Effect of gas on microstructure and thermal reactivity of coal during low temperature oxidation
-
摘要:
为研究瓦斯气氛下煤低温氧化过程中微观理化特性及宏观煤氧复合热效应,选择不同变质煤及二次氧化煤样作为研究对象,利用傅里叶红外光谱仪和C80微量量热仪,研究在不同瓦斯气氛下煤低温氧化过程物理化学结构特性、动力学参数、热效应等变化特征。通过分析不同瓦斯气氛下煤自燃氧化过程中微观结构以及宏观放热特性,明确瓦斯对煤氧化特性的最终影响。结果表明:瓦斯通过抑制煤低温氧化过程中关键活性基团相对含量,延缓煤低温氧化进程,4%瓦斯具有最为明显的抑制效果,其对4种活性基团的抑制程度为:含氧官能团 (66.5%) > 芳香烃 (47.0%) >脂肪烃 (29.7%) >羟基 (24.7%)。在快速放热阶段,由于煤对瓦斯分子的吸附能力较大,瓦斯气体占据煤分子中的吸附位点,阻碍了煤氧复合反应进程,导致放热效应受到瓦斯抑制;同时瓦斯含量显著影响煤氧复合进程活化能的大小。对于较高变质程度的不黏煤、瘦煤和无烟煤,瓦斯对其低温氧化反应的抑制作用较为显著;对较低变质程度的长焰煤影响较小。对于二次氧化煤样,瓦斯对于煤样的抑制作用随着瓦斯含量的增加而增强,而瓦斯对一次氧化煤样的影响随变质程度降低而减弱,且瓦斯含量2%时的抑制程度强于4%。研究结果对防治瓦斯与煤自燃耦合致灾事故的理论研究有重要意义。
Abstract:In order to investigate the microscopic physicochemical properties and macroscopic coal-oxygen complex thermal effects in the low-temperature oxidation of coal under gas atmosphere, different metamorphic coal and secondary oxidized coal samples as research objects were selected in this paper. Fourier infrared spectrometer and C80 microcalorimeter were employed to study the changes of physicochemical structural properties, kinetic parameters and thermal effects in the low-temperature oxidation of coal under different gas atmospheres. By analysing the microstructure and macroscopic exothermic characteristics of different gas content during coal spontaneous oxidation, the ultimate influence of gas on the oxidation characteristics of coal was clarified. The results show that gas delays the low-temperature oxidation process of coal by inhibiting the relative content of key active groups in the low-temperature oxidation process of coal. 4% gas has the most obvious inhibitory effect. The degree of inhibition on the four active groups is: oxygen-containing functional groups (66.5%) > Aromatic hydrocarbons (47.0%) > Aliphatic hydrocarbons (29.7%) > Hydroxyl (24.7%). In the rapid exothermic stage, due to the large adsorption capacity of coal to gas molecules, gas occupies the adsorption sites in coal molecules, which hinders the process of coal-oxygen recombination reaction, resulting in the exothermic effect being suppressed by gas; at the same time, gas content significantly affects coal oxygen. The amount of activation energy required for the recombination process. For high metamorphic non-stick coal, lean coal and anthracite, gas has a more significant inhibitory effect on its low temperature oxidation reaction; it has less effect on low metamorphic long flame coal. For secondary oxidized coal samples, the inhibitory effect of gas on coal samples increases with the increase of gas content, while the effect of gas on primary oxidized coal samples decreases as the degree of metamorphism decreases, and the degree of inhibition when the gas content is 2% is stronger than 4%. The results of the work have great significance to the theoretical study of the prevention and control of the coupling of gas and coal spontaneous combustion causing accidents.
