变化,(°);Ls为管柱微元长度,m;q为完井管柱微元在井筒液体中的重力,N/m;${q_1}$ 为单位长度钻杆在井筒液体中的重力,N/m;${q_2}$ 为单位长度的内管柱在井筒液体中的重力,N/m;${q_3}$ 为单位长度的外管柱在井筒液体中的重力,N/m;L为管柱长度(从上往下),m;${L_{{\rm{dp}}}}$ 为钻杆长度(从上往下);E为钢材的弹性模量,Pa;I为管柱横截面的惯性矩,m4;${r_{\rm{c}}}$ 为内外管柱或管柱与井壁之间的间隙,m;${F_{{\rm{ndp}}}}$ 为全角平面的侧向力,N;${F_{{\rm{np}}}}$ 为垂直于全角平面的侧向力,N。2.3 井下管柱水力计算模型
忽略接头与短接造成的局部压力损失,井下管柱水力损耗为
$P_{{\rm{sum}}}$ ,主要包括钻杆内外、内管柱内部、外管柱与井壁环空的循环压耗和喷嘴压降,计算公式如下:$$ {P_{{\rm{sum}}}} = {P_1}{\text{ + }}{P_{\text{2}}}{\text{ + }}{P_3} $$ (5) 井下管柱管内压力损耗为
${P_1}$ ,计算公式为$$ {P_1} = \sum {\frac{\rho }{g}v_{\rm{p}}^2\left( i \right){f_{\rm{p}}}{L_{\rm{s}}}\left( {\frac{2}{{{d_{\rm{I}}}\left( i \right)}}} \right)} ,\qquad i = 1,2 $$ (6) 井下管柱与井壁之间环空的压力损耗为
${P_2}$ ,计算公式为$$ {P_2} = \sum {v_{{\rm{a}}}^2\left( i \right)\rho {f_{\rm{a}}}{L_{\rm{s}}}\left[ {\frac{2}{{{d_{\rm{h}}} - {d_{\rm{O}}}\left( i \right)}}} \right]} ,\;\; i = 1,3 $$ (7) 喷嘴处的压降为
${P_3}$ ,计算公式为$$ {P_3} = \frac{{\rho v_{\rm{f}}^2}}{{2C_{\rm{d}}^2}} $$ (8) 式中:
$\rho $ 为井筒液体密度,kg/m3;g为重力加速度,m/s2;${v_{\rm{p}}}\left( i \right)$ 为管内液体流速(i=1为钻杆,i=2时为内管柱);${f_{\rm{p}}}$ 为管内流动摩擦因数,无量纲;${d_{\rm{I}}}\left( i \right)$ 为管柱内径(i=1为钻杆,i=2时为内管柱),m;${v_{\rm{a}}}\left( i \right)$ 为环空液体流速(i=1为钻杆与套管环空,i=3时为外管柱与井壁环空);${f_{\rm{a}}}$ 为环空流动摩擦因数,m/s;${d_{\rm{O}}}\left( i \right)$ 为管柱外径(i=1为钻杆,i=3时为外管柱),m;${d_{\rm{h}}}$ 为井眼直径,m;${v_{\rm{f}}}$ 为喷嘴处流体流速,m/s;${C_{\rm{d}}}$ 为喷嘴系数,无量纲。2.4 约束条件
忽略井下管柱正弦屈曲对管柱摩阻影响,仅考虑管柱螺旋屈曲对井内管柱运动摩阻的影响,计算公式[30-32]如下:
$$ {F_{{\text{hel}}}}{\text{ = }}\left\{ {\begin{array}{*{20}{l}} {5.55{{\left( {EI{q^2}} \right)}^{\frac{1}{3}}},L \subset {L_{\rm{V}}}} \\ {\dfrac{{12EI}}{{{r_{\text{c}}}R}}\left( {1 + \sqrt {1 + \dfrac{{{r_{\text{c}}}{R^2}q\sin \, \theta }}{{8EI}}} } \right),L \subset {L_{\rm{B}}}} \\ {2\left( {2\sqrt 2 - 1} \right)\sqrt {\dfrac{{EIq\sin \, \theta }}{{{r_{\text{c}}}}}} ,L \subset {L_{\rm{H}}}} \end{array}} \right. $$ (9) 式中:
${F_{{\rm{hel}}}}$ 为管柱螺旋屈曲临界载荷,N;R为曲率半径,m;L为管柱长度,m;LV为直井段长度区间,m;LB为弯曲段长度区间,m;LH为水平井段长度区间,m。3. 现场试验
3.1 工程计算
3.1.1 井下管柱受力计算
试验井为一口停产水平井,其二开采用177.8 mm套管下至947.25 m,三开采用152.4 mm钻头侧钻至1600 m完钻。完井外管柱组合为ø127 mm 引鞋+ø114.3 mm 套管/筛管+ø146 mm 裸眼封隔器;内管柱组合为ø94 mm引鞋+ø60.3 mm油管+ø94 mm单流阀短节+ø60.3 mm 油管短节+ø94 mm管内封隔器+ø60.3 mm 油管+ø94 mm滑套式注液器+ø94 mm管内封隔器+ø94 mm安全接头;作业管柱为ø88.9 mm 钻杆延伸至地面。
针对该井实钻井眼轨迹与井身结构,基于双管柱结构与井下管柱力学计算模型,采用软件进行编程,并计算该井双管柱受力,完井管柱与技术套管之间摩擦因数设为0.25,完井管柱与井壁之间摩擦因数设为0.35。双管柱与单层管柱的力学数值计算结果进行对比,如图3a所示,双管柱与单层管柱(套管或筛管)下至设计井深时,井口的轴向力分别为64443.98、70086.73 N;如图3b所示,双管柱与单层管柱(套管或筛管)上部作业管柱为相同钻杆,在井斜角较小时管柱受到的侧向力相差较小,随着井斜角与方位角增加,双管柱受到的侧向力大于单层管柱(套管或筛管),在水平段管柱受到的侧向力平均增幅超过34 N/m。因此,相比单层管柱(套管或筛管),双管柱在弯曲段与水平段承受更大侧向力,其下入过程中管柱受到更大的摩阻。同时,数值计算结果显示,该井双管柱下入过程中未发生螺旋屈曲,现场施工过程中双管柱发生遇阻,经过活动管柱与水力循环后,解除遇阻并下至井底。
3.1.2 井下管柱水力计算
该井钻井液为幂律流体,密度ρ=1.05 g/cm3,流性指数n=0.5,稠度系数k=0.47 Pa·sn。基于双管柱结构与水力计算模型,采用软件编程并计算井下管柱水力损耗,进行井下管柱压耗分布及影响因素分析,如图4所示。
