高级检索

任家庄井田晚古生代煤系战略性金属元素富集特征

姬晓燕, 张志峰, 祁风华, 黄鹏程, 刘世恒, 袁红, 梁永平

姬晓燕,张志峰,祁风华,等. 任家庄井田晚古生代煤系战略性金属元素富集特征[J]. 煤炭科学技术,2023,51(12):65−78

. DOI: 10.13199/j.cnki.cst.2023-0146
引用本文:

姬晓燕,张志峰,祁风华,等. 任家庄井田晚古生代煤系战略性金属元素富集特征[J]. 煤炭科学技术,2023,51(12):65−78

. DOI: 10.13199/j.cnki.cst.2023-0146

JI Xiaoyan,ZHANG Zhifeng,QI Fenghua,et al. Enrichment characteristics of strategic metal elements in Late Paleozoic coal-bearing sequences in Renjiazhuang Mine Field[J]. Coal Science and Technology,2023,51(12):65−78

. DOI: 10.13199/j.cnki.cst.2023-0146
Citation:

JI Xiaoyan,ZHANG Zhifeng,QI Fenghua,et al. Enrichment characteristics of strategic metal elements in Late Paleozoic coal-bearing sequences in Renjiazhuang Mine Field[J]. Coal Science and Technology,2023,51(12):65−78

. DOI: 10.13199/j.cnki.cst.2023-0146

任家庄井田晚古生代煤系战略性金属元素富集特征

基金项目: 

宁夏2023年地质事业发展专项资金资助项目(640000233000000011005);宁夏自然科学基金资助项目(2021AAC03463)

详细信息
    作者简介:

    姬晓燕: (1986—),女,宁夏盐池人,工程师,硕士。E-mail:jixiaoyan111@163.com

    通讯作者:

    张志峰: (1985—),男,内蒙古包头人,高级工程师。E-mail:124592078@qq.com

  • 中图分类号: TD15

Enrichment characteristics of strategic metal elements in Late Paleozoic coal-bearing sequences in Renjiazhuang Mine Field

Funds: 

Special Fund for Geological Development in Ningxia in 2023 (6400002330000011005); Natural Science Foundation of Ningxia (2021AAC03463)

  • 摘要:

    煤系是战略性金属矿产增储的重要来源。宁东煤田煤炭资源丰富,部分地区煤中富集战略性金属。以宁东煤田任家庄井田煤系为研究对象,系统采集主煤层剖面煤样、夹矸及顶(底)板样,采用电感耦合等离子体质谱法(ICP-MS)、X-射线荧光光谱(XRF)和X射线衍射(XRD)进行了系统的矿物学和地球化学测试分析,查明常量元素和微量元素分布及富集情况,讨论战略性金属元素富集成因并进行物源分析。结果表明,任家庄井田石炭-二叠纪煤系富集战略性金属矿产,太原组和山西组煤中战略性金属元素整体含量水平较高,以Li-Ga-Zr(Hf)-Nb(Ta)-Th(U)-Pb及REY共富集为特征,且顶底板及夹矸更为富集。其中:5号煤层Li、Ba高度富集,Rb、Zr富集;9号煤层Li高度富集,Zr、Hf、Th富集;9煤层微量元素含量整体相对较低,Cr富集。5号煤层和9号煤层战略性金属元素富集程度较9煤层更好。5号煤层和9号煤层灰基Li、Ga均达到了开发利用品位,5号煤层灰基REY也达到了开发利用品位,具有良好开发利用前景。基于元素赋存特征、沉积环境、构造演化的综合分析,认为任家庄井田战略性金属元素富集主要受陆源碎屑供给影响,由鄂尔多斯盆地西缘北部阴山古陆与西北部阿拉善地块蚀源区的长英质−中性岩碎屑物质经古水流搬运进入泥炭沼泽,在特定沉积环境及地球化学环境下通过有机质与无机质相互作用而富集,并经多期次构造演化控制形成现今赋存分布状态及富集特征。

    Abstract:

    Coal-bearing sequences are important source for increasing strategic metal mineral reserves. There are abundant coal resources in Ningdong Coalfield,and strategic metals enrichment have been found in several coal-bearing sequences. The study selected coal-bearing sequences of Renjiazhuang Mine Field in Ningdong Coal Field as the research object, the coal samples, gangue, roof and floor plate of the main coal seam section were collected systematically. The mineralogical and geochemical tests were carried out by inductively coupled plasma mass spectrometry (ICP-MS), X-ray fluorescence spectroscopy and X-ray diffraction, and the distribution characteristics of major and trace elements were ascertained. The causes of strategic metal element enrichment and their provenance were analyzed.The results showed that the Permo-Carboniferous coal-bearing of late Paleozoic are the enrichment beds of strategic metal minerals in RenJiazhuang Mine Field. The enrichment of strategic metal elements in coal is common in Taiyuan and Shanxi formations, and the overall content of trace elements is high, which is characterized by Li-Ga-Zr(Hf)-Nb(Ta)-Th(U)-Pb,rare earth element and Yttrium(REY), co-enrichment. Moreover, strategic metal elements are more enriched in coal-bearing near the roof,floor and the gangue.Among them, Li and Ba are highly enriched, Rb and Zr are enriched in No.5 coal seam. Li is highly enriched in No.9 coal seam, while Zr, Hf and Th are enriched. The content of strategic metal elements in upper No.9 coal seam is relatively low and Cr is enriched. The concentration of trace elements in No.5 and No.9 coal is better than that in upper No.9 coal seam. Li and Ga of the ash foundation of No. 5 and No. 9 coal seam have reached the industrial grade, and REY of the ash foundation of No. 5 coal seam has also reached the industrial grade, which presenting a very promising potential for further exploration.Based on the comprehensive analysis of element occurrence characteristics, sedimentary environment and tectonic evolution, it is concluded that the strategic metal element enrichment in Renjiazhuang Mine Field is mainly influenced by the clastic supplying of the erosion source area, and the felsitic-neutral rock detrites from the northern Yinshan ancient landthe and the northwestern Alxa block in the western margin of Ordos Basin were transported into the peat swamp by palaeocurrent. It was enriched through interaction between organic matter and inorganic matter in specific sedimentary environment and geochemical environment, and formed the present distribution state and enrichment characteristics under the control of multi-stage tectonic evolution.

  • 图  1   研究区位置及鄂尔多斯盆地构造分区(底图引自王双明[17],2017)

    Figure  1.   Location of study area and structure distribution of Ordos Basin (Base image is quoted from WANG Shuangming[17], 2017)

    图  2   工业组分及全硫含量垂向分布

    Figure  2.   Vertical distribution of proximate components and total sulfur content

    图  3   常量元素含量

    Figure  3.   Content of major elements

    图  4   微量元素富集系数

    Figure  4.   Concentration coefficients of trace elements

    图  5   微量元素垂向分布

    注:红色虚线为中国煤中的均值

    Figure  5.   Vertical variations of trace elements

    图  6   部分元素和矿物的相关关系

    Figure  6.   Correlation among selected elements and minerals

    图  7   样品X射线衍射谱图

    Figure  7.   X-ray diffraction pattern of selected samples

    图  8   Al2O3-TiO2二元图解[28]

    Figure  8.   Diagram of Al2O3 versus TiO2[28]

    表  1   煤样工业分析和全硫分析

    Table  1   Proximate analysis and total sulfur content of coal samples

    煤层号样品号工业分析/% 元素分析St,d/%
    MadAdVdaf
    5煤RJZ5-10.63640 1.87
    RJZ5-40.315370.96
    RJZ5-60.632350.53
    RJZ5-70.624353.63
    RJZ5-81.334373.67
    RJZ5-90.917331.01
    RJZ5-100.633360.59
    RJZ5-110.523351.49
    RJZ5-121.620380.91
    RJZ5-130.312330.77
    RJZ5-140.441410.71
    9RJZ9-10.1537 2.14
    RJZ9-22.3494725.16
    RJZ9-30.93382.83
    RJZ9-41.34372.78
    RJZ9-50.23423.15
    RJZ9-61.04443.82
    9煤RJZ9-10.62639 5.25
    RJZ9-20.814413.34
    RJZ9-30.649441.82
    RJZ9-60.738461.93
    RJZ9-71.85383.05
    RJZ9-80.35403.09
    RJZ9-100.846331.08
    RJZ9-110.830311.25
    注:下标ad为空气干燥基;d为干燥基;daf为干燥无灰基;St,d为全硫。
    下载: 导出CSV