-
Keywords:
- spontaneous coal combustion /
- gas /
- microstructure /
- thermal effect /
- activation energy /
- low-temperature oxidation
-
0. 引 言
地壳中的氟元素是含量排名第13位的元素,电负性强。作为人体必不可少的微量元素之一,较低浓度的氟(F−)能使人体的骨骼和牙齿坚固,减少龋齿的发病率,过量的F−则可能导致氟斑牙、软组织损害、氟骨病、肿瘤和白血病等疾病[1-3]。氟化物在中国、印度和巴基斯坦等国家的地下水中出现较高浓度的现象,是一个相对严重的问题[4-6]。地下水作为重要的饮用水来源,世界卫生组织(WHO)和中国对饮水中氟的“标准限值”分别为1.5 mg/L和1.0 mg/L[7]。地下水中氟化物产生的原因较为相似,包括含氟矿物及其风化产物与地下水的水−岩溶解作用,阳离子交换作用和蒸发作用等。常见的含氟矿物包含硅酸盐矿物、萤石(CaF2)、冰晶石 (Na3AlF6)、黄玉(Al2SiO4)、氟磷灰石(Ca5(PO4)3F)、氟镁石(MgF2)、云母类和角闪石等,而CaF2则通常被认为是地下水中F−的主要矿物质来源[4, 8-9]。高浓度F−常见的水化学环境为较高浓度的
$\mathrm{HCO}_3^{-} $ 和Na+、较高的pH和温度、低浓度的Ca2+[10-12]。神东煤炭集团公司共有13座矿井,具有良好的地质条件和丰富的煤炭资源储量,是我国首个2亿t级的煤炭生产基地。然而,神东矿区干旱少雨,缺少饮用水资源。神东煤炭集团公司在开发煤炭的同时,也产生了大量的矿井水,矿井水可作为重要的生产、生活和生态用水资源。煤炭生产过程加速水-岩耦合作用,进而使地下水中的F–浓度增加[13]。通过对神东矿区矿井水水质指标检测发现,神东矿区部分位置矿井水存在氟化物浓度超过地表水环境质量标准(GB 3838—2002)(1 mg/L)的现象。矿井水中较高的氟化物影响水的资源化利用,也增加企业的环保成本。
目前,神东矿区矿井水氟化物随着时空变化的分布规律报道较少。因此,以神东矿区不同区域的矿井水为研究对象,以长周期矿井水水质监测为基础,研究矿井水氟化物的赋存规律、水化学环境特征和氟化物时间空间变化规律等方面,系统分析高氟矿井水的产生规律和时间、空间分布特征。期望能为神东矿区减少环保成本、提高水资源利用效率,为矿区不同区域高氟矿井水的调查和治理提供帮助。
1. 研究区概况
神东煤炭集团公司矿井区域位于陕西省北部内蒙古自治区西南部,榆林市北部鄂尔多斯市东南部,北纬39. 33°~39. 50°、东经 110. 07°~110. 18°。处于黄土高原北缘与毛乌素沙漠东侧过渡地带,面积3481 km2。气候为半干旱大陆性季风气候,冬寒雨雪稀少,春旱多风干燥,夏季炎热多雨,降水年际和年内变化很大,多年平均降雨量424.3 mm[14]。根据神东矿区内部相对位置,相对靠北部位置的煤矿可称为北部矿区,相对位置在南部的位置为中心矿区,中心矿区根据乌兰木伦河的相对位置,分为东部和西部。神东北部矿区包括补连塔煤矿以北的煤矿,以布尔台煤矿为代表,中心矿区为补连塔煤矿及以南的煤矿,根据中心矿区地理位置,西部以补连塔煤矿为代表、东部以哈拉沟煤矿为代表,3个煤矿分别代表高F−区域、次高F−区域和低F−区域。
神东矿区地表水系统发达,主要包括乌兰木伦河及其支流和饽牛川及其支流。研究区主要包含有3个地下含水层,第Ⅰ含水层组(Q4):为松散层孔隙潜水,其水位埋深的升降与降雨丰枯有关。第Ⅱ含水层组(J2z) :直罗组裂隙承压水,分布面积广。第Ⅰ、Ⅱ含水层组为浅层地下水,第Ⅲ(J12y) 含水层组为延安组裂隙承压水,为深层地下水。
2. 材料与方法
2.1 样品采集
在神东矿区不同位置矿井水进行了不同季节周期采样,共采集矿井水样品58组(图1),其中神东北部矿区矿井水为12组(分布在布尔台煤矿42煤,共6组;深度345.0~435.0 m;长期监测位置在42煤层采空区清水排立风井钻孔,共6组;深度435.0 m),神东中心矿区(西)矿井水为24组(取样位置分布在补连塔煤矿22煤层,共7组;深度210.0~286.1 m;长期监测位置在22煤层采空区清水应急排口,共17组;深度299.99 m),神东中心矿区(东)矿井水为22组(取样位置分布在哈拉沟煤矿22煤层和31煤层,共14组;深度分别为80.6~128.1 m和173 m;长期监测位置在22煤层采空区清水应急排口和采空区供水2处,共8组;深度95.9 m和114.6 m),所有矿井水样品所处煤层上部第一个含水层均为延安组,往上为松散层萨拉乌苏组含水层。神东北部矿区和神东中心矿区(东)分别采集岩心2组;神东中心矿区(西)采集煤层顶板1组。以不同煤矿生产过程中产生的矿井水和煤矿涌水为研究对象,采集不同季节煤矿生产产生的矿井水和井下强排孔水源。强排孔矿井水通常在取样前先确保强排孔运转,一段时间后开始取样。
