高级检索

含裂隙煤体能量耗散特征与冲击倾向性研究

朱志洁, 李瑞琪, 汤国水, 韩军, 王来贵, 吴云龙

朱志洁,李瑞琪,汤国水,等. 含裂隙煤体能量耗散特征与冲击倾向性研究[J]. 煤炭科学技术,2023,51(5):32−44

. DOI: 10.13199/j.cnki.cst.2022-2242
引用本文:

朱志洁,李瑞琪,汤国水,等. 含裂隙煤体能量耗散特征与冲击倾向性研究[J]. 煤炭科学技术,2023,51(5):32−44

. DOI: 10.13199/j.cnki.cst.2022-2242

ZHU Zhijie,LI Ruiqi,TANG Guoshui,et al. Research on energy dissipation characteristics and coal burst tendency of fissured coal mass[J]. Coal Science and Technology,2023,51(5):32−44

. DOI: 10.13199/j.cnki.cst.2022-2242
Citation:

ZHU Zhijie,LI Ruiqi,TANG Guoshui,et al. Research on energy dissipation characteristics and coal burst tendency of fissured coal mass[J]. Coal Science and Technology,2023,51(5):32−44

. DOI: 10.13199/j.cnki.cst.2022-2242

含裂隙煤体能量耗散特征与冲击倾向性研究

基金项目: 

辽宁省自然科学基金计划资助项目(2023-MS-318);煤炭资源高效开采与洁净利用国家重点实验室开放基金课题资助项目(2021-CMCUKF016);安徽省高校学科(专业)拔尖人才学术资助项目(gxbjZD2022134)

详细信息
    作者简介:

    朱志洁: (1986—),男,辽宁调兵山人,副教授,硕士生导师。E-mail: zhuzhijie@lntu.edu.cn

  • 中图分类号: TP315

Research on energy dissipation characteristics and coal burst tendency of fissured coal mass

Funds: 

Natural Science Foundation of Liaoning Province (2023-MS-318); State Key Laboratory of Efficient Mining and Clean Utilization of Coal Resources Open Fund Project (2021-CMCUKF016); Top Talent Academic Program of Anhui Province (gxbjZD2022134)

  • 摘要:

    冲击倾向性是煤岩体能否发生冲击地压的自然属性,裂隙的分布对其有重要影响。为研究煤体原始裂隙对能量耗散特征和冲击倾向性的影响机制,采用PFC2D数值模拟方法,对不同裂隙类型的煤体试件进行了单轴压缩测试。研究表明:①随着裂隙倾角的增大,宏观力学参数抗压强度和弹性模量均表现为先减小后增大的趋势;当裂隙倾角为 30°时,两者都取得最小值。不同裂隙类型宏观力学参数大小关系为:非共面平行双裂隙试件<单裂隙试件<共面断续双裂隙试件。②弹性应变能和总应变能的变化规律与宏观力学参数相似。平行非共面的裂隙试件在裂隙之间形成了能量耗散结构,共面断续双裂隙试件裂隙之间形成了能量集中区,揭示了不同裂隙类型弹性能量大小关系的内在原因。③从煤岩体储存弹性能的能力和破坏后释放弹性能的能力2个角度对冲击倾向性进行分析,提出了弹性能储存率和弹性能释放率2个冲击倾向性指标。④随着裂隙倾角的增大,弹性能储存率和弹性能释放率均表现为先减小后增大的趋势;当裂隙倾角为 30°时,两冲击倾向性指标都取得最小值。不同裂隙类型冲击倾向性大小关系为:非共面平行双裂隙试件<单裂隙试件<共面断续双裂隙试件。裂隙的分布形态对煤体的冲击倾向性具有显著影响,在煤岩体的冲击倾向性评价和冲击地压防治中应考虑裂隙这一因素。

    Abstract:

    Coal burst tendency is the natural property of whether coal rock mass can have coal burst, and the distribution of fissures has an important influence on it. In order to study the influence mechanism of the original coal fissures on the energy dissipation characteristics and coal burst tendency, the PFC2D numerical simulation method was used to conduct uniaxial compression tests on coal specimens with different fracture types. The results show that: ①With the increase of the inclination angle of the fissure, the compressive strength and elastic modulus of the macroscopic mechanical parameters show a trend of decreasing first and then increasing; when the inclination angle of the fissure is 30, both of them reach the minimum value. The relationship between the macro-mechanical parameters of different fracture types is: non-coplanar parallel double-fissure specimen < single-fissure specimen < co-planar discontinuous double-fissure specimen.②The variation law of elastic strain energy and total strain energy is similar to that of macroscopic mechanical parameters. The parallel and non-coplanar fracture specimens form an energy dissipation structure between the fissures, and the coplanar discontinuous double-fissure specimen forms an energy concentration area between the fissures, revealing the intrinsic reason for the relationship between the elastic energy of different fracture types. ③The coal burst tendency is analyzed from the two perspectives of the ability of coal and rock to store elastic energy and the ability to release elastic energy after failure, and two coal burst tendency indicators, elastic energy storage rate and elastic energy release rate, are proposed. ④With the increase of the fissure inclination angle, both the elastic energy storage rate and the elastic energy release rate showed a trend of first decreasing and then increasing; when the fissure inclination angle was 30, the two coal burst propensity indexes both achieved the minimum value. The relationship between the coal burst tendency of different fracture types is: non-coplanar parallel double-fissure specimen < single-fissure specimen < co-planar discontinuous double-fissure specimen. The distribution of fissures has a significant coal burst on the coal burst tendency of coal mass, and the factor of fissures should be considered in the evaluation of the coal burst tendency of coal and rock mass and the prevention and control of rock burst.

  • 图  1   含裂隙煤体裂隙演化过程的应力−应变曲线[36]

    Figure  1.   Stress-strain curve of fracture evolution process of fissured coal body[36]

    图  2   PFC中模拟节理的2种方法示意[37]

    Figure  2.   Schematic of two methods for simulating joints in PFC[37]

    图  3   完整与含裂隙试件数值模型的应力应变关系验证

    Figure  3.   Verification of stress-strain relationship of numerical model of intact and cracked specimens

    图  4   数值模型与裂隙参数

    Figure  4.   Numerical model and fissure parameters

    图  5   单轴压缩下不同裂隙类型试件的应力−应变曲线对比

    Figure  5.   Comparison of stress-strain curves of specimens with different fissure type under uniaxial compression

    图  6   单轴压缩下不同裂隙类型试件宏观力学参数对比

    Figure  6.   Comparison of macro-mechanical parameters of coal specimens with different fissure type

    图  7   不同裂隙倾角煤体试件接触力分布

    Figure  7.   Contact force distribution of coal specimens with different fissure type

    图  8   无裂隙煤体试件表面弹性应变能分布

    Figure  8.   Distribution of elastic strain energy on surface of coal specimens with no fissure

    图  9   不同裂隙类型煤体试件表面弹性应变能分布

    Figure  9.   Distribution of elastic strain energy on surface of coal specimens with different fissure types

    图  10   不同裂隙类型试件的能量分布特征 (β=45°)

    Figure  10.   Comparison of energy distribution characteristics for different type fissured specimens (β=45° )

    图  11   基于应力−应变曲线的能量关系示意

    Figure  11.   Schematic of energy relationship based on stress-strain curve

    图  12   相同储存弹性能的条件下不同峰值应变的应力−应变曲线对比

    Figure  12.   Comparison of stress-strain curves of different peak strains under same stored elastic energy

    图  13   不同裂隙类型煤体试件的冲击倾向性对比

    Figure  13.   Comparison of coal burst tendency of coal specimens with different fracture types

    表  1   宏观力学参数对比

    Table  1   Comparison of macro mechanical parameters

    测试类型PFC模拟实验室测试
    单轴抗压强度/MPa完整试件18.918.7
    30°单裂隙试件14.514.2
    30°平行双裂隙试件11.211.3
    30°断续双裂隙试件14.714.3
    弹性模量/GPa完整试件4.24.6
    30°单裂隙试件3.843.80
    30°平行双裂隙试件2.382.41
    30°断续双裂隙试件3.853.88
    下载: 导出CSV

    表  2   不同裂隙类型试件峰值点处能量耗散特征

    Table  2   Characteristics of energy dissipation at peak point of specimens with different fissure types

