高级检索

TBM在煤矿巷道掘进中的技术应用和研究进展

刘泉声, 黄兴, 潘玉丛, 刘滨, 邓鹏海

刘泉声,黄 兴,潘玉丛,等. TBM在煤矿巷道掘进中的技术应用和研究进展[J]. 煤炭科学技术,2023,51(1):242−259. DOI: 10.13199/j.cnki.cst.2022-2253
引用本文: 刘泉声,黄 兴,潘玉丛,等. TBM在煤矿巷道掘进中的技术应用和研究进展[J]. 煤炭科学技术,2023,51(1):242−259. DOI: 10.13199/j.cnki.cst.2022-2253
LIU Quansheng,HUANG Xing,PAN Yucong,et al. Application and research progress of TBM tunneling in coal mine roadway[J]. Coal Science and Technology,2023,51(1):242−259. DOI: 10.13199/j.cnki.cst.2022-2253
Citation: LIU Quansheng,HUANG Xing,PAN Yucong,et al. Application and research progress of TBM tunneling in coal mine roadway[J]. Coal Science and Technology,2023,51(1):242−259. DOI: 10.13199/j.cnki.cst.2022-2253

TBM在煤矿巷道掘进中的技术应用和研究进展

基金项目: 

国家自然科学基金资助项目(U21A20153,41941018);湖北省重点研发计划资助项目(2021BCA133)

详细信息
    作者简介:

    刘泉声: (1962—),男,江苏溧阳人,教授,博士生导师。E-mail: liuqs@whu.edu.cn

  • 中图分类号: TD421

Application and research progress of TBM tunneling in coal mine roadway

Funds: 

National Natural Science Foundation of China (U21A20153, 41941018); Key R&D Project of Hubei Province (2021BCA133)

  • 摘要:

    TBM工法经济技术优势显著,正成为煤矿巷道快速掘进的一种新方法。但由于煤矿特殊的施工环境和复杂地质条件,TBM在煤矿巷道掘进中面临以下技术挑战:①煤矿特殊施工环境下TBM装备和矿井系统适应性设计难;②煤系软硬复合地层破岩机理不清,高效破岩控制难度大;③软弱地层挤压变形卡机灾害风险大,灾害预测和安全控制难度大;④掘进空间狭小和粉尘水雾干扰严重,TBM掘进过程监测难度大,难以进行掘进参数决策控制和灾害预警。对此,针对TBM装备适应性设计技术,深部复合地层TBM高效破岩理论,挤压变形卡机灾害预测控制方法,掘进过程智能化决策控制技术等开展了系统研究,在TBM安全高效掘进技术方面取得了以下研究进展:①论述了针对煤矿特殊施工环境的TBM装备和施工工艺适应性设计技术;②开展了TBM滚刀贯入和线性切割试验,揭示了复合地层地应力水平、岩石强度及岩性变化、掘进控制模式、滚刀安装半径等对TBM破岩效率和破岩模式的影响机理,提出了深部复合地层TBM掘进性能评价预测方法和岩体可掘性评价方法;③揭示了深部煤系软弱地层TBM掘进挤压大变形卡机灾害孕育发生机理,发展了挤压变形卡机灾害孕育演化及控制过程模拟预测的FDEM(有限元-离散元耦合)方法,提出了挤压变形卡机监测预警方法,形成了TBM掘进挤压大变形卡机“大变径扩挖、掘进参数优化和分步联合支护”综合防控技术体系;④提出了TBM掘进过程岩-机作用信息(刀盘刀具-掘进工作面作用、围岩-护盾作用信息)实时感知技术,初步提出了TBM掘进参数自适应智能决策方法。上述研究进展将推动TBM在煤矿巷道建设中的应用和安全高效掘进技术进步。

    Abstract:

    TBM (Full Face Tunnel Boring Machine) tunneling method has significant economic and technical advantages and is becoming an innovative method for deep roadway speedy construction. However, due to the special complex geological conditions and construction environment of coal mines, the technical challenges faced by TBM tunneling in deep roadways and the key scientific problems are analyzed: ① adaptive design of TBM equipment and the mine system under special tunneling environment in coal mine is difficult to fulfill; ② the rock fragmentation mechanism in soft and hard mixed strata is unclear, and the efficient rock cutting is difficult to realize; ③ The risk of soft rock squeezing deformation and TBM jamming, and the difficulty for accurate prediction and safety control is large; ④ Due to the narrow tunneling space and the serious interference of dust and water fog, it is difficult to monitor the tunneling process and make decision control and disaster warning according to the monitoring information. In this regard, systematic research on adaptive equipment design, efficient rock cutting in mixed-ground, squeezing deformation and TBM jamming disaster prediction and control method, and intelligent assisted tunneling method in deep composite stratum tunneling has been carried out. Research results on the TBM safe and efficient tunneling technology are achieved: ① the present situation of TBM adaptive design technology for special construction environment of coal mine is illustrated. ② full-size disc cutter penetration and linear cutting tests for hard and soft rock under high confining pressure are performed. Accordingly, the influence of complex geo-stress, rock strength and lithology change, tunneling control mode,cutter installation radius on the TBM cutting efficiency and rock fragmentation mechanism are revealed. The evaluation and prediction method of TBM tunneling performance and the corresponding rock mass classification method in deep mixed ground is put forward. ③ The mechanism of large deformation and TBM jamming disaster during TBM tunneling in deep coal measure soft strata is revealed. The FDEM (combined FEM and DEM) numerical simulation method of large deformation and TBM jamming disaster evolution and corresponding control measures for TBM tunneling in soft rock is developed. The monitoring and warning method of squeezing deformation and TBM jamming disaster is put forward. A comprehensive prevention and control technology system of ‘large diameter over excavation, excavation parameter optimization and step by step combined supporting’ is proposed for large squeezing deformation and TBM jamming hazard. ④ The real-time sensing technology of rock-TBM interaction information (cutter head - roadway face interaction, surrounding rock-shield interaction) in TBM tunneling process is proposed, and the adaptive intelligent decision-making method for advance parameters is initially developed. The research progresses will promote the application of TBM tunneling in coal mine roadway construction and safe and efficient tunneling technology.