    表  2   样品中常量元素氧化物质量分数(全煤基)和烧失量

    Table  2   Mass fraction and Loss on ignition of major element oxides in samples (on whole coal basis) %

    样品质量分数烧失量
    SiO2TiO2Al2O3Fe2O3MnOMgOCaONa2OK2OP2O5
    RJZ5-124.690.8157.482.010.0040.1480.1260.0500.7160.0150.24
    RJZ5-261.790.76216.924.950.0090.4490.0620.1232.3410.0300.20
    RJZ5-343.240.80020.538.050.0050.3930.1540.1621.7630.0380.28
    RJZ5-47.670.1986.470.280.0010.0300.1640.0170.0210.0080.32
    RJZ5-542.201.29436.430.250.0010.0810.0650.1620.1220.0250.10
    RJZ5-616.810.32814.160.170.0010.0640.0740.0380.0930.0240.08
    RJZ5-710.320.2598.784.150.0030.0890.1820.0260.0220.0210.20
    RJZ5-815.220.59113.064.180.0030.1500.2820.0370.0820.0260.28
    RJZ5-97.190.3767.020.500.0030.1480.3230.0370.0140.4100.68
    RJZ5-1016.681.02714.560.320.0010.0630.0730.0360.0920.0340.14
    RJZ5-1110.740.3039.711.390.0020.0670.3150.0320.0210.2220.36
    RJZ5-128.110.2787.150.220.0090.9701.7540.0700.0120.1090.97
    RJZ5-136.050.0915.370.090.0010.0530.1100.0230.0080.0200.50
    RJZ5-1420.600.94318.000.720.0020.0980.1110.0450.1070.0300.22
    RJZ9-顶22.690.36911.1824.000.1220.3392.9250.0961.0560.0730.46
    RJZ9-12.930.2111.400.080.0010.0330.1780.0330.0120.0020.52
    RJZ9-22.010.0951.4445.130.0090.0640.2010.1570.0150.0050.04
    RJZ9-31.110.0310.970.070.0020.1680.3050.1270.0090.0021.34
    RJZ9-41.600.1011.320.130.0030.1540.3100.0730.0060.0021.38
    RJZ9-50.580.0270.550.110.0020.3780.5770.0490.0040.0011.38
    RJZ9-60.330.0120.350.510.0030.5600.8480.0580.0070.0020.70
    RJZ9-底94.290.1192.710.700.0060.0990.0890.0990.5640.0160.11
    RJZ9-顶66.281.24318.761.370.0050.2090.0730.1002.1110.0560.13
    RJZ9-110.460.3247.004.140.0100.8011.1960.0550.3850.0140.88
    RJZ9-27.910.1313.211.040.0030.3020.4350.0800.1510.0061.44
    RJZ9-324.741.01820.980.470.0040.2940.3970.1030.0980.0390.55
    RJZ9-428.320.95024.520.180.0040.3980.5940.1010.0670.0300.57
    RJZ9-543.960.71037.390.070.0020.0830.0750.1250.1160.0170.20
    RJZ9-619.470.29216.740.130.0030.3120.4180.1180.0380.0120.76
    RJZ9-71.740.0321.520.140.0030.3350.5040.1580.0090.0231.68
    RJZ9-81.770.0341.570.340.0040.3290.5240.0940.0060.0290.51
    RJZ9-926.800.65723.244.590.0040.1340.1460.0900.0780.0200.11
    RJZ9-1022.730.65120.570.440.0010.0740.1610.1100.0320.5360.23
    RJZ9-1115.510.34213.500.200.0010.0450.0870.0450.0240.0400.26
    下载: 导出CSV

    表  3   样品中微量元素质量分数(全煤基)