如图4a所示,在泵排量20 L/s条件下,双管柱及作业管柱下至1592 m时,井下管柱内、管柱外环空、喷头压降与总压耗分别为3956.30、1010.62、8302.13、12258.43 kPa,喷头较高的压降以提供喷嘴高压水射流,冲击管柱前端堆积煤屑,以保障完井管柱顺利通过遇阻段。井下管柱的外环空包括钻杆与技术套管之间环空、管外环空双管柱与井壁组成的两个环空(即外管柱与井壁之间环空、内外管柱之间环空),如图4b、4c所示,管内与管外环空的水力压耗随着井深与排量增加而增大。如图4d所示,在双管柱下至井底时,井下管柱循环总压耗随着排量增加显著上升,其中喷头压降为主要因素,内管柱水力压耗为次要因素,管外环空水力压耗最小。根据该井煤层条件,双管柱下入过程中遇阻时的水力循环排量控制在16~20 L/s,防止煤层漏失与维持井壁稳定;在洗井作业时排量提升至20~24 L/s,增加环空排量以消除井壁泥饼与近井煤储层钻井液伤害。
3.2 试验概况
该试验井位于沁水盆地东北缘的阳泉地区,该区太原组15号煤层平均厚度为3.27 m,前期钻井取心显示本区太原组15号煤层的煤体结构破碎变形严重,以碎粒煤为主,部分层段含有碎裂煤和糜棱煤,如图5所示。煤储层非均质性显著,煤心气测渗透率最小值0.0339×10−3 μm2,最大值15.3375×10−3 μm2,主要集中在0.1×10−3~0.5×10−3 μm2,其中渗透率值较大的岩心都是由于含有贯穿整个岩心的裂缝,完整煤岩岩心的渗透率峰值主要集中在0.05×10−3~0.2×10−3 μm2之间。针对该区15号煤体结构破碎与强非均质性的特征,开展水平井复合管柱完井增产技术现场试验,该井煤层进尺和钻遇率分别为544 m、83.5%,水平井段实钻井眼轨迹与地层情况如图6所示(蓝色方框内为非煤地层)。该井水平段下入套管与筛管共计659.54 m,采用悬挂器固定于上层技术套挂内壁,通过4个裸眼封隔器将水平段分为4段,其分段长度分别为160.47、152.07、155.24、154.42 m,为后期储层分段增产改造提供封隔条件,裸眼封隔器与管内封隔器如表1、表2和图7所示。该井在试验前处于停产状态,煤层水平井眼分段完井后采用可控冲击波增透,投产后产气量达到1200 m3/d。
表 1 管外封隔器规格参数Table 1. Specification parameters of ECP序号 参数 取值 1 最大外径/mm 146 2 工具总长/mm 1500 3 膨胀系数 1.4~1.6 4 内通径/mm 100 5 密封面长度/mm 1100 6 启动压力/MPa 1~2 7 工作压力/MPa 20 8 适应井径/mm 152.4 9 工作直径/mm 155~241 表 2 管内封隔器规格参数Table 2. Specification parameters of tubing packer序号 参数 取值 1 最大外径/mm 94 2 内通径/mm 42 3 总长/mm 850 4 适用套管内径/mm 100-110 5 密封压差/MPa 20 6 工作温度/℃ 120 7 扣型 23/8TBG 4. 结 论
1)采用煤层水平井复合管柱完井方法,可以实现水平井段碎软煤筛管完井及原生煤层套管射孔完井,为后期差异性、多样化和适应性的煤储层增产改造提供了可靠的分段与封隔条件。
2)对双管柱受力和水力损耗的数值计算与分析结果,可为煤层气水平井复合管柱完井设计控制提供理论指导;通过优化设计双管柱结构与配套完井工具,可以实现双管柱入井、洗井及胀封裸眼封隔器等一趟完井作业,从而提高了作业效率减少了储层伤害。
3)通过现场试验表明,提出的煤层水平井复合管柱完井方法,可为复杂煤体结构煤层水平井适应性增产工程提供新技术支撑,具有良好的推广应用前景。
-
表 1 我国赋煤区太阳能资源估算
Table 1 Estimation of solar energy resources in coal-endowed areas in China
省
(自治区)赋煤区
面积占
比[19]/%煤炭
储量[19]/
亿t水平面总
辐照量年
平均值[20]/(kWh·m−2)年日照时数[17]/h 太阳能理
论储量[14]/
(1014 kWh·a−1)光伏装机
潜力[18]/
万kW赋煤区 太阳能理论储量/(1015 kJ·a−1) 光伏开
发潜力/
(1012 kJ·a−1)理论储量折合标煤/(亿t·a−1) 理论储量
折合减排
CO2/(亿t·a−1)光伏开发
潜力折
合标煤/
(万t·a−1)光伏开发
潜力折
合减排/
(万t·a−1)北京 8.54 86.72 1405.94 2640 95.04 1418 8.11 11.50 9.97 26.80 39.32 105.71 天津 3.33 44.52 1402.74 2580 58.32 710 1.94 2.20 2.39 6.42 7.51 20.20 河北 3.76 601.39 1438.98 2670 1038.96 8963 39.07 32.40 48.00 129.06 110.73 297.69 山西 21.31 3899.18 1426.89 2870 829.44 7050 176.79 155.26 217.21 583.96 530.61 1426.55 内蒙古 8.88 12250.43 1581.32 2930 6391.80 43791 567.38 410.02 697.08 1874.11 1401.30 3767.40 辽宁 2.23 59.27 1381.25 2210 742.68 5209 16.56 9.24 20.35 54.70 31.58 84.91 吉林 2.45 30.03 1344.27 2280 895.32 7820 21.98 15.76 27.00 72.59 53.85 144.77 黑龙江 0.97 176.13 1294.16 2340 2149.56 12437 20.90 10.19 25.68 69.05 34.82 93.62 江苏 1.21 50.49 1307.84 2020 595.44 8842 7.22 7.80 8.87 23.85 26.65 71.65 浙江 0.02 0.44 1251.88 2040 463.68 5997 0.09 0.09 0.11 0.30 0.30 0.80 安徽 4.21 611.59 1242.51 2210 610.20 7650 25.70 25.63 31.57 84.88 87.60 235.51 福建 1.07 25.57 1291.07 1990 561.96 3667 6.02 2.81 7.39 19.88 9.61 25.85 江西 2.94 40.84 