  • 双巷掘进小煤柱护巷实现了将复用巷道布置于低应力区,但相比宽煤柱护巷,小煤柱受两个工作面双次采动影响更剧烈,整体稳定性差,易诱发复用巷道大变形,当处于高埋深高地应力赋存环境时,也容易诱发冲击地压等灾害。侯朝炯[1]、柏建彪[2]等针对沿空巷道围岩运移规律阐明了不同阶段演变特征,开展了大、小结构稳定性分析,明确了影响因素。郑西贵[3]、李学华等[4]分析了小煤柱不同时期内应力场分布规律,明确了邻空巷道围岩变形破坏的关键因素。赵国贞[5]、赵启峰等[6]建立沿空掘巷围岩结构力学模型,阐明了影响巷道围岩稳定性的各因素间相互关系,揭示了综放沿空掘巷围岩变形控制机理。毕慧杰[7]、别小飞[8]、苏振国等[9]根据小煤柱留设工况下顶板结构形态,提出了超前预裂爆破围岩控制技术;王志强[10]、王德超[11]、彭林军等[12]针对窄煤柱围岩变形控制难点,提出不对称支护和窄煤柱注浆等围岩控制方案。李民族等[13]针对单一深孔定向预裂聚能爆破技术存在的问题,提出了深浅孔能量场叠加定向预裂顶板工艺。

    以上研究成果体现出小煤柱沿空巷道围岩变形影响因素的多样性和防控对策的可行性。但针对双巷掘进一次成巷留设小煤柱护巷条件下,顶板切顶卸压工艺鲜有研究,笔者以赵庄煤业一盘区小煤柱护巷为研究背景,对小煤柱护巷开展顶板力学结构分析,并明确深浅孔聚能组合爆破预裂机制,结合理论计算和现场试验确定爆破参数,并通过微震能量云图、小煤柱应力数据、扇形钻孔顶板结构窥视和巷道围岩变形数据多种方法进行卸压效果评价。

    1313工作面回采长度为540 m,倾向长度为218 m,平均煤厚为4.85 m,工作面埋深为650 m,为一盘区东翼首采面。1316工作面回采长度为750 m,倾向长度为300 m,两工作面相对位置关系如图1所示。

    图  1  小煤柱护巷工作面布置
    Figure  1.  Layout of small coal pillar supporting roadway face

    通过在13132巷顶板取心获得该区域顶板以细粒砂岩、砂质泥岩和泥岩为主,如图2所示,经测定以上3种岩性单轴抗压强度分别为197.937 MPa、81.095 MPa和46.626 MPa,1312工作面顶板具有坚硬顶板层数多、结构复合等明显特点,属于典型的坚硬复合顶板,1313工作面与1316工作面间留设8 m区段煤柱,且13132巷与13163巷同步掘进成巷,为改善小煤柱围岩的应力条件,强化小煤柱的承载能力,采用加长锚固、围岩注浆和对穿锚索等进行联合加强支护。

    图  2  13132巷顶板取心柱状
    Figure  2.  Column drawing of roof core of roadway 13132

    坚硬复合顶板具有较高的自稳能力,而受软弱夹层影响,顶板来压过程又具有突发性和迅猛性等特点,为探究赵庄煤业坚硬复合顶板破断运移规律,搭建长×宽×高为3000 mm×300 mm×2000 mm相似模拟,并进行开挖。

    图3为煤柱区域悬顶结构,从图3中可以看出在工作面回采后,坚硬复合顶板在采空区侧形成大跨度悬顶,悬顶且对上覆数个岩层起到控制作用,当悬顶承受载荷超过其极限承载能力或在高位软弱夹层处形成大范围离层空隙时,悬顶瞬间断裂或者下沉势必引起动载荷向下冲击采空区矸石,矸石在垂向动载作用下向周围扩散,矸石扩散对小煤柱产生倾向作用力,同时煤柱上方顶板突然卸载、回弹,煤柱垂向受力减小,在倾向作用力下导致邻空巷道瞬间变形,甚至诱发强矿压灾害。

    图  3  煤柱区域悬顶结构
    Figure  3.  Structure plan of suspended roof in coal pillar area

    煤层上覆关键岩层主要受到岩块间的作用力、 采空区冒落矸石的支撑力、小煤柱的支撑力以及实体煤的支撑力和上覆岩层的自重[5]。根据围岩结构特点对小煤柱沿空掘巷进行简化,建立起围岩结构力学模型如图4所示。巷道顶板的挠度ω(x)取向下为正,梁的抗弯强度EI为常数。

    图  4  小煤柱护巷围岩结构力学模型
    Figure  4.  Mechanical model of surrounding rock structure of small coal pillar supporting roadway

    图4中,$ q_{0} $为顶板上覆岩层载荷;$ q_{1} $为小煤柱对顶板的支撑力;$ q_{2} $为实体煤对顶板的支撑力;OM段为采空区悬顶,长度为LMN段为小煤柱长度(8 m);NP段为沿空巷道长度(5 m);PQ段为未开采实体煤长度。

    煤柱MN段与未开采煤层PQ段对关键层的作用按弹性地基处理,即

    $$ q_{1}(x)=k W{({{x}})} $$ (1)

    其中,Winkler地基系数k,与梁下垫层的厚度及力学性质有关,即

    $$ k=\sqrt{E / h} $$ (2)

    式中:E为煤体弹性模量;h为梁下地基垫层厚度。

    设梁OQ段是均质、各向同性的线弹性材料,则 NP段其挠曲线方程为

    $$ E I \omega{({{x}})}''=-M{({{x}})} $$ (3)

    其中,巷道顶板的弯矩:

    $$ M{({{x}})}=5KW{({{x}})} \left(x-{{L}}-\frac{5}{2}\right)-\frac{1}{2}q_{0}x^{2}$$ (4)

    将式(4)代入式(3)得:

    $$ \omega{({{x}})}=\frac{q_{0}}{24 E I} x^{4}-\frac{5}{6 E I} K W{({{x}})} x^{3}+\frac{5}{2 E I} K W{({{x}})}\left(L+\frac{5}{2}\right) x^{5} $$ (5)

    式中:$\omega{({{x}})}$为小煤柱挠度。

    L受顶板强度、岩性、厚度和顶板岩层结构影响,在特定地质条件下存在极值,由式(5)可以看出,在L极值范围内,沿空巷道顶板挠度随着L的增大而增大,因此可以通过聚能切缝技术人为地改变L的长度,从而达到减弱巷道围岩变形的效果。

    聚能爆破是在爆破过程中采用聚能管实现在特定方向上积聚能量,形成一股强烈冲击的爆破能量流,实现顶板内定向裂隙预制的爆破工艺,如图5所示。聚能爆破深孔实现高位基本顶的定向切缝,破坏坚硬顶板完整性,防控冲击地压灾害,改善煤层上方6倍采高范围内的深部应力场,实现“消冲”目的。聚能爆破浅孔用于实现对低位岩层充分预裂,促使低位顶板随采随垮,改善煤层上方4倍采高浅部应力场,实现“护巷”作用。在深浅孔组合能量场作用下,最终可形成切顶范围内的预裂面。

    图  5  深浅孔组合双层位爆破机理
    Figure  5.  Double layer blasting mechanism of deep and shallow hole combination

    在多孔爆破过程中可利用导向钻孔增加爆破自由面,实现应力波在自由面的反射,反射波与入射波叠加,导向孔周围形成应力集中,在爆破孔连线上实现裂隙导通,提高2个相邻钻孔缝隙贯通度[14-18]。根据弹性力学原理论,导向孔附近的应力峰值应力状态表示为

    $$ \sigma_{{{rr}}} = \frac{1}{2}\left[\left(1-k_{0}^{2}\right)\left(\sigma_{{{\theta}}}-\sigma_{{{r}}}\right)+\left(1-4 k_{0}^{2}+3 k_{0}^{4}\right)\left(\sigma_{\theta}+\sigma_{{\rm{r}}}\right) \cos 2 \theta\right] $$ (6)
    $$ \sigma_{\theta \theta}=\frac{1}{2}\left[\left(1-{k}_{0}^{2}\right)\left(\sigma_{\theta}-\sigma_{{\rm{r}}}\right)+\left(1+3 {k}_{0}^{4}\right)\left(\sigma_{\theta}+\sigma_{{\rm{r}}}\right) \cos 2 \theta\right] $$ (7)
    $$ \tau_{{{r}} \theta}=\frac{1}{2}\left[\left(1-4 {k}_{0}^{2}+3 {k}_{0}^{4}\right)\left(\sigma_{\theta}+\sigma_{{\rm{r}}}\right) \cos 2 \theta\right] $$ (8)
    $$ {{{k}}}_{0}=r_{0} / r_{{\rm{B}}} $$ (9)