2.2 样品的采集和分析
温度、pH值、溶解氧(DO)等指标现场测试,其余指标送至实验室检测。水样测试均在鄂尔多斯市环境监测检验有限公司检测进行。在实验室先用蒸馏水润洗采样瓶(1 L棕色玻璃瓶) 3遍,矿井水采样前,再用水样润洗2~3遍后取样。水样采样执行《水质采样技术指导》HJ494—2009标准,水样在现场测定指标后,装满并密封带回实验室,放于4 ℃冰箱保存,48 h内检测分析。F−测定校准采用国家标准样品,编号:GSB07-1194-2000,保证数据的准确性。DO和pH值采用DZB-718L便携式多参数分析仪/EJYS-JC-137进行测定,水温采用水银温度计进行现场测定,Cl−、
$\mathrm{SO}_4^{2-} $ 、NO3−和F−采用液相离子色谱(883Basic IC Plus离子色谱仪/EJYS-FX-005)测定,Na+、Mg2+、Ca2+和K+采用iCAP7200 电感耦合等离子体发射光谱仪/EJYS-FX-008测定,溶解性总固体根据《水质悬浮物的测定重量法》GB/T 11901—1989测定,电导率采用HQ14D/电导率仪EJYS-FX-018测定,碱度采用《水和废水监测分析方法》(第4版增补版)酸碱指示剂滴定法(B),2019—2021年神东监测矿井水时间规律F−采用《水和废水监测分析方法》(第4版增补版)液相离子色谱仪(瑞士万通930型)测定。岩心元素分析采用X射线荧光光谱仪,ZSX Primus II,岩心经过物理破碎和研磨后进行测定。采用Aqqa1.5绘制矿井水Piper三线图,Origin 2022绘制矿井水Gibbs图。研究采用 Piper三线图及相关性分析等方法分析地下水水样的水化学类型及其特征。水−岩耦合作用矿物的溶解与沉淀受到矿物在地下水中的饱和指数(SI)决定,采用PHREEQC 2.15计算石膏、方解石、白云石和萤石的饱和指数。
3. 结果与分析
3.1 不同区域矿井水水化学指标
表1为神东北部矿区和中心矿区矿井水水化学指标统计。根据表1可知,神东北部矿区和中心矿区不同煤矿矿井水pH值总体呈碱性,中心矿区不同深度的矿井水pH值呈现出较大差异,北部矿区矿井水pH呈碱性,pH为7.7~8.7,均值为8.3,中心矿区西部矿井水pH呈碱性,pH为6.8~8.9,均值为7.9,中心矿区东部矿井水pH为6.8~8.9,均值为7.7。神东中心矿区东部矿井水F−质量浓度基本小于1.0 mg/L,而神东中心矿区西部和北部矿区矿井水F−浓度均出现较高的情况,前者在3.0~12.8 mg/L,后者在4.1~13.7 mg/L。神东北部矿区和中心矿区西部矿井水EC平均值分别是2.27和2.72 mS/cm,中心矿区东部矿井水1.04 mS/cm。随着矿井水中F−浓度增加,pH值在逐渐增加。
表 1 神东北部矿区和中心矿区矿井水水化学指标统计Table 1. Statistical of mine water hydrochemcal in northeastern and central Shendong mining area项目 pH EC/(mS·cm-1) 最小值 最大值 平均值 标准差 最小值 最大值 平均值 标准差 北部矿区 7.7 8.7 8.3 0.33 1.79 3.08 2.27 0.49 中心矿区西部 6.8 8.9 7.9 0.60 2.46 3.21 2.72 0.33 中心矿区东部 6.8 8.9 7.7 0.59 0.39 1.82 1.04 0.62 3.2 氟的分布特征
3.2.1 氟的时间变化规律
为阐明神东矿区矿井水F–浓度时间变化特征,选取2019—2021年时间范围内神东北部矿区和神东中心矿区西部矿井水F–浓度进行分析,同一取样位置的F–含量随时间的变化进行对比分析(图2),结果表明2019—2020年神东北部矿区和神东中心矿区西部矿井水F–含量随季度变化趋势不明显,2021年中心矿区西部矿井水F–含量较之前出现下降。
3.2.2 氟的空间分布特征
根据井田方位,将神东矿区划分为北部矿区和中心矿区。神东北部矿区和神东中心矿区西部矿井水检测情况表明,含有的F−浓度较高;神东中心矿区东部矿井水F–浓度降低,通常小于1.0 mg/L。总体来看,高氟矿井水主要分布在神东北部矿区和中心矿区西部范围,低氟矿井水主要分布在中心矿区东部范围。