    裂隙类型裂隙倾
    角/(º)
    峰值点总能量/
    (104J·m-3)
    峰值点弹性应变
    能/(104J·m-3)
    峰值点耗散
    能/(104J·m-3)
    单裂隙试件04.434.190.24
    152.902.690.20
    302.171.950.23
    452.532.390.14
    603.212.910.31
    753.763.450.31
    904.334.180.15
    共面断续双
    裂隙试件
    04.534.280.25
    153.273.050.22
    302.532.350.18
    453.273.040.23
    602.932.760.17
    753.523.390.14
    904.354.200.16
    平行非共面
    双裂隙试件
    04.283.980.30
    152.061.890.18
    301.541.370.17
    451.551.450.10
    601.961.840.12
    752.902.760.13
    904.234.080.15
    下载: 导出CSV
  • [1] 宫凤强,赵英杰,王云亮,等. 煤的冲击倾向性研究进展及冲击地压“人-煤-环”三要素机理[J]. 煤炭学报,2022,47(5):1974−2010. doi: 10.13225/j.cnki.jccs.2022.0165

    GONG Fengqiang,ZHAO Yingjie,WANG Yunliang,et al. Research progress of coal bursting liability indices and coal burst “Human-Coal-Environment” three elements mechanism[J]. Journal of China Coal Society,2022,47(5):1974−2010. doi: 10.13225/j.cnki.jccs.2022.0165

    [2] 潘俊锋,宁 宇,毛德兵,等. 煤矿开采冲击地压启动理论[J]. 岩石力学与工程学报,2012,31(3):586−596. doi: 10.3969/j.issn.1000-6915.2012.03.017

    PAN Junfeng,NING Yu,MAO Debing,et al. Theory of rockburst start-up during coal mining[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(3):586−596. doi: 10.3969/j.issn.1000-6915.2012.03.017

    [3] 赵毅鑫,姜耀东,张 雨. 冲击倾向性与煤体细观结构特征的相关规律[J]. 煤炭学报,2007,32(1):64−68. doi: 10.3321/j.issn:0253-9993.2007.01.014

    ZHAO Yixing,JIANG Yaodong,ZHANG Yu. The relationship between bump prone property and microstructure characteristics of coal[J]. Journal of China Coal Society,2007,32(1):64−68. doi: 10.3321/j.issn:0253-9993.2007.01.014

    [4] 赵同彬,尹延春,谭云亮,等. 基于颗粒流理论的煤岩冲击倾向性细观模拟试验研究[J]. 煤炭学报,2014,39(2):280−285.

    ZHAO Tongbin,YIN Yanchun,TAN Yunliang,et al. Bursting liability of coal research of heterogeneous coal based on particle flow microscopic test[J]. Journal of China Coal Society,2014,39(2):280−285.

    [5] 冯增朝, 赵阳升. 岩石非均质性与冲击倾向的相关规律研究[J]. 岩石力学与工程学报, 2003, 22(11): 1863–1865.

    FENG Zengchao, ZHAO Yangsheng. Correlativity of rock inhomogeneity and rock burst trend[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1863–1865.

    [6] 孟召平,潘结南,刘亮亮,等. 含水量对沉积岩力学性质及其冲击倾向性的影响[J]. 岩石力学与工程学报,2009,28(S1):2637−2643.

    MENG Zhaoping,PAN Jienan,LIU Liangliang,et al. Influence of moisture contents on mechanical properties of sedimentary rock and its bursting potential[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(S1):2637−2643.

    [7] 张志镇, 高 峰, 刘治军. 温度影响下花岗岩冲击倾向及其微细观机制研究[J]. 岩石力学与工程学报, 2010, 29(8): 1591–1602.

    ZHANG Zhizhen, GAO Feng, LIU Zhijun. Research on rock bursts proneness and its microcosmic mechanism of granite considering temperature effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1591–1602.

    [8] 张广辉,欧阳振华,齐庆新,等. 瓦斯对煤冲击倾向性影响的试验研究[J]. 煤炭学报,2017,42(12):3159−3165.

    ZHANG Guanghui,OUYANG Zhenhua,QI Qingxin,et al. Experimental research on the influence of gas on coal burst tendency[J]. Journal of China Coal Society,2017,42(12):3159−3165.