    式中:$\sigma_{{rr}}$,$ \sigma_{\theta \theta} $分别为导向孔应力集中后的岩石中径向应力和切向应力;$\tau_{{{r}} \theta}$为空孔应力集中后岩石中的剪切应力;$ \sigma_{{r}} $,$ \sigma_{\theta} $分别为岩石中的径向应力和切向应力;${r}_{0}$为空孔的半径;${r}_{\mathrm{B}}$为岩石中任一点到空孔中心的距离;$ \theta $为任意方向与孔间连线的夹角。式(9)中,当k0=1时,$\tau_{{\rm{r}} \theta}$=0,$\sigma_{\mathrm{rr}}$=0,而

    $$ \sigma_{\theta \theta}=\left(\sigma_{\theta}-\sigma_{{{r}}}\right)+2\left(\sigma_{\theta}+\sigma_{{{r}}}\right) \cos 2 \theta $$ (10)

    对式求$\dfrac{\mathrm{d} \sigma_{\theta \theta}}{\mathrm{d} \theta}$,并令$\dfrac{\mathrm{d} \sigma_{\theta \theta}}{\mathrm{d} \theta}=0$,可知当$ \theta $=0或$ \pm \pi $时,$ \sigma_{\theta \theta} $为极大值(拉应力为正,压应力为负)

    $$ \sigma_{\theta \theta}=3 \sigma_{\theta}+\sigma_{{r}} $$ (11)

    当$ \theta $=$ \pm \pi / 2 $时,$\sigma_{\theta \theta} $为极小值。

    $$ \sigma_{\theta \theta}=-\sigma_{\theta}-3 \sigma_{{r}} $$ (12)

    可见,如图6所示,在相邻炮孔连线方向上,即$ \theta $=0或$ \pm \pi $,出现最大拉应力,若该应力值满足岩石的抗拉强度,则孔壁将沿孔间连线方向产生裂纹。

    图  6  深浅孔组合导向孔作用机制
    Figure  6.  Action mechanism of combined guide hole with deep and shallow hole

    因此,在开展深浅孔聚能爆破过程中,可将深孔浅部封孔段视为爆破浅孔的导向孔,借助封孔段内炮泥与顶板原岩介质属性差异性,实现应力波在异性介质交界面的反射,提升深孔浅部裂隙成缝率,实现钻孔排列方向上裂隙充分预制。在深浅孔组合爆破过程中,将深孔、浅部开孔位置布置在同一直线上,如图7所示,且钻孔方位角和倾角相同,便可实现最大程度利用爆破能量预裂顶板。

    图  7  深浅孔组合孔布置示意
    Figure  7.  Layout diagram of deep and shallow hole combination hole

    顶板聚能爆破孔与垂线形成的夹角为切缝角,切缝角与爆破孔倾角互为余角;在开展密集定向爆破后,将在顶板内部预制一个断裂面或弱面层。煤层回采后,在上覆基本顶作用下,顶板沿预制弱面层断裂、滑落至采空区。切缝角过大形成小倾角的弱面层,增加顶板裂隙摩擦作用力,不利于老顶的垮塌与滑落;切缝角过小则形成大倾角弱面,提前爆破不利于巷道稳定,甚至出现顶板大面积下沉现象。

    假设爆破后人为预制弱面与垂线夹角为$ \gamma $,岩石内摩擦角为$ \varphi $,取值为42°,则其咬合关系如图8所示。上工作面采空区侧向顶板形成铰接块体[19-21],岩块B向下滑落时,受到水平水平推力T作用,同时岩块A对岩块B产生向上抗滑力R,该种结构下摩擦阻力$ f_{\mathrm{k}} $:

    图  8  岩块咬合点受力分析
    Figure  8.  Force analysis of occlusal point of rock block
    $$ f_{\mathrm{k}}=(T \cos \, \gamma-R \sin \, \gamma) \tan \, \varphi $$ (13)

    块体B在接触面产生的滑动力$ f_{{\rm{h}}} $可表示为:

    $$ f_{{\rm{h}}}=R \cos \, \gamma+T \sin \, \gamma $$ (14)

    当$f_{{\rm{h}}}$>$ f_{\mathrm{k}} $时,岩块A和岩块B之间发生滑落,则满足

    $$ \begin{array}{c} T \sin (\varphi-\gamma) \leqslant R \cos (\varphi-\gamma) \\ \gamma \geqslant \varphi-\arctan \dfrac{R}{T} \end{array} $$ (15)

    式中:φ为内摩擦角,取值42°。

    按照连续砌体梁计算方法,将采空区边界岩块载荷$R=Q_{{\rm{i}} 0}$,$Q_{{\rm{i}} 0} $为岩块A和岩块B之间的剪切力;$L_{{\rm{i}} 0}$为基本顶初次来压步距,经实测数值取27 m,$T=L_{{\rm{i}} 0} Q_{{\rm{i}} 0} /\left[2\left(h_{{\rm{i}}}-S_{{\rm{L}}}\right)\right]$,$S_{{\rm{L}}}$为顶板下沉量,按其他工作面巷道顶板下沉量取值为0.8 m,$h_{{\rm{i}}}$=9.19 m,将以上数值代入式(15),得:$\gamma \geqslant 9.3^{\circ}$,现场施工方案取值为15°。

    小煤柱双巷掘进部署条件下,为实现13132巷顶板充分爆破预裂,需重新探究爆破孔间距,避免爆破孔间距过小引起回采前爆破巷道大变形,同时也规避钻孔间距过大导致的卸压不充分,不利于13163巷维护。因此开展1.2、1.5、2和3 m孔间距下顶板爆破试验,如图9所示,2个爆破孔、3个观测孔方位角均为180°,倾角均为75°。

    图  9  爆破试验钻孔布置
    Figure  9.  Drill hole arrangement for blasting test

    爆破结束后利用钻孔窥视仪进行顶板裂隙窥视,4种间距下裂隙窥视结果如图10所示。可以看出在钻孔间距为1.2 m时,钻孔内部裂隙宽度大、裂隙密度高,钻孔内形成裂隙轴向−径向交叉发育;在1.5 m观测孔内钻孔裂隙主要在对应的装药段沿轴向起裂,裂隙较宽;而在2 m和3 m观测孔内部仅在局部形成轴向裂隙,裂隙较窄。基于现场单一钻孔起爆时裂隙发育范围,结合双巷掘进一次成巷留设小煤柱护巷的布置方式,为确保1313工作面回采后采空区边界低位顶板顺利垮落,实现初步充填采空区,支承高位顶板,即顶板裂隙网要充分预制,因此浅孔爆破间距设定为1.5 m;一盘区煤层埋深大、顶板坚硬,为有效防控强矿压灾害,需对高位顶板进行预裂爆破工作,因此深孔间距设定为3 m。