神东中心矿区东部浅层矿井水F−浓度范围在0.3~2.51 mg/L,深层矿井水F−浓度为5.86和6.88 mg/L;神东中心矿区西部矿井水F−浓度范围在3.0~12.8 mg/L;神东北部矿区矿井水F−浓度集中在4.11~13.7 mg/L。中心矿区东部矿井水所在煤层上部的含水层是延安组含水层且富水性强,松散层萨拉乌苏组、直罗组含水层富水性弱且较难渗流到矿井水中,下部矿井水F−浓度超标率较低,且超标量较小,低F−矿井水主要分布在80~130 m深度内,高F−矿井水分布在173 m(图3)。神东北部矿区和中心矿区东部矿井水F−浓度较高,且在210~300 m深度范围内F−的浓度范围为2.6~12.8 mg/L,到345.0 m~435.0 m的深度范围F−的浓度范围为4.11~13.7 mg/L;F−浓度在垂直方向上的分布呈现随深度的增加而增加的趋势,且与取水煤层的深度有关。神东北部矿区矿井水上部直接补给含水层是延安含水层,为主要补给水源。中心矿区西部矿井水上部富水性强的含水层是延安组含水层,表明矿井水上部含水层水化学性质因埋深不同存在差异,可能是由于上部含水层的岩石矿物中含氟较低所致。通过查阅文献,XRF岩心扫描结果的可靠度较高[15]。神东北部矿区和中心矿区延安组岩样含氟矿物XRF分析表明北部矿区和中心矿区西部含氟矿物相对含量较高(表2)。
中心矿区东部地下含水层深度较浅,而北部矿区和中心矿区西部地下含水层深度相对较深,造成不同水体之间差异性的主要原因是它们来源的区域位置和深度位置影响不同。
3.3 地下水水化学特征
3.3.1 F−与水化学指标的关系
神东矿区矿井水中F−与水化学指标相互关系(表3)。神东北部矿区矿井水的pH、Cl−和DO与F−均呈正相关关系,水温、
$\mathrm{SO}_4^{2-} $ 和阳离子与F−呈负相关关系,说明矿井水中高阳离子和$\mathrm{SO}_4^{2-} $ 对F−浓度有消极作用;中心矿区东部矿井水的pH和Cl−与F−呈现出正相关关系,表明矿井水中高Cl−质量浓度对F−富集有积极作用;而神东中心矿区西部矿井水的pH和Cl−与F−呈现出正相关关系,$\mathrm{SO}_4^{2-} $ 与F−呈现出负相关关系,表明矿井水中高$\mathrm{SO}_4^{2-} $ 质量浓度对F−质量浓度有消极作用。结合表1,偏碱性是高氟矿井水的主要水化学环境特征之一,该结果含与F−地下水的水环境特征基本保持一致[4]。表 2 神东北部矿区和中心矿区延安组岩样氟化物统计Table 2. Statistical of fluoride in rock samples of Yan’an Formation in northeastern and central Shendong Mining Area项目 氟化物质量分数/% 1−2煤上部 2−2煤上部 4−2煤上部 北部矿区 0.0509 0.0559 0.0825 中心矿区西部 0.0677 中心矿区东部 — — 注:空白为未检测该部分样品;—为未检出含氟物质。 表 3 水化学指标与F–的相关关系Table 3. Correlation between water chemical indexes and F–项目 pH DO T EC $\mathrm{SO}_4^{2-} $ $\mathrm{NO}_3^{-} $ Cl− TDS Na+ K+ Mg2+ Ca2+ 北部矿区 0.55 0.39 −0.23 −0.98 −0.71 — 0.23 −0.98 −0.98 −0.85 −0.89 −0.70 中心矿区东部 0.18 0.011 0.01 −0.003 −0.11 −0.13 0.72 −0.19 0.38 −0.03 −0.15 −0.22 中心矿区西部 0.67 0.0072 −0.08 −0.26 −0.74 0.17 0.43 −0.48 −0.24 −0.63 −0.15 −0.31 神东矿区矿井水的pH与F−的浓度存在正相关性(图4),北部矿区、神东中心矿区东部和西部矿井水的pH与F−浓度正相关关系分别是R=0.55、R=0.18和R= 0.67) 。
神东矿区矿井水的DO与F−的质量浓度相关性存在一定不同(图5),北部矿区矿井水的DO与F−质量浓度存在正相关关系(图5a),神东中心矿区东部和西部DO与F−浓度几乎不相关关系(分别是R=0.011和R= 0.0015) (图5c和图5b)。神东北部矿区矿井水的DO的质量浓度在7~9 mg/L范围浮动,神东中心矿区东部和西部的矿井水DO的质量浓度分别在5~12 mg/L和5~10 mg/L范围浮动,DO质量浓度的差异可能是由于水温差异导致。有研究表明,通过测定2个钻孔的地下水样,得知F−与DO呈正相关性(r = 0.405和r = 0.742)[16]。但也有研究得到不同结果,F−质量浓度与地表水中的DO呈正相关,而在地下水中,它与DO呈负相关,地下水DO平均值在3和1.4 mg/L,地表水平均值是6.9和1.2 mg/L[17]。通过采集印度地下水样品,发现样品中的DO和F−浓度相关关系不明显[18]。
如图6所示,神东北部矿区和中心矿区西部矿井水温度与F–的质量浓度存在负相关性(图6a和图6c),然而神东中心矿区东部矿井水的温度与F–的质量浓度几乎无正相关性(图6b)。神东北部矿区矿井水的温度主要集中在15~25 ℃,中心矿区东和西部矿井水温分别主要集中在10~20 ℃和15~20 ℃之间,随着深度变深,下部含水层所补给矿井水的温度增加,北部矿区矿井水F−的质量浓度也整体上增加。浅层地下水(60~120 m)和深层地下水(180~300 m)中F–质量浓度和温度均呈现负相关关系(R=−0.43和R=−0.40)[19]。OLAKA等研究也发现F–质量浓度与地下水中温度呈负相关关系[17]。