    [9]

    LIU X,WANG X,WANG E,et al. Effects of gas pressure on bursting liability of coal under uniaxial conditions[J]. Journal of Natural Gas Science and Engineering,2017,39:90−100. doi: 10.1016/j.jngse.2017.01.033

    [10]

    YI X,FENG G,TENG T,et al. Effect of gas pressure on rock burst proneness indexes and energy dissipation of coal samples[J]. Geotechnical and Geological Engineering,2016,34(6):1−12.

    [11] 左建平,陈 岩,崔 凡. 不同煤岩组合体力学特性差异及冲击倾向性分析[J]. 中国矿业大学学报,2018,47(1):81−87.

    ZUO Jianping,CHEN Yan,CUI Fan. Investigation on mechanical properties and rock burst tendency of different coal-rock combined bodies[J]. Journal of China University of Mining & Technology,2018,47(1):81−87.

    [12] 邓志刚. 冲击倾向性煤体强度尺寸效应的影响因素研究[J]. 煤炭科学技术,2019,47(8):59−63.

    DENG Zhigang. Study on influencing factors of strength size effect based on bump-prone coal[J]. Coal Science and Technology,2019,47(8):59−63.

    [13]

    SONG H,JIANG Y,ELSWORTH D,et al. Scale effects and strength anisotropy in coal[J]. International Journal of Coal Geology,2018,195:37−46. doi: 10.1016/j.coal.2018.05.006

    [14]

    GAO F,STEAD D,KANG H. Numerical investigation of the scale effect and anisotropy in the strength and deformability of coal[J]. International Journal of Coal Geology,2014,136:25−37. doi: 10.1016/j.coal.2014.10.003

    [15] 卢志国,鞠文君,王 浩,等. 硬煤冲击倾向各向异性特征及破坏模式试验研究[J]. 岩石力学与工程学报,2019,38(4):757−768.

    LU Zhiguo,JU Wenjun,WANG Hao,et al. Experimental study on anisotropic characteristics of impact tendency and failure model of hard coal[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(4):757−768.

    [16] 郝宪杰,袁 亮,王少华,等. 硬煤冲击倾向性的层理效应研究[J]. 煤炭科学技术,2018,46(5):1−7.

    HAO Xianjie,YUAN Liang,WANG Shaohua,et al. Study on bedding effect of bump tendency for hard coal[J]. Coal Science and Technology,2018,46(5):1−7.

    [17] 李 磊,李宏艳,李凤明,等. 层理角度对硬煤冲击倾向性影响的实验研究[J]. 采矿与安全工程学报,2019,36(3):987−994. doi: 10.13545/j.cnki.jmse.2019.05.016

    LI Lei,LI Hongyan,LI Fengming,et al. Experimental study on anisotropic characteristics of impact tendency and failure model of hard coal[J]. Chinese Journal of Rock Mechanics and Engineering,2019,36(3):987−994. doi: 10.13545/j.cnki.jmse.2019.05.016

    [18]

    SZECOWKA Z, DOMZAL J, OZANA P. Energy index of natural bursting ability of coal [J]. Transactions of the Central Mining Institute, 1973, 594.

    [19]

    GIL H, DRZEZLA B. Methods for determining bursting liability of coal [J]. Przegl Górn, 1973: 12.

    [20]

    SINGH S P. Burst energy release index[J]. Rock Mechanics & Rock Engineering,1988,21(2):149−155.

    [21] 唐礼忠,潘长良,王文星. 用于分析岩爆倾向性的剩余能量指数[J]. 中南工业大学学报(自然科学版),2002,33(2):129−132.

    TANG Lizhong,PAN Changliang,WANG Wenxing. Surplus energy index for analysing rockburst proneness[J]. Journal of Central South University of Technology,2002,33(2):129−132.