1194.24 2150 735.12 8292 21.58 18.84 26.52 71.29 64.40 173.13 山东 6.08 405.13 1379.78 2280 789.12 15541 47.98 77.55 58.94 158.47 265.05 712.59 河南 9.04 919.71 1269.41 1920 786.96 10327 71.16 64.54 87.42 235.04 220.58 593.03 湖北 0.11 2.04 1151.51 1790 804.96 9586 0.87 0.66 1.06 2.86 2.27 6.11 湖南 1.27 45.35 1077.03 1610 890.64 10929 11.35 8.08 13.95 37.50 27.60 74.20 广东 0.78 9.11 1256.01 1690 866.52 6005 6.75 2.85 8.29 22.30 9.73 26.15 广西 0.55 17.64 1186.35 1470 1022.76 10853 5.60 3.14 6.88 18.48 10.74 28.87 海南 0.00 0.01 1503.04 1870 171.36 7883 0.01 0.02 0.01 0.02 0.08 0.21 四川 2.35 303.79 1385.8 1790 2265.48 13528 53.14 20.45 65.29 175.53 69.88 187.89 贵州 18.10 1896.9 1021.26 1630 681.84 7977 123.44 84.75 151.66 407.74 289.63 778.66 云南 3.50 437.87 1490.81 2340 2078.64 16453 72.79 48.53 89.43 240.42 165.87 445.94 西藏 0.04 8.09 1920.11 3050 8498.16 32038 3.46 1.43 4.25 11.43 4.89 13.16 陕西 11.38 2031.1 1321.47 2910 936.36 9446 106.57 112.63 130.93 352.01 384.91 1034.84 甘肃 3.94 1428.87 1636.62 3000 2412.00 16339 95.14 69.61 116.89 314.27 237.89 639.57 青海 1.07 380.42 1798.11 3190 4917.60 25287 52.42 30.96 64.41 173.16 105.80 284.45 宁夏 11.45 1721.11 1617.78 2980 392.76 4294 44.95 52.73 55.23 148.49 180.20 484.46 新疆 4.56 18037.3 1626.3 2920 9741.60 57124 444.69 274.11 546.34 1468.85 936.82 2518.63 注:赋煤区太阳能理论储量=太阳能理论储量×赋煤区面积占比,赋煤区光伏开发潜力=光伏装机潜力×年日照时数×赋煤区面积占比,29 270 kJ=1 kg 标准煤,1 t标煤产生2.688 t CO2。 表 2 我国赋煤区地热资源估算
Table 2 Estimation of geothermal resources in coal-endowed areas in China
地区 赋煤区面积/
万km2[19]赋煤区面积
占比/%[19]地热资源储量/
1015 kJ[35]赋煤区地热资源
理论储量/1015 kJ折合标煤/
(万t·a−1)折合减排CO2/
(万t·a−1)北京 0.14 8.54 94.81 8.10 276.73 743.86 天津 0.04 3.33 394.51 13.14 448.92 1206.71 河北 0.71 3.76 3052.00 114.76 3920.74 10538.94 山西 3.34 21.31 897.92 191.35 6537.41 17572.56 内蒙古 10.51 8.88 176.35 15.66 535.02 1438.13 辽宁 0.33 2.23 339.91 7.58 258.97 696.11 吉林 0.46 2.45 96.00 2.35 80.29 215.81 黑龙江 0.46 0.97 236.50 2.294 78.37 210.67 江苏 0.13 1.21 266.13 3.22 110.01 295.71 浙江 0.002 0.02 1.20 0.024 0.82 2.20 安徽 0.59 4.21 60.52 2.55 87.12 234.18 福建 0.13 1.07 44.70 4.78 163.31 438.97 江西 0.49 2.94 66.66 1.96 66.96 180.00 山东 0.96 6.08 2 092.86 127.49 4355.65 11 708.00 河南 1.51 9.04 404.68 36.58 1 249.74 3 359.31 湖北 0.02 0.11 87.81 0.097 3.31 8.91 湖南 0.27 1.27 10.46 0.1328 4.54 12.20 广东 0.14 0.78 222.91 1.74 59.45 159.79 广西 0.13 0.55 256.12 1.41 48.17 129.49 海南 0.000 15 0.42 20.439 8.584 293.27 788.31 四川 1.14 2.35 6 525.40 153.35 5 239.15 14 082.84 贵州 3.19 18.10 88.08 15.943 544.69 1 464.12 云南 1.38 3.50 197.71 6.92 236.42 635.50 西藏 0.05 0.04 4807.70 1.923 65.70 176.60 陕西 2.34 11.38 68.943 7.845 7 268.05 720.51 甘肃 1.68 3.94 95.401 6 3.758 8 128.42 345.19 青海 0.77 1.07 142.50 1.52 51.93 139.59 新疆 7.60 4.56 961.00 43.82 1 497.10 4 024.19 注:地热资源储量(kJ)×赋煤区积占比(%)=赋煤区地热资源理论储量(kJ)。 表 3 我国赋煤区风能资源潜力估算