一般来说,地下水比地表水具有更高的F−浓度水。神东北部矿区矿井水F−浓度明显大于神东中心矿区东部和西部矿井水F−浓度,F−浓度的提高与水温提高具有关联性,高F−浓度和低地表热量之间明显关联(图7)。地下水中F−浓度可能受到相对较高的温度影响,随着地下水温度升高出现增加[20-21]。由于地壳存在地热梯度,深层地下水往往会比同一位置的浅层地下水产生更高的水温,有利于在碱性pH条件下从矿物中释放氟化物[13]。受到地热系统地温梯度的影响,萤石等含F−矿物溶解度随水温的增加而增加,进而提高含水层F−浓度[17, 22-23]。
神东北部矿区延安组矿井水的
$\mathrm{NO}_3^{-} $ -N与F−的质量浓度无相关性(图8a),神东中心矿区东部和西部矿井水的$\mathrm{NO}_3^{-} $ -N与较低F−质量浓度分别存在弱负相关性和几乎无相关性(分别是R=−0.0018和R=−0.016) (图8c和图8b)。《地表水环境质量标准》(GB 3838—2002)中规定地表水$\mathrm{NO}_3^{-} $ -N质量浓度小于10 mg/L,神东矿区矿井水$\mathrm{NO}_3^{-} $ -N质量浓度在0~1 mg/L的范围浮动。浅层地下水中$\mathrm{NO}_3^{-} $ -N含量高于深层地下水,可能受到人类活动的影响。神东北部矿区和中心矿区西部和东部矿井水的Cl-与F−正相关性(图9)。深层矿井水中Cl-含量高于浅层矿井水,可能是由于所处含水层性质的差异以及不同深度地质结构不同造成。
神东北部矿区和中心矿区西部和东部矿井水的
$\mathrm{SO}_4^{2-} $ 与F−具有较强负相关性(图10)。神东北部矿区$ \mathrm{SO}_4^{2-}$ 质量浓度在50~100 mg/L,含有较高F−质量浓度范围的神东中心矿区矿井水$\mathrm{SO}_4^{2-} $ 质量浓度在400~800 mg/L。3.3.2 水化学类型
Piper三线图是水化学成分的有效图形表示,用于表示一组水样的化学相的来源,是地下水研究中使用广泛的图表。神东矿区不同矿井水的化学相的来源差异较大,Piper三线图中(图11)北部矿区矿井水样品的阳离子主要是Na+,阴离子主要是HCO3−,其次是Cl−,水化学类型为 Na-HCO3-Cl型水(83.7%)和Na-Cl-HCO3型水(16.3%)。中心矿区高氟矿井水样品的阳离子主要是Na+,阴离子主要是Cl−,其次是
$\mathrm{HCO}_3^{-} $ 和$\mathrm{SO}_4^{2-} $ ,水化学类型为 Na-Cl-HCO3型水(45.5%)Na-SO4-Cl和Na-HCO3-Cl型水(45.5%)。中心矿区低氟矿井水样品的阳离子主要是Ca2+和Na+,阴离子主要是$\mathrm{SO}_4^{2-} $ ,其次是$\mathrm{HCO}_3^{-} $ 和Cl−,水化学类型为 Ca-HCO3-SO4型水(38.5%)、Na-SO4-HCO3(30.8%)和Mg-SO4-HCO3型水(15.4%)。3.4 高氟地下水的成因
3.4.1 蒸发浓缩作用
吉布斯图(Gibbs)显示地下水的离子特征和成因[24]。Gibbs图通过水样的TDS值,阴离子C
(Cl−)/C(Cl−+ $\mathrm{HCO}_3^{-} $ )或阳离子C(Na+)/C(Na++Ca2+)的关系,建立较直观地水化学成分形成的作用。由图12可知,神东北部矿区和神东中心矿区东部矿井水TDS值大于1000 mg/L,中心矿区西部矿井水TDS值200~1700 mg/L,降水控制作用几乎不存在对地下水化学组分影响,这与该区干燥少雨的气候条件一致;神东矿区矿井水主要受岩石风化及蒸发浓缩共同控制。根据TDS值大小,当TDS值中等且C(Na+)/C(Na++Ca2+)或C(Cl−)/C(Cl−+$\mathrm{HCO}_3^{-} $ )比值小于0.5时,水化学组分主要受岩石风化作用;TDS值较高且C(Na+)/C(Na++Ca2+)或C(Cl−)/C(Cl−+$\mathrm{HCO}_3^{-} $ )比值接近于1时,水化学组分主要受蒸发浓缩作用。神东中心矿区西部矿井水C(Na+)/C(Na++Ca2+)集中在0.6以下,多数样品TDS值小于1.0g/L,主要集中在Gibbs图的中部,说明岩石风化是水化学组分主要的控制因素;神东北部矿区和神东中心矿区东部矿井水C(Na+)/C(Na++Ca2+)值集中在0.9左右,在Gibbs图的中部且靠上,蒸发浓缩和岩石风化是水化学组分主要的控制因素。高氟矿井水比低氟矿井水的TDS值高,高氟矿井水具有较强的水-岩相互作用。3.4.2 阳离子交换
