高级检索

深部煤层不同类型隐伏构造致灾规律研究

张建国, 邱黎明, 王满, 彭玉杰, 刘强, 宋大钊

张建国,邱黎明,王 满,等. 深部煤层不同类型隐伏构造致灾规律研究[J]. 煤炭科学技术,2023,51(S2):50−59

. DOI: 10.13199/j.cnki.cst.2022-2239
引用本文:

张建国,邱黎明,王 满,等. 深部煤层不同类型隐伏构造致灾规律研究[J]. 煤炭科学技术,2023,51(S2):50−59

. DOI: 10.13199/j.cnki.cst.2022-2239

ZHANG Jianguo,QIU Liming,WANG Man,et al. Study on disaster-causing law of different types of hidden structures in deep coal seam[J]. Coal Science and Technology,2023,51(S2):50−59

. DOI: 10.13199/j.cnki.cst.2022-2239
Citation:

ZHANG Jianguo,QIU Liming,WANG Man,et al. Study on disaster-causing law of different types of hidden structures in deep coal seam[J]. Coal Science and Technology,2023,51(S2):50−59

. DOI: 10.13199/j.cnki.cst.2022-2239

深部煤层不同类型隐伏构造致灾规律研究

基金项目: 

国家自然科学基金资助项目(52004016);2021年度贵州省科技支撑计划资助项目([2021]515)

详细信息
    作者简介:

    张建国: (1965—),男,河南滑县人,教授级高级工程师,博士。E-mail:zhangjg_z@126.com

    通讯作者:

    邱黎明: (1991—),男,河南周口人,副教授,博士。E-mail:qiulm@ustb.edu.cn

  • 中图分类号: TD32

Study on disaster-causing law of different types of hidden structures in deep coal seam

Funds: 

National Natural Science Foundation of China(52004016); 2021 Guizhou Province Science and Technology Support Program Funding Project ([2021] 515)

  • 摘要:

    深部开采过程中,矿井地质类型复杂,在“三高一扰动”条件下,隐伏构造附近极易引发煤与瓦斯突出等煤岩动力灾害。为明确隐伏构造诱发动力灾害的机制,以平煤股份八矿为工程背景,数值模拟研究了不同采掘方向正、逆断层及两者同时存在时的应力−应变演化特征及致灾规律,分析了不同隐伏构造对掘进头的影响。结果表明:掘进遇单一断层,应力−应变集中在工作面前方及断层内部,掘进遇正断层更易产生应力集中,且应力集中区域范围更大,在同等掘进距离下,逆断层主应变略大于正断层;随着掘进距离的增加,当掘进距离增加至15 m时,应力−应变集中区逐渐重合,最终在断层区域形成应力−应变叠加区;掘进遇多断层,应力集中在工作面前方、两断层之间的构造煤上。遇正−逆断层、逆−正断层,叠加应力−应变分布特征表现出差异性,遇正−逆断层,叠加应力−应变主要分布在正断层附近,而遇逆−正断层,两断层之间构造煤中应力−应变也显著增加。逆断层及逆断层主导的多隐伏构造附近,应变能增长速率更大,更有利于应变能积聚,煤与瓦斯突出危险性增加。在采动应力、断层构造应力及煤岩体中的静应力三者的共同作用下,最终引发煤与瓦斯突出等煤岩动力灾害。多隐伏构造较单一构造更易产生应力集中,煤岩动力灾害危险性增加。

    Abstract:

    In the process of deep mining, the geological type of the mine is complicated. Under the condition of “three heights and one disturbance”, it is easy to cause coal and gas outburst and other coal and rock dynamic disasters near the hidden structure. In order to clarify the mechanism of dynamic disasters induced by hidden structures, taking No.8 Mine in Pingdingshan as the engineering background, the stress-strain evolution characteristics and disaster causing law of normal and reverse faults in different mining directions and their simultaneous existence are studied by numerical simulation, and the influence of different hidden structures on driving face is analyzed. The results show that when driving encounters a single fault, the stress-strain is concentrated in front of the work and inside the fault. Normal faults are more likely to produce stress concentration, and the range of stress concentration is larger. At the same driving distance, the principal strain of the reverse fault is slightly larger than that of the normal fault. With the driving distance increases, when the driving distance increases to 15 m, the stress-strain concentration area gradually coincides, and finally a stress-strain superposition area is formed in the fault area. When driving encounters multiple faults, the stress is concentrated on the structural coal in front of the working face and between the two faults. The superimposed stress-strain distribution is different in the case of normal-reverse faults and reverse-normal faults. In the case of normal-reverse faults, the superimposed stress-strain is mainly distributed near the normal faults. In the case of reverse-normal faults, the stress-strain in structural coal between the two faults also increases significantly. Near the multiple hidden structures dominated by reverse faults and reverse faults, the increase rate of strain energy is larger, which is more conducive to the accumulation of strain energy, and the risk of coal and gas outburst increases. Under the combined action of mining stress, fault structural stress and static stress in the coal rock mass, coal and gas outburst and other coal and rock dynamic disasters are eventually triggered. Multiple hidden structures are more likely to produce stress concentration than single structures, and the risk of coal and rock dynamic disaster increases.

  • 图  1   15-21050工作面断层

    Figure  1.   Faults of working face of H15-21050

    图  2   隐伏断层构造数值计算模型

    Figure  2.   Numerical calculation model of hidden faults

    图  3   单一断层主应力分布

    Figure  3.   Single fault principal stress distribution

    图  4   单一断层主应力随掘进距离变化情况

    Figure  4.   Variation of principal stress of single fault with driving distance

    图  5   单一断层主应变分布

    Figure  5.   Single fault principal strain distribution

    图  6   单一断层主应变随掘进距离变化情况

    Figure  6.   Variation of principal strain of single fault with driving distance

    图  7   多断层主应力分布

    Figure  7.   Multiple faults principal stress distribution

    图  8   多断层主应力随掘进距离变化情况

    Figure  8.   Variation of principal stress on multiple faults with driving distance

    图  9   多断层主应变分布

    Figure  9.   Multiple faults principal strain distribution

    图  10   多断层主应变变化

    Figure  10.   Variation of principal strain on multiple faults with driving distance

    图  11   不同掘进距离应力−应变−应变能

    Figure  11.   Stress-strain- energy with different driving distances

    图  12   煤层掘进遇多断层应力分布

    Figure  12.   Multiple faults stress distribution in coal seam driving

    表  1   2煤层顶底板及巷道围岩岩体性质

    Table  1   Properties of rock mass in roof and floor of No.22 coal seam and surrounding rock of roadway

    顶板/底板 岩石名称 抗压强度/MPa RQD/% 岩体质量M 稳定性
    直接顶 泥岩 8.6~31.1 45 0.13~0.47 较稳定
    砂质泥岩 27.0~90.0 45 0.41~1.35
    细粒砂岩 33.1~84.2 60 0.66~1.69
    基本顶 中粒砂岩 53.9~99.9 70 1.26~2.33 稳定
    粗粒砂岩 45.1~128.5 70 1.05~3.00
    下载: 导出CSV

    表  2   模型参数

    Table  2   Model parameters

    参数数值参数数值
    煤的密度ρ1/(kg·m−3)1 250初始瓦斯压力p0/MPa1.3
    煤的弹性模量E1/MPa2 713工作面的长l/m5
    煤的泊松比ν10.339围岩泊松比ν20.235
    煤的黏聚力C1/MPa1.25围岩黏聚力C2/MPa3.2
    煤的内摩擦角θ1/rad37π/180围岩内摩擦角θ2/radπ/6
    围岩密度ρ2/(kg·m−3)2 640瓦斯标况密度ρ0/(kg·m−3)0.714
    围岩弹性模量E2/MPa33 400初始孔隙率φ00.01
    下载: 导出CSV
  • [1] 宋大钊,何学秋,邱黎明,等. 区域和局部突出危险性动态实时监测预警技术研究[J]. 煤炭科学技术,2021,49(5):110−119. doi: 10.1016/j.jngse.2017.10.009