    图  10  爆破观测孔裂隙发育情况
    Figure  10.  Blasting observation hole fissure development

    综上所述在13132巷开展深浅孔组合爆破具体设计参数如下,为最大程度缩减悬顶L长度,因此钻孔开孔位置布置在距13132巷肩窝1 m位置处,钻孔倾角为75°,高位消冲深孔和切顶护巷浅孔间距分别为1.5 m和3 m,孔深分别为20 m和31.5 m,结合1311等工作面爆破工程案例,深浅孔单孔装药量分别为19.2 kg和12.6 kg,单孔使用聚能管分别为12根和8根,单孔封孔长度分别为10.5 m和8 m,钻孔倾角均为75°。

    图1可看出1313工作面为一盘区东翼首采面,在回采过程中对13132巷进行了顶板深浅孔组合爆破,在13131巷未采取顶板预裂爆破,因此对比两条巷道微震事件特征,分析爆破效果。为避免单一微震事件能量、定位的偶然性或误差影响分析结果,利用Surfer软件对1313工作面全部6926个有效微震事件进行插分处理,并绘制微震能量等值线云图。通过图11可以看出,13132巷道中心线倾向方向10 m范围内顶板微震能量云图主要集中在12~18 kJ范围内,而在13131巷顶板能量主要集中在16~22 kJ范围。表明进行顶板深浅孔组合爆破后,坚硬复合顶板顶板完整性和整体性遭到破坏,难以积聚大量弹性变形能,顶板介质储能蓄力属性弱化,同等尺度下微震事件能量密度降低4 kJ左右;而在13131巷未采取顶板预裂爆破,顶板断裂线受道顶板弧形三角块结构作用自然发育,在回采扰动作用下,顶板断裂活动较为剧烈,释放大量弹性能,形成诸多大能量微震事件。

    图  11  1313工作面微震事件能量
    Figure  11.  Energy cloud map of microseismic event at 1313 Face

    双巷掘进一次成巷留设小煤柱护巷条件下,开展顶板深浅孔组合爆破,旨在改善1313工作面采空区边界顶板结构,降低小煤柱应力集中程度,减缓13163巷道围岩变形,为评价顶板爆破效果,并有效监测邻空巷道围岩应力变化趋势,13163巷煤柱侧分别在2、3、4和6 m位置处安装应力计,安装布置如图12所示,各监测点应力变化曲线如图13所示。

    图  12  13163巷应力计孔布置平面图
    Figure  12.  Layout plan of stress gauge holes in lane 13163
    图  13  13163巷小煤柱内应力曲线
    Figure  13.  Stress curve of small coal pillar in lane 13163

    图13可以看出1号、4号监测点布置于巷道围岩浅部,受巷道围岩松动圈和塑形区影响,并未实现围岩的全时态监测;通过2号和3号监测点可以看出伴随工作面临近应力数值不断升高,在回采至监测点时应力分别达到9.4 MPa和8.5 MPa,在工作面回采后采空区顶板沿爆破预制裂隙面断裂、滑落,至回采过后70 m顶板结构重新达到稳定状态,以上两个监测点煤柱应力稳定在13 MPa和11 MPa,相比于顶板垮塌前煤柱应力集中系数为1.38和1.29,应力升高在可控范围内,表明通过深浅孔组合爆破有效改善了采空区边界三角块结构,降低了煤柱所承受应力。

    为明晰13132巷顶板深浅孔组合爆破及1313工作面回采后顶板结构形态,在13163巷布置1组顶板扇形窥视钻孔,窥视孔布置方式及顶板裂隙窥视结果如图14所示,可以看出①~③号钻孔17~48 m范围内形成大量顶板裂隙,其中爆破作用促使低位裂隙发育明显,弱化低位岩层承载能力,而高位岩层在失去下位岩层支承后,其承受载荷超过极限强度后逐步损伤、断裂。

    图  14  13163巷顶板窥视结果
    Figure  14.  Results of roof peeping of lane 13163

    结合上覆岩层大结构稳定性特征,可得岩块B承受上覆载荷作用下发生的旋转、下沉,挤压小煤柱,促使邻空巷道发生蠕变变形,如图15所示,通过在煤柱边界处岩块B内顶板聚能爆破,人为缩减岩块B悬顶长度,破坏老顶铰接结构和岩块B的整体性,减弱岩块B的回转下沉作用,改善了小煤柱护巷顶板结构。

    图  15  小煤柱护巷顶板断裂结构示意
    Figure  15.  Schematic diagram of roof fracture structure of small coal pillar roadway

    采用十字交叉布点法在13163巷布置4个巷道围岩变形监测站,记录1313工作面回采过程中的巷道顶底板及两帮收敛位移。其中1号、3号测站处围岩变形曲线如图16所示。从图中可以看出测站处围岩变形速率呈现先增加、后减小的特征变化,在工作面推过150 m后,巷道顶底板及两帮变形量趋于稳定,13163巷顶底板最大移近量为440 mm,两帮最大移近量205 mm,有效抑制了巷道围岩变形,且整条巷道并未发生片帮冒顶等现象,达到了深浅孔组合爆破施工目的。

    图  16  1号和3号监测站围岩变形数据
    Figure  16.  Surrounding rock deformation data of No.1 and No.3 monitoring stations

    1)缓解邻空巷道围岩变形的关键在于缩减采空区悬顶长度,实现改善围岩应力环境。

    2)深浅孔组合爆破做到了高−低双层位顶板预裂,实现了浅孔护巷和深孔消冲的双重作用;深浅孔组合借助导向孔作用机制,最大程度利用爆破能量预裂顶板。

    3)微震能量对比云图和煤柱应力数据表明采取深浅孔组合爆破卸压后,顶板储能蓄力属性弱化,积聚能量密度降低,降低了煤柱应力集中程度。

    4)通过邻空巷道扇形窥视和围岩变形分析可得深浅孔组合爆破措施能够改善采空区顶板围岩结构,减弱岩块的回转下沉作用,降低了13163巷围岩变形。

  • 图  1   敞开式TBM结构

    Figure  1.   Structure diagram of gripper TBM

    图  2   顾桥矿南翼轨道大巷地质剖面[4]

    Figure  2.   Geological profile of south rail-transport roadway in Guqiao Coal Mine [4]

    图  3   煤系复合地层TBM掘进示意

    Figure  3.   TBM tunneling in coal measure composite stratum

    图  4   TBM滚刀破岩机理

    FN−滚刀法向力;S−滚刀间距;β−岩石破碎角的一半;W−岩渣宽度。

    Figure  4.   Rock fragmentation mechanism under TBM cutting

    图  5   复合地层中刀盘刀具非正常损坏

    Figure  5.   Abnormal damage of rolling cutter in complex strata

    图  6   深部软弱地层TBM掘进挤压变形卡机灾害示意

    Figure  6.   Squeezing deformation and TBM jamming disaster when tunneling in deep and soft ground