    Table  3   Concentration of trace elements in samples (on whole coal basis) μg/g

    样品 质量分数
    Li Be Sc V Cr Co Ni Cu Zn Ga Rb Sr Y Zr Nb Sn Cs Ba La
    RJZ5-1 48.6 9.5 20.2 57.2 59.8 17.4 29.3 18.7 14.2 37.8 28.4 261.7 31.0 218.5 13.2 4.2 2.4 135.7 23.8
    RJZ5-2 53.0 2.6 11.6 97.7 202.4 29.9 51.2 13.7 59.0 23.9 118.8 68.2 27.8 216.5 16.3 4.0 9.4 336.2 35.5
    RJZ5-3 91.6 3.8 13.3 126.3 162.5 21.7 73.5 21.3 108.6 26.6 92.4 112.4 31.5 246.4 19.6 5.1 8.8 7 148.7 44.0
    RJZ5-4 42.9 7.5 6.6 20 8.0 0.9 3.1 11.5 6.1 14.6 1.0 23 22.8 132.9 6.5 1.0 0.1 50.3 9.2
    RJZ5-5 469.0 3.2 5.4 16.9 6.3 0.4 2.9 5.8 8.7 39.8 6.2 53.5 11.7 154.7 47.4 2.5 0.3 29.2 17.2
    RJZ5-6 123.5 3.5 7.9 26.4 8.3 0.5 3.6 10.2 4.4 21.1 5.6 31 21.9 277.1 15.6 2.8 0.6 27.5 32.0
    RJZ5-7 75.8 3.3 8.3 21.5 66.5 5.2 11.9 18.3 7.2 13.1 1.1 73.2 19.5 145.7 9 1.8 0.1 34.8 12.3
    RJZ5-8 123.4 3.1 9.4 22.4 13.9 9.4 12.4 11.2 7.5 18.8 4.7 45.2 21.7 171.7 20.1 2.4 0.5 21.9 25.2
    RJZ5-9 76.5 2.7 5.3 23.0 6.4 1.3 2.4 8.9 7.2 15.7 0.6 3213 19.7 88.9 7.1 1.1 0 107.4 228.5
    RJZ5-10 157.1 2.3 10 31.3 12.0 0.5 2.8 13.7 6.8 17.8 4.9 60.7 22.4 181.8 24.7 3.4 0.4 32.4 15.7
    RJZ5-11 116.4 1.8 6.5 16.1 30.8 1.4 2.5 11.6 5.4 18.6 1.2 544.9 17.7 134.1 8.6 1.1 0.1 35.0 32.7
    RJZ5-12 84.4 1.4 6.9 26.0 8.4 1.6 2.1 9.0 5.4 16.0 0.5 273.0 23.6 278.6 10.2 1.3 0 50.6 12.1
    RJZ5-13 52.3 1.5 4.9 12.1 4.4 1.1 1.4 8.9 3.7 10.5 0.4 120.7 13.2 71.2 3.6 0.5 0 27.5 13.7
    RJZ5-14 175.5 2.1 6.8 20 13.4 0.9 4.7 10.6 6.9 14.5 5.9 102.1 17.0 208.3 23.9 2.9 0.7 34.0 13.9
    RJZ9-顶 41.4 1.3 4.5 234.9 131.8 13.5 152.3 19.5 154.9 11.7 45.6 319.4 9.9 92.8 7.4 2.2 3.3 135.0 50.5
    RJZ9-1 4.3 4.2 4.5 34.8 16.6 0.6 6.7 15 4.5 8.5 0.5 38.6 8.2 149.9 5.5 0.6 0 22.5 2.9
    RJZ9-2 5.9 1.1 0.9 6.8 481.2 1.3 7.6 7.2 8.2 1.6 1.7 36.2 3.6 20 2.4 0.4 0.1 30.2 6.0
    RJZ9-3 4.4 1.6 1.0 3.2 9.0 0.8 1.1 4.1 2.8 4.4 0.3 51.1 3.5 21.3 1.0 0.4 0 23.3 3.8