    SONGDazhao,HE Xueqiu,QIU Liming,et al. Study on real time dynamic monitoring and early warning technology of regional and local outburst danger[J]. Coal Science and Technology,2021,49(5):110−119. doi: 10.1016/j.jngse.2017.10.009

    [2]

    FENG Cai. Numerical simulation and experiment analysis of improving permeability by deep-hole presplitting explosion in high gassy and low permeability coal seam[J]. Journal of Coal Science and Engineering,2009,2:175−180.

    [3] 程远平,雷 杨. 构造煤和煤与瓦斯突出关系的研究[J]. 煤炭学报,2021,46(1):180−198.

    CHENG Yuanping,LEI Yang. Causality between tectonic coal and coal and gas outbursts[J]. Journal of China Coal Society,2021,46(1):180−198.

    [4] 赵善坤,张广辉,柴海涛,等. 集贤煤田地质构造演化特征及其对冲击地压的影响[J]. 煤矿安全,2019,50(6):224−229.

    ZHAO Shankun,ZHANG Guanghui,CHAI Haitao,et al. Tectonic evolution characteristics of Jixian coalfield and its influence on rock burst[J]. Safety in Coal Mines,2019,50(6):224−229.

    [5] 窦林名,田鑫元,曹安业,等. 我国煤矿冲击地压防治现状与难题[J]. 煤炭学报,2022,47(1):152−171.

    DOU Linming,TIAN Xinyuan,CAO Anye,et al. Present situation and problems of coal mine rock burst prevention and control in China[J]. Journal of China Coal Society,2022,47(1):152−171.

    [6] 高 瑾. 小构造厚煤带瓦斯突出灾害特征与防治技术研究[D]. 徐州:中国矿业大学,2021.

    GAO Jin. Study on Disaster characteristics and prevention technology of gas outburst in small structural thick coal zone[D]. Xuzhou:China University of Mining and Technology,2021.

    [7] 彭玉杰,宋大钊,李振雷,等. 基于瓦斯实时监测的炮掘工作面爆破自动识别与突出危险性预测[J]. 煤炭科学技术,2022,50(5):171−178.

    PENG Yujie,SONG Dazhao,LI Zhenlei,et al. Auto-identification of blasting and outburst risk prediction in the blasting driving face based on real-time gas monitoring[J]. Coal Science and Technology,2022,50(5):171−178.

    [8] 陆菜平,张修峰,肖自义,等. 褶皱构造对深井采动应力演化的控制规律研究[J]. 煤炭科学技术,2020,48(2):44−50.

    LU Laiping,ZHANG Xiufeng,XIAO Ziyi,et al. Study on controlling law of fold structure on evolution of mining stress in deep mines[J]. Coal Science and Technology,2020,48(2):44−50.

    [9] 曹安业,薛成春,吴 芸,等. 煤矿褶皱构造区冲击地压机理研究及防治实践[J]. 煤炭科学技术,2021,49(6):82−87.

    CAO Anye,XUE Chengchun,WU Yun,et al. Study on mechanism of rock burst in fold structure area of coal mine and its prevention practice[J]. Coal Science and Technology,2021,49(6):82−87.

    [10] 王宏伟,王 晴,石瑞明,等. 煤矿冲击地压与断层构造失稳的多物理场互馈机制研究进展[J]. 煤炭学报,2022,47(2):762−790.

    WANG Hongwei,WANG Qing,SHI Ruiming,et al. A review on the interaction mechanism between coal bursts and fault structure instability from the perspective of multi-physical field[J]. Journal of China Coal Society,2022,47(2):762−790.