阳离子交换作用是控制地下水离子浓度的一项重要影响机制,该过程影响F–的溶解。采用氯碱指数(Chloro-Alkaline,CAI1和CAI2)对研究区矿井水阳离子交换作用进行分析。
如果氯碱指数(CAI1和CAI2)为正值,地下水中的Na+和 K+与含水层中的Ca2+和Mg2+发生阳离子交换;如果地下水中的Ca2+和Mg2+与Na+和 K+发生阳离子交换,氯碱指数为负值,且绝对值越大,表示阳离子交换作用愈强烈。由图13可知,神东北部矿区和中心矿区东部矿井水的氯碱指数均为负值,神东中心矿区西部井水CAI1值均为正,F–质量浓度越低CAI1值越低,表明低F–质量浓度矿井水的Ca2+和Mg2+与Na+和 K+发生阳离子交换作用较强。
3.4.3 水文地球化学模拟
饱和指数(SI)可以判断地下水与岩石、矿物之间的反应。当SI = 0时,矿物在地下水中处于平衡状态;SI>0时,矿物在地下水中处于过饱和状态,具有沉淀趋势,反之则处于溶解作用。
神东北部矿区和中心矿区西部深层地下水中石膏具有溶解趋势,方解石和白云石则处于平衡状态,神东中心矿区矿东部地下水中石膏具有较弱的溶解趋势,方解石和白云石则具有较强溶解趋势。神东北部矿区矿井水和中心矿区西部高F–浓度矿井水萤石处于平衡状态,而神东中心矿区矿西部相对较低F−浓度矿井水和中心矿区矿东部矿井水萤石处于溶解状态(图14),因此高F−质量浓度矿井水地下水中主要发生以下反应:
$$ {\text{CaF}}_{\text{2}} \to {\text{C}}_{\text{a}}^{2+}{\text{+2F}}^- $$ 神东北部矿区和中心矿区矿西部深层地下水中萤石的溶解是导致地下水中的F−质量浓度较高的主要原因。
4. 结 论
1)神东矿区矿井水中F−质量浓度水平方向上呈现北部和西南部高、东南部低的现象;垂直方向上呈现随开采深度的增加而增加的趋势,且与取水层位的深度有密切关系。含量平均值差异较大。不同深度延安组地下水补给矿井水中F−质量浓度的差异较大,北部矿区矿井水中F−质量浓度范围为4.1~13.7 mg/L,深度在345~435 m。中心矿区东部矿井水中F−质量浓度较低,主要分布在80~130 m。中心矿区西部矿井水中F−质量浓度范围为2.6~12.8 mg/L,主要分布在210~300 m深度范围。
2)F−质量浓度与神东矿区的水环境条件有关。神东矿区矿井水pH和Cl−与F−均呈正相关关系,
$\mathrm{SO}_4^{2-} $ 、Ca2+和Mg2+与F−呈现出负相关关系。高F−矿井水的水温通常大于低F−矿井水。北部矿区矿井水的水化学类型为Na−HCO3−Cl型水(83.7%)和Na−Cl−HCO3型水(16.3%)。中心矿区高F−矿井水水化学类型为 Na−Cl−HCO3型水(45.5%)Na−SO4−Cl和Na−HCO3−Cl型水(45.5%)。中心矿区低F−矿井水水化学类型为 Ca−HCO3−SO4型水(38.5%)和Na−SO4−HCO3(30.8%)。3)北部矿区和中心矿区矿西部水-岩相互作用导致的含氟矿物溶解是导致矿井水中的F−浓度较高的主要原因。强烈的蒸发浓缩作用、阳离子交替吸附,共同导致矿井水中F−的富集。
-
表 1 煤质分析
Table 1 Coal quality analysis
煤样 工业分析/% 元素分析/% 元素含量 Mad Aad Vad FCad Cdaf Hdaf Ndaf Odaf w(O)∶w(C) w(H)∶w(C) 长焰煤 7.22 11.71 30.56 50.51 74.05 3.97 1.41 20.57 0.28 0.054 不粘煤 7.43 8.44 29.76 54.37 75.72 3.91 1.48 18.89 0.25 0.052 瘦煤 0.84 13.98 13.58 71.60 79.94 3.07 2.20 14.79 0.19 0.038 无烟煤 1.77 10.21 8.05 79.97 82.94 2.32 1.24 13.5 0.16 0.028 表 2 煤中主要活性基团的波峰归属
Table 2 The peak assignments of the main active groups in coal
吸收峰类型 谱峰位置/cm−1 官能团 谱峰归属 羟基 3 660~3 632 —OH 游离的羟基 3 550~3 200 —OH 分子间缔合的氢键、酚羟基、
醇羟基或氨基含氧官能团 1 736~1 722 C=O 酯类的羰基伸缩振动 1 330~1 060 C—O—C 脂肪醚伸缩振动 脂肪烃 2 975~2 915 —CH3 甲基不对称伸缩振动 2 875~2 858 —CH2 亚甲基不对称伸缩振动 1 449~1 439 —CH2 亚甲基剪切振动 1 380~1 370 —CH3 甲基剪切振动 芳香烃 3 160~3 032 Ar—CH 芳香环中C–H的伸缩振动 1 604~1 599 C=C 芳香环中C=C的伸缩振动 900~700 Ar—CH 多种取代苯的变形振动 -