    图  7   采用免焊接螺栓的分体式刀盘适应性设计

    Figure  7.   Adaptive design of split cutter-head using bolts without welding

    图  8   QJYC045M型煤矿全断面硬岩掘进机

    Figure  8.   QJYC045M coal mine hard rock TBM

    图  9   全断面掘进机井下运输路线

    Figure  9.   Underground transporting route of TBM

    图  10   围压对破岩效率的影响规律

    Figure  10.   Influence law of confining pressure on rock cutting efficiency

    图  11   岩体可掘性指数随滚刀安装半径的变化规律

    Figure  11.   Variation law of rock mass boreability index with cutter installation radius

    图  12   TBM开挖围岩破裂碎胀挤压变形机理

    Figure  12.   Surrounding rock squeezing deformation mechanism due to fragmentation and bulking after TBM excavation

    图  13   围岩与护盾相互作用致灾过程

    Figure  13.   Surrounding rock – shield interaction and the induced disaster process

    图  14   FDEM将块体划分成三角形单元及中间插入起黏结作用的节理单元

    Figure  14.   Block is divided into triangular finite elements and crack elements in FDEM model

    图  15   FDEM节理单元本构模型

    Figure  15.   Constitutive model of FDEM joint element

    图  16   TBM卡机灾变过程FDEM模拟原理

    Figure  16.   FDEM simulation principle of TBM jamming disaster

    图  17   注浆加固模拟原理

    Figure  17.   Grouting reinforcement simulation principle

    图  18   护盾区域围岩收敛变形监测技术

    Figure  18.   Monitoring technology for surrounding rock convergence in shield area

    图  19   护盾挤压力阵列式感知方法

    Figure  19.   Array sensing method for shield surrounding rock pressure acting on shield

    图  21   护盾挤压力现场监测

    Figure  21.   Field monitoring of surrounding rock pressure on shield

    图  20   护盾挤压力网格覆盖法有限元反演方法

    Figure  20.   Mesh covering-based finite element inversion method for pressures on shield

    图  22   深部巷道分步联合控制作用原理

    Figure  22.   Principle of step-by-step combined supporting method for deep roadway

    图  23   挤压变形卡机灾害综合防控技术体系

    Figure  23.   Comprehensive prevention and control technology system for squeezing deformable and TBM jamming disaster

    图  24   TBM滚刀受力监测方法

    Figure  24.   TBM cutting force monitoring method

    图  25   刀盘振动实时监测方法

    Figure  25.   Real-time monitoring method for cutter-head vibration

    图  26   TBM掘进岩-机作用实时感知系统

    Figure  26.   Real-time monitoring system for surrongding rock and TBM interaction

    图  27   TBM掘进振动实时监测

    Figure  27.   Real-time monitoring for TBM tunneling vibration

    图  28   岩体信息实时感知模型

    Figure  28.   Real-time perception model of rock mass information

    图  29   TBM掘进参数QPSO-ANN实时预测模型

    Figure  29.   QPSO-ANN model for TBM advance parameter real-time prediction

    图  30   掘进控制参数智能决策算法流程

    Figure  30.   Flow chart of intelligent decision algorithm for advance control parameters

    图  31   TBM掘进参数智能决策效果

    Figure  31.   Intelligent decision effect of TBM tunneing parameters

    表  1   岩体TBM可掘性分级

    Table  1   Rock mass boreability grading in TBM tunneling

    岩体可掘性分级FPI(kN/Cutter/
    mm/rev)
    岩体可掘性程度建议推力与最大推力百分比/%建议转速与最大转速百分比/%
    1 <20 极好 45 75
    2 20~30 很好 60 90
    3 30~40 75 100
    4 40~50 中等 90 95
    5 50~60 95 95
    6 60~70 很差 100 95
    7 ≥70 极差 100 90
    下载: 导出CSV
  • [1] 何满潮,谢和平,彭苏萍,等. 深部开采岩体力学研究[J]. 岩石力学与工程学报,2005,24(16):2803−2812. doi: 10.3321/j.issn:1000-6915.2005.16.001

    HE Manchao,XIE Heping,PENG Suping,et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2803−2812. doi: 10.3321/j.issn:1000-6915.2005.16.001

    [2] 岩石隧道掘进机(TBM)施工及工程实例[M]. 北京: 中国铁道出版社, 2004: 337.

    Full Face rock tunnel boring machine (TBM) construction and engineering example [M]. Beijing: China Railway publishing House, 2004: 337.

    [3] 陈 馈, 孙振川, 李 涛. TBM设计与施工[M]. 北京: 人民交通出版社股份有限公司, 2018.

    CHEN Kui, SUN Zhenchuan, LI Tao. TBM design and Construction [M]. Beijing: China Communications Press Co. Ltd. , 2018.

    [4]

    LIU Quansheng,HUANG Xing,GONG Qiuming,et al. Application and development of hard rock TBM and its prospect in China[J]. Tunnelling and Underground Space Technology,2016,57:33−46. doi: 10.1016/j.tust.2016.01.034

    [5]

    ZHENG Yanlong,ZHANG Qianbing,ZHAO Jian. Challenges and opportunities of using tunnel boring machines in mining[J]. Tunnelling and Underground Space Technology,2016,57(4):287−299.

    [6]

    JING Liujie,LI Jianbin,ZHANG Na,et al. A TBM advance rate prediction method considering the effects of operating factors[J]. Tunnelling and Underground Space Technology,2021,107:103620. doi: 10.1016/j.tust.2020.103620

    [7]

    LIU Bin,WANG Ruirui,GUAN Zengda,et al. Improved support vector regression models for predicting rock mass parameters using tunnel boring machine driving data[J]. Tunnelling and Underground Space Technology,2019,91:102958. doi: 10.1016/j.tust.2019.04.014

    [8] 刘泉声,黄 兴,时 凯,等. 煤矿超千米深部全断面岩石巷道掘进机的提出及关键岩石力学问题[J]. 煤炭学报,2012,37(12):2006−2013. doi: 10.13225/j.cnki.jccs.2012.12.029

    LIU Quansheng,HUANG Xing,SHI Kai,et al. Utilization of full face roadway boring machine in coal mines deeper than 1 000 km and the key rock mechanics problems[J]. Journal of China Coal Society,2012,37(12):2006−2013. doi: 10.13225/j.cnki.jccs.2012.12.029

    [9]

    HUANG Xing,LIU Quansheng,SHI Kai,et al. Application and prospect of hard rock tbm for deep roadway construction in coal mines[J]. Tunnelling and Underground Space Technology,2018,73:105−126. doi: 10.1016/j.tust.2017.12.010

    [10]

    HANDEWITH H. J. TBM tunnels in the western hemisphere-an overview [J]. Tunneling Technology Newsl. 1983, 41: 1-8.

    [11]

    STACK B. Handbook of mining and tunnelling machinery [M]. 1982, J. Wiley.

    [12]

    ROBBINS R. J. Future of mechanical excavation in underground mining[J]. Mining Engineering,1984,36:617−627.