Table 3 Estimation of wind energy resources in coal-endowed areas in China
地区 风功率
密度[20]/
(W·m−2)年有效小
时数[52]/
h赋煤区面
积占比[19]/
%赋煤区
面积/
万km2理论装机
潜力/
GW理论开发
潜力/
(1016 kJ·a−1)理论折合
标煤/
(亿t·a−1)理论减排CO2/
(亿t·a−1)预估装机
潜力[53] /
万kW预估开发
潜力/
(1012 kJ·a−1)预估折合
标煤/
(万t·a−1)预估减排CO2/
(万t·a−1)北京 169.79 1816 8.54 0.14 237.8 0.16 0.53 1.43 39 0.22 0.74 2.00 天津 207.96 1965 3.33 0.04 83.1 0.06 0.20 0.54 239 0.56 1.92 5.16 河北 228.03 2144 3.76 0.71 1618.8 1.25 4.26 11.46 24832 72.07 245.91 661.13 山西 198.06 1918 21.31 3.32 6584.2 4.55 15.51 41.71 16630 244.70 834.97 2244.84 内蒙古 364.24 2305 8.88 10.51 38263.6 31.75 108.34 291.28 161016 1186.40 4048.54 10884.64 辽宁 293.01 2300 2.23 0.33 967.1 0.80 2.73 7.35 8347 15.41 52.59 141.39 吉林 317.36 2216 2.45 0.46 1457.1 1.16 3.97 10.66 10669 20.85 71.16 191.30 黑龙江 290.82 2323 0.97 0.46 1334.3 1.12 3.81 10.24 18771 15.23 51.96 139.69 江苏 200.23 1973 1.21 0.13 259.7 0.18 0.63 1.69 7484 6.43 21.95 59.01 浙江 140.33 2090 0.02 0.00 2.9 0.00 0.01 0.02 5349 0.08 0.27 0.74 安徽 167.24 1809 4.21 0.59 986.4 0.64 2.19 5.89 7020 19.25 65.68 176.57 福建 130.35 2639 1.07 0.13 169.3 0.16 0.55 1.48 6304 6.41 21.87 58.79 江西 145.73 2028 2.94 0.49 715.1 0.52 1.78 4.79 3661 7.86 26.81 72.09 山东 225.39 1863 6.08 0.96 2163.8 1.45 4.95 13.31 22033 89.84 306.57 824.24 河南 175.73 1480 9.04 1.51 2653.0 1.41 4.82 12.97 9116 43.91 149.82 402.81 湖北 124.88 1960 0.11 0.02 25.5 0.02 0.06 0.17 3798 0.29 1.01 2.70 湖南 142.48 1960 1.27 0.27 383.3 0.27 0.92 2.48 3558 3.19 10.88 29.25 广东 160.15 1612 0.78 0.14 224.5 0.13 0.44 1.20 13115 5.94 20.26 54.46 广西 191.99 2385 0.55 0.13 250.9 0.22 0.74 1.98 13040 6.16 21.01 56.49 四川 150.02 2553 2.35 1.14 1713.4 1.57 5.37 14.45 14325 30.94 105.57 283.84 贵州 159.33 1861 18.10 3.19 5081.4 3.40 11.62 31.23 6247 75.75 258.49 694.96 云南 147.59 2808 3.50 1.38 2035.8 2.06 7.02 18.88 14168 50.13 171.05 459.87 西藏 255.63 2173 0.04 0.05 125.6 0.10 0.34 0.90 47609 1.49 5.08 13.67 陕西 149.07 1931 11.38 2.34 3487.8 2.42 8.27 22.24 10340 81.80 279.12 750.42 甘肃 229.64 1787 3.94 1.68 3853.5 2.48 8.46 22.74 17626 44.68 152.45 409.86 青海 227.06 1743 0.14 0.10 234.3 0.15 0.50 1.35 14227 1.28 4.35 11.70 宁夏 235.09 1811 11.45 0.76 1787.3 1.17 3.98 10.69 3900 29.11 99.34 267.09 新疆 233.70 2147 4.56 7.59 17742.4 13.71 46.79 125.81 38960 137.32 468.56 1259.73 注:理论装机潜力=赋煤区面积×风功率密度,理论开发潜力=理论装机潜力×年有效小时数;预估可开发潜力=预估装机潜力×赋煤区面积占比×年有效小时数。 -
[1] 袁 亮,张 通,张庆贺,等. 双碳目标下废弃矿井绿色低碳多能互补体系建设思考[J]. 煤炭学报,2022,47(6):2131−2139. YUAN Liang,ZHANG Tong,ZHANC Qinghe,et al. Construction of green, low-carbon and multi-energy complementary system for abandoned mines under global carbon neutrality[J]. Journal of China Coal Society,2022,47(6):2131−2139.
[2] 桑树勋,袁 亮,刘世奇,等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报,2022,47(4):1430−1451. SANG Shuxun,YUAN Liang,LIU Shiqi,et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society,2022,47(4):1430−1451.