    [22] 张绪言,冯国瑞,康立勋,等. 用剩余能量释放速度判定煤岩冲击倾向性[J]. 煤炭学报,2009,34(9):1165−1168. doi: 10.3321/j.issn:0253-9993.2009.09.003

    ZHANG Xuyan,FENG Guorui,KANG Lixun,et al. Method to determine burst tendency of coal rock by residual energy emission speed[J]. Journal of China Coal Society,2009,34(9):1165−1168. doi: 10.3321/j.issn:0253-9993.2009.09.003

    [23] 陈卫忠,吕森鹏,郭小红,等. 基于能量原理的卸围压试验与岩爆判据研究[J]. 岩石力学与工程学报,2009,28(8):1530−1540. doi: 10.3321/j.issn:1000-6915.2009.08.003

    CHEN Weizhong,LYU Senpeng,GUO Xiaohong,et al. Research on unloading confining pressure tests and rockburst criterion based on enrgy theory[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(8):1530−1540. doi: 10.3321/j.issn:1000-6915.2009.08.003

    [24] 卢志国, 鞠文君, 高富强, 等. 基于非线性储能与释放特征的煤冲击倾向性指标[J]. 岩石力学与工程学, 2021, 40(8): 1559−1569 .

    LU Zhiguo, JU Wenjun, GAO Fuqiang, et al. Bursting liability index of coal based on nonlinear storage and release characteristics of elastic energy, 2021, 40(8): 1559−1569.

    [25] 宫凤强, 闫景一, 李夕兵. 基于线性储能规律和剩余弹性能指数的岩爆倾向性判据[J]. 岩石力学与工程学报, 2018, 37(9): 1993–2014.

    GONG Fengqiang, YAN Jingyi, LI Xibing. A new criterion of rock burst proneness based on the linear energy storage law and the residual elastic energy index[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 1993–2014.

    [26] 王 超. 基于 有效冲击能量速率的煤层冲击倾向性指数研究[J]. 煤矿开采,2017,22(5):9−12.

    WANG Chao. Study of coal seam rock burst tendency index under effectively impact energy rate[J]. Coal Mining Technology,2017,22(5):9−12.

    [27] 唐礼忠,王文星. 一种新的岩爆倾向性指标[J]. 岩石力学与工程学报,2002,21(6):874−878. doi: 10.3321/j.issn:1000-6915.2002.06.022

    TANG Lizhong,WANG Wenxing. New rock burst proneness index[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(6):874−878. doi: 10.3321/j.issn:1000-6915.2002.06.022

    [28]

    GONG F,YAN J,LI X,et al. A peak-strength strain energy storage index for rock burst proneness of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences,2019,117:76−89. doi: 10.1016/j.ijrmms.2019.03.020

    [29]

    GONG Fengqiang,WANG Yunliang,WANG Zhiguo,et al. A new criterion of coal burst proneness based on the residual elastic energy index[J]. International Journal of Mining Science and Technology,2021,31(4):553−563. doi: 10.1016/j.ijmst.2021.04.001

    [30] 姚精明,闫永业,李生舟,等. 煤层冲击倾向性评价损伤指标[J]. 煤炭学报,2011,36(S2):353−357.

    YAO Jingming,YAN Yongye,LI Shengzhou,et al. Damage index of coal seam rock burst proneness[J]. Journal of China Coal Society,2011,36(S2):353−357.

    [31]

    HOMAND F,PIGUET J P,REVALOR R. Dynamic phenomena in mines and characteristics of rocks[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts,1992,29(1):A69.

    [32] 张万斌,王淑坤,吴耀焜,等. 以动态破坏时间鉴定煤的冲击倾向[J]. 煤炭科学技术,1986,14(3):31−34.

    ZHANG Wanbin,WANG Shukun,WU Yaokun,et al. To determine proneness of coal burst by dynamic failure time[J]. Coal Science and Technology,1986,14(3):31−34.

    [33] 潘一山,耿 琳,李忠华. 煤层冲击倾向性与危险性评价指标研究[J]. 煤炭学报,2010,35(22):1975−1978.

    PAN Yishan,GENG Lin,LI Zhonghua. Research on evaluation indices for impact tendency and danger of coal seam[J]. Journal of China Coal Society,2010,35(22):1975−1978.

    [34] 代树红,王晓晨,潘一山,等. 模量指数评价煤的冲击倾向性的实验研究[J]. 煤炭学报,2019,44(6):1726−1731.

    DAI Shuhong,WANG Xiaochen,PAN Yishan,et al. Experimental study on the evaluation of coal burst tendency utilizing modulus index[J]. Journal of China Coal Society,2019,44(6):1726−1731.

    [35] 齐庆新,彭永伟,李宏艳,等. 煤岩冲击倾向性研究[J]. 岩石力学与工程学报,2011,30(S1):2736−2742.