    [11] 吕进国,姜耀东,南存全,等. 深部逆断层圆弧形断面诱发煤岩动力灾害的力学分析[J]. 重庆大学学报,2016,39(1):113−119.

    LYU Jinguo,JIANG Yaodong,NAN Cunquan,et al. Mechanical analysis of underground dynamic disasters induced by thrust faults of an arc fault plane[J]. Journal of Chongqing University,2016,39(1):113−119.

    [12] 向 鹏,纪洪广,王金安,等. 开采对断层扰动效应的动力学特征及判据[J]. 岩石力学与工程学报,2015,34(S1):2639−2646.

    XIANG Peng,JI Hongguang,WANG Jin’an,et al. Dynamics characteristics and criterion of fault disturbance effect caused by exploitation[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(S1):2639−2646.

    [13] 王 普,周海勇,万广绪,等. 硬厚顶板下邻断层工作面不同推采方向应力特征分析[J]. 采矿与岩层控制工程学报,2021,3(4):67−75.

    WANG Pu,ZHOU Haiyong,WAN Guangxu,et al. Stress characteristics of different mining directions adjacented fault under hard thick roof[J]. Journal of Mining and Strata Control Engineering,2021,3(4):67−75.

    [14] 谯永刚. 断层影响区煤厚变异带对煤岩动力灾害的影响分析[J]. 煤矿安全,2019,50(4):200−204.

    QIAO Yonggang. Influence analysis of coal thickness variation zones in faults on dynamic disasters of coal and rock[J]. Safety in Coal Mines,2019,50(4):200−204.

    [15] 关金锋,崔洪庆,司小昆. 煤层小断层附近采动应力演化特征与瓦斯突出防治[J]. 安全与环境学报,2017,17(6):2164−2170.

    GUAN Jinfeng,CUI Hongqing,SI Xiaokun. On the evolutional characteristics of mining-induced stress near the small-scale faults areas of the coal seam[J]. Journal of Safety and Environment,2017,17(6):2164−2170.

    [16]

    WANG Xiaolei. Numerical simulation research of coal and gas outburst near tectonic region in Pingdingshan mining area[J]. Arabian Journal of Geosciences,2019,12(18):583. doi: 10.1007/s12517-019-4753-x

    [17]

    DRUCKER D C,PRAGER W. Soil mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics,1952,10(2):157−165. doi: 10.1090/qam/48291

    [18] 曹运兴,张海洋,张 震,等. 正断层上盘煤与瓦斯突出特征与地应力场控制机理[J]. 煤田地质与勘探,2022,52(4):61−69.

    CAO Yunxing,ZHANG Haiyang,ZHANG Zhen,et al. Characteristics of coal and gas outburst and controlling mechanism of stress field in the hanging wall of normal faults[J]. Coal Geology & Exploration,2022,52(4):61−69.

    [19]

    LIN Jianyun,ZUO Yujun,ZHANG Kai,et al. Coal and gas outburst affected by law of small fault instability during working face advance[J]. Geofluids,2020:8880091.

    [20] 周 睿,程晓之,苏伟伟,等. 逆断层区域煤体孔隙结构及瓦斯吸附解吸特征研究[J]. 煤矿安全,2021,52(9):22−28.

    ZHOU Rui,CHENG Xiaozhi,SU Weiwei,et al. Study on pore structure and gas adsorption and desorption characteristics of coal in reverse fault area[J]. Safety in Coal Mines,2021,52(9):22−28.

    [21] 窦林名,白金正,李许伟,等. 基于动静载叠加原理的冲击矿压灾害防治技术研究[J]. 煤炭科学技术,2018,46(10):1−8.

    DOU Linming,BAI Jinzheng,LI Xuwei,et al. Study on prevention and control technology of rockburst disaster based on theory of dynamic and static combined load[J]. Coal Science and Technology,2018,46(10):1−8.

图(12)  /  表(2)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  5
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-26
  • 网络出版日期:  2024-02-23
  • 刊出日期:  2023-12-29

目录

    /

    返回文章
    返回