[3] 项目综合报告编写组. 《中国长期低碳发展战略与转型路径研究》综合报告[J]. 中国人口·资源与环境,2020,30(11):1−25. Project comprehensive report preparation team. A comprehensive report on China’s long-term low-carbon development strategy and transition path[J]. China Population, Resources and Environment,2020,30(11):1−25.
[4] 吴林荣,杜莉丽,王娟敏,等. 陕北榆林地区太阳能资源空间分布特征及资源潜力评估[J]. 水土保持通报,2013,33(1):238−242. WU Linrong,DU Lili,WANG Juanmin,et al. Distribution characteristic sand evaluation of potential solar energy resources in Yulin region of northern Shaanxi province[J]. Bulletin of Soil and Water Conservation,2013,33(1):238−242.
[5] 王 云,戴喜红. 榆林市长城沿线风能资源分析[J]. 陕西气象,2010(2):38−40. WANG Yun,DAI Xihong. Analysis of wind energy resources along the Great Wall of Yulin City[J]. Journal of Shaanxi Meteorology,2010(2):38−40.
[6] 朱梦博,刘 浪,王双明,等. 短−长壁工作面充填无煤柱开采方法研究[J]. 采矿与安全工程学报,2022,39(6):173−181. ZHU Mengbo,LIU Lang,WANG Shuangming,et al. Short-and long-walls backfilling pillarless coal mining method[J]. Journal of Mining & Safety Engineering,2022,39(6):173−181.
[7] 刘 浪,王双明,朱梦博,等. 基于功能性充填的CO2储库构筑与封存方法探索[J]. 煤炭学报,2022,47(3):1072−1086. LIU Lang,WANG Shuangming,ZHU Mengbo,et al. CO2 storage-cavern construction and storage method based on functional backfill[J]. Journal of China Coal Society,2022,47(3):1072−1086.
[8] 吴晓华,郑厚发,李岩彬. 煤炭企业绿色矿山建设标准体系研究[J]. 中国煤炭,2022,48(6):50−55. WU Xiaohua,ZHENG Houfa,LI Yanbin. Study on the standard system of green mine construction in coal enterprises[J]. China Coal,2022,48(6):50−55.
[9] 袁 亮,姜耀东,王 凯,等. 我国关闭/废弃矿井资源精准开发利用的科学思考[J]. 煤炭学报,2018,43(1):14−20. YUAN Liang,JIANG Yaodong,WANG Kai,et al. Precision exploitation and utilization of closed /abandoned mine resources in China[J]. Journal of China Coal Society,2018,43(1):14−20.
[10] 卞正富, 周跃进, 曾春林, 等. 废弃矿井抽水蓄能地下水库构建的基础问题探索"[J]. 煤炭学报 2021, 46(10): 3308−3318. BIAN Zhengfu, ZHOU Yuejin, ZENG Chunlin, et al. Discussion of the basic problems for the construction of underground pumped storage reservoir in abandoned coal mines[J]. Journal of China Coal Society, 2021, 46(10): 3308−3318.
[11] 刘 峰,郭林峰,赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报,2022,47(1):1−15. LIU Feng,GUO Linfeng,ZHAO Luzheng. Research on coal safety range and green low-carbon technology path under the dual carbon background[J]. Journal of China Coal Society,2022,47(1):1−15.
[12] 国家能源局. 我国太阳能资源是如何分布的? [EB/OL]. (2014-08-03.) [2022-12-06]. http://www.nea.gov.cn/2014-08/03/c_133617073.htm. [13] 宋洪柱. 中国煤炭资源分布特征与勘查开发前景研究[D]. 北京: 中国地质大学(北京), 2013. SONG Hongzhu. Study on the distribution characteristics and the exploration and development prospect of coal resource of china[D]. Beijing: China University of Geosciences (Beijing), 2013.
[14] 朱瑞兆. 中国分省太阳能资源图集[R]. 北京: 中国科学院电工研究所, 2006:1‒29. ZHU Ruizhao. Atlas of solar energy resources by province in China[R]. Beijing: Institute of Electrical Engineering Chinese Academy of Sciences, 2006: 1‒29.
[15] 吴林荣, 杜莉丽, 王娟敏, 等. 陕北榆林地区太阳能资源空间分布特征及资源潜力评估[J]. 水土保持通报, 2013, 33 (1): 238-242. WU Linrong, DU Lili, WANG Juanmin, et al. Distribution characteristics and evaluation of potential solar energy resources in Yulin region of northern Shaanxi province[J]. Bulletin of Soil and Water Conservation. 2013, 33 (1): 238-242.
[16] 姚玉璧,郑绍忠,杨 扬,等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报,2022,43(10):524−535. YAO Yubi,ZHENG Shaozhong,YANG Yang,et al. Progress and prospects on solar energy resource evaluation and utilization efficiency in China[J]. Acta Energiae Solaris Sinica,2022,43(10):524−535.
[17] 沈 义. 我国太阳能的空间分布及地区开发利用综合潜力评价[D]. 兰州: 兰州大学, 2014. SHEN Yi. The spatial distribution of solar energy and the comprehensive potential evaluation of regional exploitation and utilization in China[D]. Lanzhou: Lanzhou University, 2014.
[18] 郑舒虹. 中国可再生电力“供−输−需”协同度测算与优化研究[D]. 武汉: 中国地质大学, 2022. ZHENG Shuhong. Research on “supply-transmission-demand” synergy evaluation and optimization for China's renewable power[D]. Wuhan: China University of Geosciences, 2022.