    [13]

    CIGLA M, YAGIZ S, OZDEMIR L. Application of tunnel boring machines in underground mine development [A]. 17th International Mining Congress and Exhibition of Turkey [C]// Ankara, Turkey, 2001: 155−164.

    [14]

    HOME L, ASKILSRUD O.G. Tunnel boring machines in mining (Third edition) [M]. Darling P. (Ed.), SME Mining Engineering Handbook, USA: SME, 2011, pp. 1255−1270.

    [15]

    BROX D. Technical considerations for the application of TBMs for mining projects. Trans. Soc. Mining Metall. Explor. 2013, 334, 498−505.

    [16] 唐 彬,程 桦,姚直书,等. TBM施工煤矿深埋硬岩巷道围岩稳定性分析及工程应用[J]. 采矿与安全工程学报,2016,33(2):260−264.

    TANG Bin,CHENG Hua,YAO Zhishu,et al. Stability analysis and engineering application of TBM deep coal mine roadway and surrounding rock[J]. Journal of Mining & Safety Engineering,2016,33(2):260−264.

    [17]

    TANG Bin,CHENG Hua,TANG Yongzhi,et al. Experiences of gripper TBM application in shaft coal mine: A case study in Zhangji coal mine, China[J]. Tunnelling and Underground Space Technology,2018,81:660−668. doi: 10.1016/j.tust.2018.08.055

    [18] 杨生华,芮 丰,蒋卫良,等. 煤矿全断面岩巷掘进机开发应用与发展[J]. 煤炭科学技术,2019,47(6):1−10. doi: 10.13199/j.cnki.cst.2019.06.001

    YANG Shenghua,RUI Feng,JIANG Weiliang,et al. Development and application of full-section rock tunneling boring machine in coal mine[J]. Coal Science and Technology,2019,47(6):1−10. doi: 10.13199/j.cnki.cst.2019.06.001

    [19] 程 桦,唐 彬,唐永志,等. 深井巷道全断面硬岩掘进机及其快速施工关键技术[J]. 煤炭学报,2020,45(9):3314−3324.

    CHENG Hua,TANG Bin,TANG Yongzhi,et al. Full face tunnel boring machine for deep-buried roadways and its key rapid excavation technologies[J]. Journal of China Coal Society,2020,45(9):3314−3324.

    [20] 张洪伟,胡兆锋,程敬义,等. 深部高温矿井大断面岩巷TBM智能掘进技术:以“新矿1号”TBM为例[J]. 煤炭学报,2021,46(7):2174−2185. doi: 10.13225/j.cnki.jccs.jj21.0579

    ZHANG Hongwei,HU Zhaofeng,CHENG Jingyi,et al. TBM techniques for intelligent excavating large-section rock roadway in the deep high-temperature coal mines: Application of TBM in Xinkuang No. 1[J]. Journal of China Coal Society,2021,46(7):2174−2185. doi: 10.13225/j.cnki.jccs.jj21.0579

    [21] 代恩虎,王 勇,鲁义强,等. 云贵地区煤矿TBM施工技术应用研究[J]. 煤炭科学技术,2022,50(10):10−18.

    DAI Enhu,WANG Yong,LU Yiqiang,et al. Study on application of TBM construction technology in coal mine in Yunnan-Guizhou area[J]. Coal Science and Technology,2022,50(10):10−18.

    [22] 范京道,封 华,宋朝阳,等. 可可盖煤矿全矿井机械破岩智能化建井关键技术与装备[J]. 煤炭学报,2022,47(1):499−514.

    FAN Jingdao,FENG Hua,SONG Zhaoyang,et al. Key technology and equipment of intelligent mine construction of whole mine mechanical rock breaking in Kekegai Coal Mine[J]. Journal of China Coal Society,2022,47(1):499−514.

    [23] 昝志华. 提升煤矿盾构机(TBM)在巷道掘进过程中的支护效率[J]. 煤矿现代化,2021,30(5):65−68. doi: 10.3969/j.issn.1009-0797.2021.05.023

    ZAN Zhihua. Improving the support efficiency of coal mine shield machine (TBM) in the process of tunnel excavation[J]. Coal Mine Modernization,2021,30(5):65−68. doi: 10.3969/j.issn.1009-0797.2021.05.023

    [24]

    TOTH A,GONG Q M,ZHAO J. Case studies of TBM tunnelling performance in rock-soil interface mixed ground[J]. Tunnelling and Underground Space Technology,2013,38:140−150. doi: 10.1016/j.tust.2013.06.001

    [25]

    GONG Qiuming,YIN Lijun,MA Hongsu,et al. TBM tunnelling under adverse geological conditions: An overview[J]. Tunnelling and Underground Space Technology,2016,57:4−17. doi: 10.1016/j.tust.2016.04.002

    [26] 罗超文,李海波,刘亚群. 煤矿深部岩体地应力特征及开挖扰动后围岩塑性区变化规律[J]. 岩石力学与工程学报,2011,30(8):1613−1618.

    LUO Chaowen,LI Haibo,LIU Yaqun. Characteristics of in-situ stress and variation law of plastic zone of surrounding rocks around deep tunnels in a coal mine[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(8):1613−1618.

    [27]

    BARTON A A N. TBM tunnelling in jointed and faulted rock [M]. Rotterdam: Balkema, 2000, 61−64.

    [28] 周建军,杨振兴. 深埋长隧道TBM施工关键问题探讨[J]. 岩土力学,2014,35(S2):299−305. doi: 10.16285/j.rsm.2014.s2.049

    ZHOU Jianjun,YANG Zhenxing. Discussion on key issues of TBM construction for long and deep tunnels[J]. Rock and Soil Mechanics,2014,35(S2):299−305. doi: 10.16285/j.rsm.2014.s2.049

    [29] 尚彦军,杨志法,曾庆利,等. TBM施工遇险工程地质问题分析和失误的反思[J]. 岩石力学与工程学报,2007,26(12):2405−2411. doi: 10.3321/j.issn:1000-6915.2007.12.004

    SHANG Yanjun,YANG Zhifa,ZENG Qingli,et al. Retrospective analysis of TBM accidents from its poor flexibility to complicated geological conditions[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(12):2405−2411. doi: 10.3321/j.issn:1000-6915.2007.12.004

    [30] 尚彦军,史永跃,曾庆利,等. 昆明上公山隧道复杂地质条件下TBM卡机及护盾变形问题分析和对策[J]. 岩石力学与工程学报,2005,24(21):3858−3863. doi: 10.3321/j.issn:1000-6915.2005.21.009

    SHANG Yanjun,SHI Yongyue,ZENG Qingli,et al. TBM Jamming and deformation in complicated geological conditions and engineering measures[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(21):3858−3863. doi: 10.3321/j.issn:1000-6915.2005.21.009

    [31]

    EVERT HOEK,PAUL MARINOS. Predicting tunnel squeezing problems in weak heterogeneous rock masses[J]. Tunnels and Tunnelling International,2000,32(11):45−51.

    [32]

    European Construction Technology Platform, Strategic research agenda for the European underground construction sector. www. ectp. org. 2005.