    RJZ9-4 6.4 0.7 1.4 8.2 5.6 0.7 1.4 10 2.8 2.6 0.2 59.8 3.6 36.3 1.9 0.3 0 21.2 4.1
    RJZ9-5 9.8 0.4 1.0 2.6 8.4 0.7 1.5 2.2 0.8 1.6 0.1 6.8 2.4 18.5 1.1 0.2 0 3.6 1.6
    RJZ9-6 2.1 0.5 2.5 2.2 5.0 1.3 2.0 4.8 4.1 20.6 0.2 116.9 4.0 6.0 0.4 3.5 0 21.8 0.9
    RJZ9-底 3.5 0.1 0.8 9.4 594 1.7 7.8 3.1 7.8 2.9 13.8 41.9 4.0 102.0 2.4 0.3 0.2 22.8 7.4
    RJZ9-顶 111.9 1.2 9.6 60.5 415.9 15.6 36.6 14.9 85.0 19.5 62.6 154.7 31.7 689.8 26.7 1.9 2.6 429.5 53.3
    RJZ9-1 53.3 1.3 10.8 72.8 53.6 9.7 24.2 12.6 39.5 18.8 11.8 212.2 12.4 220.7 8.6 1.2 0.5 111.3 12.9
    RJZ9-2 18.8 1.2 3.8 10.2 15.4 1.8 4.5 6.1 8.8 13.6 4.3 116.9 10.5 56.4 3.5 1.2 0.2 52.8 8.0
    RJZ9-3 287.6 1.3 13.0 52.9 27.8 1.1 5.8 52.4 7.8 26.7 4.3 131.8 24.2 345.5 31.5 5.1 0.2 73.0 45.8
    RJZ9-4 221.8 1.6 18.7 40.3 19.5 0.6 3.4 33.0 8.7 20.5 3.0 144.5 29.6 261 27.2 5.4 0.2 77.8 35.0
    RJZ9-5 218.3 1.2 6.8 10.5 6.5 0.5 1.6 7.6 7.1 35.4 6.1 40.9 8.0 175.1 34.5 2.7 0.6 52.8 8.0
    RJZ9-6 120.1 1.3 8.2 20.4 6.8 1.9 2.6 13.8 3.8 27.4 1.9 117.4 16.5 370.9 13.7 2.1 0.2 30 8.2
    RJZ9-7 19.1 0.8 1.8 2.9 2.6 0.6 1.1 7.9 2.8 4.0 0.4 158.5 7.0 18.0 0.7 1.0 0 26.2 5.9
    RJZ9-8 4.6 1.5 3.1 9.5 9.5 2.9 5.0 2.1 1.3 4.3 5.1 15.6 4.2 34.3 2.1 0.5 0.4 17.3 2.1
    RJZ9-9 289 1.6 7.4 17.9 81.8 1.3 5.3 10.2 8.7 25.3 3.8 79.5 16.7 177.5 18.5 4.2 0.3 56.6 8.3
    RJZ9-10 347.8 5.4 15.7 21.8 14.3 0.2 1.5 19.5 6.7 16.9 1.6 2 395.2 54.7 240.6 17.8 4.4 0.1 234.1 235.5
    RJZ9-11 227.7 3.1 9.6 12.9 10 0.3 1.7 28.6 6.3 9.5 1.1 164.4 29.9 128.1 9.6 2.3 0.1 60 44.7
    下载: 导出CSV
    续表3
    样品 质量分数
    Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta Tl Pb Th U
    RJZ5-1 40.3 4.5 15.9 3.5 0.6 3.5 0.7 4.6 1.0 3.3 0.5 3.6 0.5 4.8 0.9 1.3 24.3 12.0 3.7
    RJZ5-2 68.3 7.6 25.9 4.8 0.8 3.9 0.7 4.7 0.9 2.8 0.4 2.7 0.4 5.9 1.2 6.4 27.2 11.9 4.0
    RJZ5-3 84.7 9.3 31.7 5.9 1.8 4.9 0.8 5.3 1.1 3.2 0.5 3.2 0.5 6.5 1.3 3.7 68.6 17.2 4.8