[19] 李 华. 煤炭资源预测之全国煤炭资源预测的结果[EB/OL]. (2017-10-14) [2022-12-06]. https://www.mining120.com/tech/show-htm-itemid-48463.html. [20] 中国气象局风能太阳能中心. 2021年中国风能太阳能资源年景公报[R]. 北京: 中国气象局风能太阳能中心, 2022. [21] 中华人民共和国中央人民政府. 截至10月底全国发电装机容量约25亿千瓦[EB/OL]. (2022-11-23) [2022-12-06]. http://www.gov.cn/xinwen/2022-11/23/content_5728363.htm. [22] 国家能源局. 我国光伏发电并网装机容量突破3亿千瓦 分布式发展成为新亮点[EB/OL]. (2022-01-20) [2022-12-06]. http://www.nea.gov.cn/2022-01/20/c_1310432517.htm. [23] 神华之声. 向太阳要能量!神华国华投资在宁夏建设首个光伏项目[EB/OL]. (2017-04-12) [2022-12-06]. https://www.sohu.com/a/133538790_663324. [24] 中新网新疆. 煤矿边上建光伏电站!哈密首个煤矿分布式光伏项目并网发电[EB/OL]. (2022-03-15) [2022-12-06]. http://www.xj.chinanews.com.cn/dizhou/2022-03-15/detail-ihawqrpf1210044.shtml. [25] 中国电力网. 深入推进采煤沉陷区综合治理 聚焦“光伏+采煤沉陷区”融合发展[EB/OL]. (2022-02-04) [2022-12-06]. http://www.chinapower.com.cn/tynfd/hyyw/20220224/135254.html. [26] 谢友泉,高 辉,苏志国,等. 废弃矿井资源的可再生能源开发利用[J]. 可再生能源,2020,38(3):423−426. Xie Youquan,Gao Hui,Su Zhiguo,et al. Exploitation and utilization of renewable energy from waste mine resources[J]. Renewable Energy Resources,2020,38(3):423−426.
[27] 中国煤炭报. 中国煤炭报独家调查: 那些废弃煤矿, 如何转型获得新生? [N/OL]. (2021-08-27) [2022-12-06]. http://www.chinacaj.net/i,16,13940,0.html. [28] 朱晓飞. 安徽祁南煤矿采煤沉陷区光伏发电场地稳定性评价[D]. 淮南: 安徽理工大学, 2019. ZHU Xiaofei. Stability evaluation of photovoltaic power generation site in mining subsidence area of Qinan coal mine, Anhui province[D]. Huainan: AnHui University of Science and Technologg, 2019.
[29] 白淑娟,陈华锋,李林林. 采煤沉陷区建造光伏电站关键技术分析[J]. 低碳技术,2022,1:49−51. BAI Shujuan,CHEN Huafeng,LI Linlin. Analysis of key technologies for the construction of photovoltaic power plants in coal mining subsidence areas[J]. Low Carbon World,2022,1:49−51.
[30] 王君杰. 太阳能在煤矿供热系统中的利用探讨[J]. 企业技术开发,2014,33(14):177−178. WANG Junjie. Discussion on the utilization of solar energy in heating system of coal mine[J]. Technological Development of Enterprise,2014,33(14):177−178.
[31] 王 锋,周化岚,张建国. 太阳能驱动二氧化碳转化[J]. 自然杂志,2021,43(1):61−70. WANG Feng,ZHOU Hualan,ZHANG Jianguo. Carbon dioxide conversion by solar energy[J]. Chinese Journal of Nature,2021,43(1):61−70.
[32] 陈 靖,董树杰,周红军. 太阳能光伏效应制氢研究进展[J]. 煤化工,2022,50(3):79−85. CHEN Jing,DONG Shujie,ZHOU Hongjun. Research progress on hydrogen production through solar photovoltaic effect[J]. Coal Chemical Industry,2022,50(3):79−85.
[33] 中华人民共和国中央人民政府. 工业和信息化部 住房和城乡建设部 交通运输部 农业农村部 国家能源局 关于印发《智能光伏产业创新发展行动计划(2021—2025年)》的通知[EB/OL]. (2021-12-31) [2022-12-06]. http://www.gov.cn/zhengce/zhengceku/2022-01/05/content_5666484.htm. [34] 王贵玲,刘彦广,朱 喜,等. 中国地热资源现状及发展趋势[J]. 地学前缘,2020,27(1):1−9. WANG Guiling,LIU Yanguang,ZHU Xi et al. The status and development tend of geothermal resources in China[J]. Earth Science Frontiers,2020,27(1):1−9.
[35] 地质云全国地热资源数据与信息服务系统. 地热潜力. [EB/OL]. (2022-12-06) [2022-12-06]. https://222.223.214.100:3068/?code=6004c690c4314cb486ee812839013d8b&state=helloWelcome#/zyql. [36] 袁 亮,杨 科. 再论废弃矿井利用面临的科学问题与对策[J]. 煤炭学报,2021,46(1):16−24. YUAN Liang,YANG Ke. Further discussion on the scientific problems and countermeasures in the utilization of abandoned mines[J]. Journal of China Coal Society,2021,46(1):16−24.
[37] 刘 明,李树志. 废弃煤矿资源再利用及生态修复现状问题及对策探讨[J]. 矿山测量,2016,44(3):70−72,127. LIU Ming,LI Shuzhi. Study on problems and countermeasures of present stuation of abandoned coal mine resource reuse and ecological restoration[J]. Mine Surveying,2016,44(3):70−72,127.
[38] 刘 峰,李树志. 我国转型煤矿井下空间资源开发利用新方向探讨[J]. 煤炭学报,2017,42(9):2205−2213. LIU Feng,LI Shuzhi. Discussion on the new development and utilization of underground space resources of transitional coal mines[J]. Journal of China Coal Society,2017,42(9):2205−2213.
[39] 张 波,薛攀源,刘 浪,等. 深部充填矿井的矿床-地热协同开采方法探索[J]. 煤炭学报,2021,46(9):2824−2837. ZHANG Bo,XUE Panyuan,LIU Lang,et al. Exploration on the method of ore deposit-geothermal energy synergetic mining in deep backfill mines[J]. Journal of China Coal Society,2021,46(9):2824−2837.