    [33]

    LI Jianbin,JING Liujie,ZHENG Xiaofeng,et al. Application and outlook of information and intelligence technology for safe and efficient TBM construction[J]. Tunnelling and Underground Space Technology,2019,93:103097. doi: 10.1016/j.tust.2019.103097

    [34] 龚秋明,何冠文,赵晓豹,等. 掘进机刀盘滚刀间距对北山花岗岩破岩效率的影响实验研究[J]. 岩土工程学报,2015,37(1):54−60. doi: 10.11779/CJGE201501005

    GONG Qiuming,HE Guanwen,ZHAO Xiaobao,et al. Influence of different cutter spacings on rock fragmentation efficiency of Beishan granite by TBM[J]. Chinese Journal of Geotechnical Engineering,2015,37(1):54−60. doi: 10.11779/CJGE201501005

    [35] 龚秋明,张 浩,李 真,等. 机械破岩试验平台研制[J]. 现代隧道技术,2016,53(2):17−25. doi: 10.13807/j.cnki.mtt.2016.02.003

    GONG Qiuming,ZHANG Hao,LI Zhen,et al. Development of a Testing Platform for Mechanical Rock Breaking[J]. Modern Tunnelling Technology,2016,53(2):17−25. doi: 10.13807/j.cnki.mtt.2016.02.003

    [36]

    PAN Yucong,LIU Quansheng,PENG Xingxin,et al. Full-scale linear cutting tests to propose some empirical formulas for TBM disc cutter performance prediction[J]. Rock Mechanics and Rock Engineering,2019,52:4763−4783. doi: 10.1007/s00603-019-01865-x

    [37]

    PAN Yucong,LIU Quansheng,LIU Qi,et al. Full-scale linear cutting tests to check and modify a widely-used semi-theoretical model for disc cutter cutting force prediction[J]. Acta Geotechnica,2020,15:1481−1500. doi: 10.1007/s11440-019-00852-4

    [38]

    MACIAS F. J. Hard rock tunnel boring: Performance predictions and cutter life assessments [D]. Trondheim: Norwegian University of Science and Technology, 2016.

    [39]

    ROSTAMI J. , OZDEMIR L. A new model for performance prediction of hard rock TBMs [C]//Proceedings of Rapid Excavation and Tunneling Conference. USA, 1993, 794−809.

    [40]

    LIU Quansheng,LIU Jianping,PAN Yucong,K,et al. A case study of TBM performance prediction using a Chinese rock mass classification system-Hydropower Classification (HC) method[J]. Tunnelling and Underground Space Technology,2017,65:140−154. doi: 10.1016/j.tust.2017.03.002

    [41]

    RAMONI G,ANAGNOSTOU G. The Interaction Between Shield, Ground and Tunnel Support in TBM Tunnelling Through Squeezing Ground[J]. Rock Mechanics and Rock Engineering,2011,44:37−61. doi: 10.1007/s00603-010-0103-8

    [42] 刘泉声,黄 兴,时 凯,等. 深部挤压性地层TBM掘进卡机孕育致灾机理[J]. 煤炭学报,2014,39(S1):75−82. doi: 10.13225/j.cnki.jccs.2012.1382

    LIU Quansheng,HUANG Xing,SHI Kai,et al. The mechanism of TBM shield jamming disaster tunnelling through deep squeezing ground[J]. Journal of China Coal Society,2014,39(S1):75−82. doi: 10.13225/j.cnki.jccs.2012.1382

    [43]

    ANTE MUNJIZA. The combined finite-discrete element method [M]. London: John Wiley & Sons, Ltd. , 2004.

    [44]

    LISJAK A,GRASSELLI G. A review of discrete modeling techniques for fracturing processes in discontinuous rock masses[J]. Journal of Rock Mechanics and Geotechnical Engineering,2014,6:301−314. doi: 10.1016/j.jrmge.2013.12.007

    [45] 邓鹏海. 深部软弱地层TBM掘进挤压变形卡机及防控过程FDEM数值模拟研究[D]. 武汉: 武汉大学, 2019.

    DENG Penghai. FDEM numerical simulation study on the TBM jamming and prevention-control process due to squeezing deformation in deep soft ground [D]. Wuhan: Wuhan University, 2019.

    [46]

    LIU He,LIU Quansheng,MA Hao,et al. A novel GPGPU-parallelized contact detection algorithm for combined finite-discrete element method[J]. International Journal of Rock Mechanics and Mining Sciences,2021,144:104782. doi: 10.1016/j.ijrmms.2021.104782

    [47]

    LISJAK A,YOUNG-SCHULTZ T,LI B,et al. A novel rockbolt formulation for a GPU-accelerated, finite-discrete element method code and its application to underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences,2020,134:104410. doi: 10.1016/j.ijrmms.2020.104410

    [48] 刘泉声,邓鹏海,毕 晨,等. 深部巷道软弱围岩破裂碎胀过程及锚喷−注浆加固FDEM数值模拟[J]. 岩土力学,2019,40(10):4065−4083.

    LIU Quansheng,DENG Penghai,BI Chen,et al. FDEM numerical simulation of the fracture and extraction process of soft surrounding rock mass and its rockbolt-shotcrete-grouting reinforcement methods in the deep tunnel[J]. Rock and Soil Mechanics,2019,40(10):4065−4083.

    [49]

    HUANG Xing, LIU Quansheng, XU Xianze, et al. Lidar-based Convergence Deformation Monitoring System for Surrounding Rock around TBM Shield Region [P]. US: 16556246, 2022.08. 24.

    [50]

    HUANG Xing,LIU Quansheng,LIU He,et al. Development and in-situ application of a real-time monitoring system for the interaction between TBM and surrounding rock[J]. Tunnelling and Underground Space Technology,2018,81:187−208. doi: 10.1016/j.tust.2018.07.018

    [51] 刘泉声, 高 玮, 袁 亮. 煤矿深部岩巷稳定控制理论与支护技术及应用[M]. 北京: 科学出版社, 2010.
    [52] 张 娜,李建斌,荆留杰,等. 基于隧道掘进机掘进过程的岩体状态感知方法[J]. 浙江大学学报(工学版),2019,53(10):1−9.

    ZHANG Na,LI Jianbin,JING Liujie. Prediction method of rockmass parameters based on tunnelling process of tunnel boring machine[J]. Journal of Zhejiang University,2019,53(10):1−9.

    [53]

    YAGIZ S. Development of rock fracture and brittleness indices to quantify the effects of rock mass features and toughness in the CSM model basic penetration for hard rock tunneling machines [D]. Golden: Colorado School of Mines, 2002.

    [54] 罗 华. 基于线性回归和深度置信网络的TBM性能预测研究[D]. 杭州: 浙江大学, 2018.

    LUO HUA. Application of linear regression analysis and deep belief network for performance prediction of TBM [D]. Hangzhou: Zhejiang University, 2018.

    [55]

    Mohammadreza K,Ahmad F,Ebrahim N G,et al. Development of a new hybrid ANN for solving a geotechnical problem related to tunnel boring machine performance[J]. Engineering with Computers,2020,36:345−357. doi: 10.1007/s00366-019-00701-8

    [56]

    HUANG Xing,WANG Shaohua,LIU Quansheng,et al. Development of a real-time monitoring and calculation method for TBM disc-cutter’s cutting force in complex ground[J]. Geotechnical Testing Journal,2022,45(5):961−984.