[1] CHEN X,LI L,WANG L,et al. The current situation and prevention and control countermeasures for typical dynamic disasters in kilometer-deep mines in China[J]. Safety Science,2019,115:229−236. doi: 10.1016/j.ssci.2019.02.010
[2] ZHANG Q,YAO B Y,LI Y H,et al. Research progress and prospect on the monitoring and early warning and mitigation technology of meteorological drought disaster in northwest China[J]. Advances in Earth Science,2015,30(2):196.
[3] WANG H Y,CHENG C F,CHENG C. Characteristics of polycyclic aromatic hydrocarbon release during spontaneous combustion of coal and gangue in the same coal seam[J]. Journal of Loss Prevention in the Process Industries,2018,55:392−399. doi: 10.1016/j.jlp.2018.07.004
[4] WANG C J,YANG S Q,LI X W. Simulation of the hazard arising from the coupling of gas explosions and spontaneously combustible coal due to the gas drainage of a gob[J]. Process Safety and Environmental Protection,2018,118:296−306. doi: 10.1016/j.psep.2018.06.028
[5] 王德明,邵振鲁,朱云飞. 煤矿热动力重大灾害中的几个科学问题[J]. 煤炭学报,2021,46(1):57−64. WANG Deming,SHAO Zhenlu,ZHU Yunfei,et al. Several scientific issues in major thermal disasters in coal mines[J]. Journal of China Coal Society,2021,46(1):57−64.
[6] ZHENG Y N,LI Q Z,ZHU P F,et al. Study on multi-field evolution and influencing factors of coal spontaneous combustion in goaf[J]. Combustion Science and Technology,2021,195(2):247−264.
[7] TANG Z Q,YANG S Q,XU G,et al. Disaster-causing mechanism and risk area classification method for composite disasters of gas explosion and coal spontaneous combustion in deep coal mining with narrow coal pillars[J]. Process Safety and Environmental Protection,2019,132:182−188. doi: 10.1016/j.psep.2019.09.036
[8] 林柏泉,李庆钊,周 延. 煤矿采空区瓦斯与煤自燃复合热动力灾害多场演化研究进展[J]. 煤炭学报,2021,46(6):1715−1726. LIN Baiquan,LI Qinzhao,ZHOU Yan. Research progress on multi-field evolution of combined thermal and dynamic disasters of gas and coal spontaneous combustion in coal mine goaf[J]. Journal of China Coal Society,2021,46(6):1715−1726.