[40] ZHAO Yujiao , LIU Lang, WEN De, et al. Recycling waste material for backfill coupled heat exchanger systems in underground stopes of mines[J]. Energy and Buildings, 2022,256: 111703.
[41] ZHAO Yujiao,LIU Lang,Wen De,et al. Experimental study of horizontal ground heat exchangers embedded in the backfilled mine stopes[J]. Geothermics,2022,100:102344. doi: 10.1016/j.geothermics.2021.102344
[42] ZHANG Xiaoyan,XU Muyan,LIU Lang,et al. Experimental study on thermal and mechanical properties of cemented paste backfill with phase change material[J]. Journal of Materials Research and Technology-JMR& T,2020,9(2):2164−2175.
[43] ZHANG Xiaoyan,ZHAO Min,LIU Lang,et al. Numerical simulation on heat storage performance of backfill body based on tube-in-tube heat exchanger[J]. Construction and Building Materials,2020,265:120340. doi: 10.1016/j.conbuildmat.2020.120340
[44] ZHANG Xiaoyan,ZHAO Min,LIU Lang,et al. Phase-change heat storage backfill: Experimental study on rheological properties of backfill slurry with paraffin added[J]. Construction and Building Materials,2020,262:120736. doi: 10.1016/j.conbuildmat.2020.120736
[45] ZHANG Xiaoyan,XU Muyan,LIU Lang, et al. Study on thermal performance of casing-type mine heat recovery device with phase change materials filling in annular space[J]. International Journal of Energy Research,2021,45(12):17577−17596. doi: 10.1002/er.7008
[46] ZHANG Xiaoyan,ZHAO Min,LIU Lang,et al. Numerical simulation on thermal accumulation of cemented tailings backfill[J]. Journal of Central South University,2021,28(7):2221−2237. doi: 10.1007/s11771-021-4760-4
[47] 张小艳,文 德,赵玉娇,等. 矿山蓄热/储能充填体的热-力性能与传热过程[J]. 煤炭学报,2021,46(9):3158−3171. ZHANG Xiaoyan,WEN De,ZHAO Yujiao,et al. Thermal-mechanical properties and heat transfer process of heat storage/energy storage backfill body in mine[J]. Journal of china coal society,2021,46(9):3158−3171.
[48] 亢方超, 唐春安. 基于开挖的增强型地热系统概述[J]. 地学前缘, 2020, 27(1): 185-193. KANG Wanchao, TANG Chun’an. Overvies of enhanced geothermal system (EGS) based on excavation in China[J]. Earth Science Frontiers, 2020, 27(1): 185-193.
[49] IRENA (2022), Renewable Energy Statistics 2022[R]. Abu Dhabi: The International Renewable Energy Agency,2022 .
[50] 秦海岩. 十八大以来我国风电产业实现高质量发展[J]. 风能,2022(9):1. QIN Haiyan. Chinese wind power industry has achieved high-quality development since the 18th National Congress[J]. Wind Energy,2022(9):1.
[51] 国家发展改革委. 国家能源局关于完善能源绿色低碳转型体制机制和政策措施的意见(发改能源(2022)206号) [EB/OL]. [2022-12-7]. http://www.gov.cn/zhengce/zhengceku/2022-02/11/content_5673015.htm. [52] 国际风力发电网. 全国各省2014-2020年风电利用小时数[EB/OL].(2021-11-26). [2022-12-06]. https://wind.in-en.com/html/wind-2412128.shtml. [53] 郑舒虹. 中国可再生电力“供−输−需”协同度测算与优化研究[D]. 武汉: 中国地质大学, 2022. ZHENG Shuhong. Research on Calculation and Optimization of “supply-demand-demand” synergy degree of renewable power in China[D]. Wuhan: China University of Geosciences, 2022.
[54] CHOI Yosoon ,SONG Jinyoung. Review of photovoltaic and wind power systems utilized in the mining industry[J]. Renewable and Sustainable Energy Reviews,2017,75:1386−1391. doi: 10.1016/j.rser.2016.11.127
[55] Business News Americas. DeWind ships first turbine to Seawind for Veladero[EB/OL]. (2007-9-20) [2017-07-26]. http://www.bnamericas.com/news/mining/DeWind_ships_first_turbine_to_Seawind_for_Veladero.
[56] BRADEN Bill. Great Gusto[J]. Canadian Mining Journal, 2012,283:54‒54.
[57] ENERGATI. Canada Gets its First Large Wind and Energy Storage System. Energati [EB/OL]. (2014-9-12) [2022-12-06]. http://www.engerati.com/article/canada-gets-its first-large-wind-and-energy-storage-system.
[58] Power Technology. El Arrayan Wind Farm. [EB/OL]. (2014-9-9) [2022-12-06]. http://www.power-technology.com/projects/el-arrayn-wind-farm.
[59] United States Environmental Protection Agency. A Breath of Fresh Air for America’s Abandoned Mine Lands[EB/OL]. (2012-3-20) [2022-12-06]. (https://semspub.epa.gov/work/11/176038.pdf).
[60] Pennsylvania Wind Working Group. Wind Farms in Pennsylvania[EB/OL]. (2016-9-15) [2022-12-06]. http://www.pawindenergynow.org/pa/farms.html.
[61] RAICHLE W. Brian, CARSON W. Richard, Wind resource assessment of the Southern Appalachian Ridges in the Southeastern United States[J]. Renewable and Sustainable Energy Reviews,2009, 13: 1104‒1110.
[62] 陈 雷,邢作霞,陈明阳,等. 基于运行曲线的机械式风力提水机组匹配性设计方法研究[J]. 太阳能学报,2022,43(2):465−470. CHEN Lei,XING Zuoxia,CHEN Mingyang,et al. Research on Matching design method of mechanical wind turbine based on running curve[J]. Journal of Solar Energy,2022,43(2):465−470.