    [57]

    HUANG Xing, LIU Quansheng, HUANG Tao, et al. Method and apparatus for monitoring the interaction between surrounding rocks and TBM in TBM tunneling process [P]. US: 16/508, 316, 2022−03−15.

    [58]

    LIU Quansheng,WANG Xinyu,HUANG Xing,et al. Prediction model of rock mass class using classification and regression tree integrated AdaBoost algorithm based on TBM driving data[J]. Tunnelling and Underground Space Technology,2020,106:103595. doi: 10.1016/j.tust.2020.103595

  • 期刊类型引用(28)

    1. 丁自伟,高成登,张玲,张旭,侯涛,翟剑平,王家行,董云俊. 基于数据驱动的TBM掘进地层岩性识别预测方法. 采矿与安全工程学报. 2025(01): 147-160 . 百度学术
    2. 丁自伟,高成登,景博宇,黄兴,刘滨,胡阳,桑昊旻,徐彬,秦立学. 基于机器学习的煤系地层TBM掘进巷道围岩强度预测. 西安科技大学学报. 2025(01): 49-60 . 百度学术
    3. 张家乐,杨明,张鲁鲁,初月朗,牛宾,杨谢生,梁程程,黎明镜,康一强. 煤矿深部巷道不良地段敞开式TBM施工关键技术. 建井技术. 2025(01): 36-43+31 . 百度学术
    4. 严红,吴林,李桂臣,宋维斌. 煤矿岩巷TBM快速掘进研究进展与展望. 煤炭工程. 2025(01): 1-7 . 百度学术
    5. 张晓平,刘勇斌,张春瑜,李馨芳,王红武,刘泉声. 国产再制造TBM在软岩隧道中的防卡机改造研究. 隧道建设(中英文). 2025(02): 402-414 . 百度学术
    6. 刘泉声,刘滨,唐彬,康永水,卢海峰,朱元广,黄兴,潘玉丛,邓鹏海,孙磊,唐永志,卢兴利,张程远,余宏淦,李培涛,雷一鸣,贾浩男. 煤矿深部巷道碎胀大变形灾害控制及大变形灾变环境下TBM快速成巷技术. 煤炭学报. 2025(01): 224-244 . 百度学术
    7. 张延杰,浦仕江,周辉,王锦国,吴顺川,丁秀丽. 滇中引水工程安全建设与高效运行关键技术研究若干进展——地下工程. 岩石力学与工程学报. 2024(02): 333-357 . 百度学术
    8. 史勇,陈勇,张康健,张志强. 岩体节理及岩块力学参数对TBM净掘进速率的影响. 铁道建筑技术. 2024(02): 14-18+63 . 百度学术
    9. 徐长磊,刘育明,邓皓泽,孙学森. 超大规模硬岩矿山源头推动TBM应用的设计创新与思考. 中国矿山工程. 2024(01): 65-71 . 百度学术
    10. 王斌,杨延栋,周建军,李凤远,徐海峰,刘超尹. 高地应力软岩地层敞开式TBM法隧洞围岩变形控制技术——以香炉山隧洞为例. 隧道建设(中英文). 2024(02): 341-348 . 百度学术
    11. 谢银虎. 轨道交通硬岩掘进技术(TBM)的应用研究. 运输经理世界. 2024(03): 1-3 . 百度学术
    12. 毛君,杨润坤,谢苗,卢进南,王贺,刘治翔,王帅. 煤矿智能快速掘进关键技术研究现状及展望. 煤炭学报. 2024(02): 1214-1229 . 百度学术
    13. 王龙,张明,杨凯. TBm硬岩掘进机在小庄矿的应用与实践. 山东煤炭科技. 2024(03): 123-128 . 百度学术
    14. 尹新龙. TBM盾构管片台柱型定位销设计制备技术研究及工程应用. 广东水利水电. 2024(04): 89-93 . 百度学术
    15. 袁猛,崔东伟. 煤矿高效掘进技术现状与发展趋势探讨. 中国设备工程. 2024(09): 220-222 . 百度学术
    16. 何建新,赵南南,刘岩,刘冬,毛文涛. 底板岩层巷道掘进对邻近工作面回采影响模拟分析. 采矿技术. 2024(04): 81-86 . 百度学术
    17. 荣腾龙,任箫剑,陈召,王嘉尉,王龙飞,刘鹏炬. 深部矿井TBM掘进巷道通风及降温耦合模拟分析. 河南理工大学学报(自然科学版). 2024(06): 18-26 . 百度学术
    18. 赵肖敏. 矿山硬岩巷道掘进技术现状与展望. 煤矿机械. 2024(11): 93-97 . 百度学术
    19. 吕玉柱,孙鹏,王力强. 韩城矿区岩巷快速施工工艺匹配支护优化研究. 陕西煤炭. 2024(12): 173-177 . 百度学术
    20. 王宣,万文,黄煊祺,赵延林,盛佳,刘杰,周彧. 基于预置射孔类岩石条件的模拟TBM刀头侵岩试验研究. 矿业研究与开发. 2024(12): 204-211 . 百度学术
    21. 宫云鹏. 软弱破碎围岩地质条件下敞开式TBM施工技术研究. 能源技术与管理. 2024(06): 176-177+230 . 百度学术
    22. 荆忠亮,李洪宇,赵丽,王超. 地下矿山开采掘进机刀盘异常振动频率响应特征分析. 机械设计与研究. 2024(06): 128-132+139 . 百度学术
    23. 戴春雷. 我国矿山智能化研究进展及大模型应用前景. 工矿自动化. 2024(S2): 1-11+22 . 百度学术
    24. 廖泽栋. 公路隧道掘进机主轴承疲劳损伤及振动响应研究. 企业科技与发展. 2023(05): 63-67 . 百度学术
    25. 刘佳伟,张盛,陈召,杨战标,冀畔俊,魏永辉. 基于TBM掘进性能和适应性分析的围岩分级方法及应用. 煤田地质与勘探. 2023(08): 161-170 . 百度学术
    26. 张钦,苏金华,慎宏然,胡志飞,徐晓东,李浩,李鹏权,赵春阳,崔宗类. 某矿复杂地层硬岩巷道TBM同步探掘技术研究与实践. 现代矿业. 2023(09): 233-237 . 百度学术
    27. 朱荣彬. 大埋深复杂地质条件下巷道掘进与支护技术研究. 能源技术与管理. 2023(06): 74-76 . 百度学术
    28. 王冰山,王大龙,汪义龙,陈存强,李永元,李克相,马新根,肖运智. 瓦斯治理巷小直径TBM刀盘设计研究——以白龙山煤矿一井为例. 煤炭科学技术. 2023(S2): 306-315 . 本站查看

    其他类型引用(4)

图(31)  /  表(1)
计量
  • 文章访问数:  387
  • HTML全文浏览量:  34
  • PDF下载量:  548
  • 被引次数: 32
出版历程
  • 收稿日期:  2022-10-19
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-01-29

目录

/

返回文章
返回