[9] WANG G,XIE J,XUE S. Laboratory study on low-temperature coal spontaneous combustion in the air of reduced oxygen and low methane concentration[J]. Technical Gazette,2015,22(5):1319−1325.
[10] 邓 军,李 鹏,程文东,等. 瓦斯对煤自燃特性参数影响的实验研究[J]. 煤矿安全,2014,45(11):31−33. DENG Jun,LI Peng,CHENG Wendong,et al. Experimental study on the influence of gas on coal spontaneous combustion characteristic parameters[J]. Safety in Coal Mines,2014,45(11):31−33.
[11] WANG H Y,TIAN Y,LI J L,et al. Experimental study on thermal effect and gas release laws of coal-polyurethane cooperative spontaneous combustion[J]. Scientific Reports,2021,11(1):1−13. doi: 10.1038/s41598-020-79139-8
[12] ZHOU F,LIU S,PANG Y,et al. Effects of coal functional groups on adsorption microheat of coal bed methane[J]. Energy & Fuels,2015,29(3):1550−1557.
[13] HU Y,WANG S,HE Y. Investigation of the coal oxidation effect on competitive adsorption characteristics of CO2/CH4[J]. Energy & Fuels,2020,34(10):12860−12869.
[14] TANG Y,WANG H. Experimental investigation on microstructure evolution and spontaneous combustion properties of secondary oxidation of lignite[J]. Process Safety and Environmental Protection,2019,124:143−150. doi: 10.1016/j.psep.2019.01.031
[15] 汤宗情. 煤自燃过程中孔隙演化机制及其对多元气体吸附特性的影响[D]. 徐州: 中国矿业大学, 2020. TANG Zongqing. Pore evolution mechanism during coal spontaneous combustion and its influence on multi-component gas adsorption characteristics [D]. Xuzhou: China University of Mining and Technology, 2020.
[16] 白亚娥. 不同预氧化程度煤二次氧化特性研究[D]. 西安: 西安科技大学, 2017. BAI Ya’e. Study on the secondary oxidation characteristics of coal with different pre-oxidation degrees [D]. Xi'an: Xi'an University of Science and Technology, 2017.
[17] 姜 峰,尚芳兰,李珍宝,等. 热重–FTIR法分析不粘煤氧化特性参数[J]. 燃烧科学与技术,2021,27(1):35−42. JIANG Feng,SHANG Fanglan,LI Zhenbao,et al. Analysis of non-stick coal oxidation characteristics by thermogravimetric-FTIR method[J]. Combustion Science and Technology,2021,27(1):35−42.
[18] 许 芹. 氧化煤表面吸氧能力演化及分子活性结构二次氧化特性研究[D]. 徐州: 中国矿业大学, 2021. XU Qin. The evolution of oxygen absorption capacity on the surface of oxidized coal and the secondary oxidation characteristics of molecular active structures [D]. Xuzhou: China University of Mining and Technology, 2021.
[19] 冯 杰,李文英,谢克昌. 傅立叶红外光谱法对煤结构的研究[J]. 中国矿业大学学报,2002(5):25−29. FENG J,LI W Y,XIE K C. Study on coal structure by Fourier transform infrared spectroscopy[J]. Journal of China University of Mining and Technology,2002(5):25−29.
[20] 王 坤. 煤氧化产物产热及官能团变化特性研究[D]. 北京: 煤炭科学研究总院, 2016. WANG Kun. Study on heat generation and functional group change characteristics of coal oxidation products [D]. Beijing: General Coal Research Institute, 2016.
[21] QI G S,WANG D M,ZHENG K M,et al. Kinetics characteristics of coal low-temperature oxidation in oxygen-depleted air[J]. Journal of Loss Prevention in the Process Industries,2015,35:224−231. doi: 10.1016/j.jlp.2015.05.011
-
期刊类型引用(3)
1. 王路,赵庆珍,翟志伟,李江涛,李靖. 基于FTIR与烷烃气碳同位素特征的中阶煤结构演化研究. 煤炭工程. 2024(02): 171-177 . 百度学术
2. 王欣,张海,王凯,范卫东. 差异化电子密度特征基团对煤氮迁移转化的影响机理. 洁净煤技术. 2024(11): 24-32 . 百度学术
3. 李美芬,李晔熙,邵燕,陈小珍,崔曦,左家琦,蒋恒宇. 伊敏煤热解过程中化学结构演化特征的原位拉曼光谱. 煤炭学报. 2022(12): 4313-4322 . 百度学术
其他类型引用(6)