[63] 苏亚欣, 毛玉如, 赵敬德. 新能源与可再生能源概论[M]. 北京: 化学工业出版社, 2006. SU Yaru, MAO Yuru, ZHAO Jingde. Introduction to New and renewable energy[M]. Beijing: Chemical Industry Press, 2006.
[64] FRANKW Osterwald, JOHN B Sennetti. Preliminary investigation of seismic tremors in the general area of the Leyden coal mine gas-storage reservoir[R]. Colorado: Department of the Interior Geological Survey, 1973.
[65] XIE H,ZHAO J,ZHOU H,et al. Secondary utilizations and perspectives of mined underground space[J]. Tunneling and Underground Space Technology,2020,96:103129. doi: 10.1016/j.tust.2019.103129
[66] 邱华富,刘 浪,王 美,等. 金属矿采矿−充填−建库协同系统及充填储库结构[J]. 石油学报,2018,39(11):1308−1316. QIU Huafu,LIU Lang,WANG Mei,et al. Mining-backfill-storage building synergetic system in metal mine and its backfill storage structure[J]. Acta Petrolei Sinica,2018,39(11):1308−1316.
[67] 彭振华,李俊彦,杨 森,等. 利用废弃石膏矿储存原油可行性分析[J]. 工程地质学报,2013,21(3):470−475. PENG Zhenhua,LI Junyan,YANG Sen,et al. Feasibility Analysis of Utilization of Waste Gypsum Mine for Crude Oil Storage[J]. Journal of Engineering Geology,2013,21(3):470−475.
[68] 谢和平,侯正猛,高 峰,等. 煤矿井下抽水蓄能发电新技术: 原理、现状及展望[J]. 煤炭学报,2015,40(5):965−972. XIE Heping,HOU Zhengmeng,GAO Feng,et al. A new technology of pumped-storage power in underground coal mine: Principles, present situation and future[J]. Journal of China coal society,2015,40(5):965−972.
[69] 葛帅帅,冯国瑞,姚西龙,等. 煤矿废弃井巷抽水储能理论与技术框架[J]. 煤炭工程,2021,53(7):91−96. GE Shuaishuai,FENG Guorui,YAO Xilong,et al. Theory and technical framework of pumped storage in abandoned wells and roadways[J]. Coal Engineering,2021,53(7):91−96.
[70] 卞正富,周跃进,曾春林,等. 废弃矿井抽水蓄能地下水库构建的基础问题探索[J]. 煤炭学报,2021,46(10):3308−3318. BIAN Zhengfu,ZHOU Yuejin,ZENG Chunlin,et al. A discussion of the basic problems for the construction of underground pumped storage reservoir in abandoned coal mines[J]. Journal of China coal society,2021,46(10):3308−3318.
[71] Menéndez J, Loredo J, Fernandez J M, et al. Underground pumped-storage hydropower plants with mine water in abandoned coal mines[C]//Proceedings of the IMWA 13th International Congress. 2017: 6-13.
[72] 陈苏社. 神东矿区井下采空区水库水资源循环利用关键技术研究[D]. 西安: 西安科技大学, 2016. CHEN Sushe. Research on the key technology of water resources recycling utilization in the underground goaf reservoir in Shendong mining area. Xi’an: Xi’an University of Science and Technology, 2016.
[73] LUO Xing,WANG Jihong,DOONER Mark,et al. Overview of current development in electrical energy storage technologies and the application potential in power system operation[J]. Applied Energy,2015,137:511−536. doi: 10.1016/j.apenergy.2014.09.081
[74] PEJOVIC Stanislav, KARNEY Bryan, MARICIC Tihomir. Smart Grids better with integrated energy system[C]//2009 IEEE Electrical Power & Energy Conference (EPEC). Montreal, QC, Canada. 2009: 1‒8.
[75] 艾 芊,郝 然. 多能互补、集成优化能源系统关键技术及挑战[J]. 电力系统自动化,2018,42(4):2−10. AI Qian,HAO Ran. Key Technologies and challenges of multi energy complementary, integrated and optimized energy sSystems[J]. Automation of Electric Power System,2018,42(4):2−10.
[76] GEIDL Martin, KOEPPEL Gaudenz, FAVRE-PERROD Patrick, et al. Energy Hubs for the future[J]. IEEE Power and Energy Magazine, 2007, 5(1): 24‒30.
[77] GEIDL Martin, ANDERSSON, Göran. A modeling and optimization approach for multiple energy carrier power flow[C]//2005 IEEE Russia Power Tech, Saint Petersburg, Russia. 2005:1‒7.
[78] 熊 文,刘育权,苏万煌,等. 考虑多能互补的区域综合能源系统多种储能优化配置[J]. 电力自动化设备,2019,39(1):118−126. XIONG Wen,LIU Yuquan,SU Wanhuang et al. Optimal allocation of multiple energy storage in regional integrated energy system considering multiple energy complementarities[J]. Automation of Electric Power System,2019,39(1):118−126.
[79] 刁涵彬,李培强,王继飞,等. 考虑电/热储能互补协调的综合能源系统优化调度[J]. 电工技术学报,2020,35(21):4532−4543. DIAO Hanbin,LI Peiqiang,WANG Jifei,et al. Optimal dispatch of integrated energy system considering complementary coordination of electric/thermal energy storage[J]. Transactions of China Electrotechnical Society,2020,35(21):4532−4543.
-
期刊类型引用(1)
1. 鲜保安,高德利,徐凤银,毕延森,李贵川,王京光,张洋,韩金良. 中国煤层气水平井钻完井技术研究进展. 石油学报. 2023(11): 1974-1992 . 百度学术
其他类型引用(0)