    QI Qingxin,PENG Yongwei,LI Hongyan,et al. Study of bursting liability of coal and rock[J]. Chinese Journal of Rock Mechanics & Engineering,2011,30(S1):2736−2742.

    [36] 彭 俊,蔡 明,荣 冠,等. 裂纹闭合应力及其岩石微裂纹损伤评价[J]. 岩石力学与工程学报,2015,34(6):1091−1100.

    PENG Jun,CAI Ming,RONG Guan,et al. Stresses for crack closure and its application to assessing stress-induced microcrack damage[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(6):1091−1100.

    [37]

    KULATILAKE P H S W, MALAMA Bwalya, WANG Jialai. Physical and particle flow modeling of jointed rock block behavior under uniaxial loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(5): 641−657.

    [38]

    DEISMAN N, IVARS D M, PIERCE M. PFC2D Smooth joint contact model numerical experiments[C]// Edmonton, Canda: GeoEdmonton’08 Drganizing Committee, 2008.

    [39]

    BAHAADDINI M,HAGAN P C,MITRA R,et al. Parametric Study of Smooth Joint Parameters on the Shear Behaviour of Rock Joints[J]. Rock Mechanics and Rock Engineering,2015,48(3):923−940.

    [40] 李文洲,司林坡,卢志国,等. 煤单轴压缩起裂强度确定及其关键因素影响分析[J]. 煤炭学报,2021,46(S2):670−680.

    LI Wenzhou,SI Linpo,LU Zhiguo,et al. Determination of coal cracking initiation strength under uniaxial compression and analysis of its key factors[J]. Journal of China Coal Society,2021,46(S2):670−680.

    [41] 刘新荣,邓志云,刘永权,等. 岩石节理峰前循环直剪试验颗粒流宏细观分析[J]. 煤炭学报,2019,44(7):2103−2115.

    LIU Xinrong,DENG Zhiyun,LIU Yongquan,et al. Macroscopic and microscopic analysis of particle flow in pre-peak cyclic direct shear test of rock joint[J]. Journal of China Coal Society,2019,44(7):2103−2115.

  • 期刊类型引用(10)

    1. 宋大钊,赵丹,纪润清,康忠全,王孟霞,罗思宇,何生全. 不同硬度煤样微观表面力学性质差异性研究. 晋控科学技术. 2024(02): 1-7 . 百度学术
    2. 牛艳奇,陈泰龙,胡相捧,商德勇,李占平,薛卓. 基于双量化评价指标的千米深井大采高液压支架适应性分析. 采矿与岩层控制工程学报. 2024(05): 119-131 . 百度学术
    3. 耿铭,孙静. 厚硬顶板悬顶致灾机理及切顶控制技术研究. 工矿自动化. 2024(11): 132-141 . 百度学术
    4. 康智斌. 大采高工作面坚硬顶板致灾防控技术研究. 煤. 2023(03): 53-57 . 百度学术
    5. 解盘石,吴少港,罗生虎,伍永平,陈建杰. 大倾角大采高开采支架动载失稳机理及控制. 煤炭科学技术. 2023(02): 58-71 . 本站查看
    6. 郭靖. 厚煤层疏水风化损伤规律及微爆破治理片帮技术. 矿业安全与环保. 2023(02): 109-113 . 百度学术
    7. 张浩,伍永平,解盘石. 大倾角大采高采场塑性区分布及主控因素分析. 煤炭科学技术. 2023(09): 55-64 . 本站查看
    8. 杨艺,谷雷. 大倾角煤层软岩底板破坏滑移规律及控制研究. 煤炭技术. 2022(06): 22-25 . 百度学术
    9. 刘程,李志华,杨科,池小楼,周鹏,赵士虎. 大倾角智能开采工作面矿压显现相似模拟研究. 矿业研究与开发. 2022(07): 86-91 . 百度学术
    10. 时昌鹏. 坚硬顶板大倾角软煤综采安全技术探析. 江西煤炭科技. 2021(04): 4-6 . 百度学术

    其他类型引用(4)

图(13)  /  表(2)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  14
  • PDF下载量:  49
  • 被引次数: 14
出版历程
  • 收稿日期:  2022-11-11
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2023-05-30

目录

    /

    返回文章
    返回