    RJZ5-4 22.4 2.8 10.7 2.6 0.4 2.5 0.5 3.2 0.7 2.4 0.4 2.5 0.4 3.5 0.4 0.2 8.7 7.6 1.8
    RJZ5-5 27.6 2.6 7.6 1.3 0.2 1.2 0.3 1.9 0.4 1.1 0.2 1.1 0.2 5.6 1.7 0.1 24.6 12.7 4.9
    RJZ5-6 68.2 7.6 26.5 5.2 0.7 3.8 0.6 3.9 0.7 2.1 0.3 2.0 0.3 8.2 1.6 0.1 33.3 26.9 3.3
    RJZ5-7 26.2 3.1 11.7 2.8 0.5 2.6 0.5 3.4 0.7 2.1 0.3 2.0 0.3 4.2 0.7 2.8 47.3 12.1 3.3
    RJZ5-8 53.0 6.2 21.9 4.4 0.7 3.7 0.6 4.1 0.8 2.4 0.3 2.3 0.3 5.0 1.3 1.1 60.2 18.5 5.5
    RJZ5-9 330.8 31.1 99.6 16.7 2.6 11.3 1.2 4.8 0.7 1.9 0.2 1.6 0.2 2.2 0.4 0.1 10.5 6.9 2.8
    RJZ5-10 38.6 4.8 17.5 3.9 0.7 3.2 0.6 3.9 0.8 2.4 0.4 2.3 0.3 5.0 1.6 0.1 26.3 13.5 6.3
    RJZ5-11 64.6 7.2 25.5 4.6 0.9 3.9 0.6 3.6 0.6 1.7 0.2 1.6 0.2 3.5 0.5 0.4 14.7 8.3 2.9
    RJZ5-12 23.2 2.7 10.2 2.6 0.6 3.3 0.6 4.0 0.8 2.2 0.3 1.8 0.3 7.2 0.5 0.1 15.2 12.0 2.9
    RJZ5-13 23.8 2.6 9.7 2.1 0.4 1.9 0.3 2.2 0.4 1.3 0.2 1.2 0.2 1.8 0.1 0.1 8.4 4.2 1.7
    RJZ5-14 27.7 3.5 13.1 2.6 0.5 2.4 0.5 2.8 0.5 1.7 0.3 1.7 0.2 6.2 1.8 0.3 26.5 23.8 5.0
    RJZ9-顶 105 11.0 35.1 4.8 0.8 2.6 0.4 1.9 0.3 1.1 0.2 1.1 0.2 2.7 0.5 12.0 21.4 9.7 25.2
    RJZ9-1 6.7 0.8 2.9 0.7 0.2 0.8 0.2 1.2 0.3 0.9 0.1 1 0.2 2.3 0.3 0 4.4 3.9 22.0
    RJZ9-2 13.9 1.6 5.7 1.1 0.2 0.9 0.1 0.6 0.1 0.3 0 0.3 0 0.5 0.3 0.5 2.7 5.2 2.8
    RJZ9-3 8.0 0.9 3.2 0.6 0.1 0.5 0.1 0.5 0.1 0.3 0 0.3 0 0.6 0 0 1.6 0.6 0.5
    RJZ9-4 8.4 1.0 3.5 0.7 0.1 0.6 0.1 0.6 0.1 0.4 0.1 0.3 0 0.9 0.1 0 3.1 2.2 0.8
    RJZ9-5 3.3 0.4 1.5 0.4 0.1 0.3 0.1 0.4 0.1 0.3 0 0.3 0 0.5 0.1 0.4 6.0 1.6 0.4
    RJZ9-6 2.0 0.3 1.1 0.3 0.1 0.4 0.1 0.7 0.1 0.4 0.1 0.3 0 0.1 0 0 0.2 0.3 0.3
    RJZ9-底 14.1 1.6 5.8 1.1 0.2 0.9 0.1 0.7 0.2 0.4 0.1 0.5 0.1 2.7 0.2 0.1 4.7 2.1 0.7
    RJZ9-顶 101.9 12.4 44.0 7.6 1.3 5.8 0.9 5.4 1.0 3.3 0.5 3.3 0.5 18.1 1.7 0.5 21.1 16.9 7.5
    RJZ9-1 25.9 3.1 11.7 2.4 0.5 2.2 0.4 2.3 0.5 1.4 0.2 1.2 0.2 5.2 0.4 0.5 8.3 6.3 18.2
    RJZ9-2 16.4 2.0 7.3 1.5 0.3 1.5 0.3 1.6 0.3 1.0 0.1 0.9 0.1 1.6 0.3 0.1 5.1 3.8 1.6
    RJZ9-3 93.1 10.4 35.7 6.7 1.2 5.6 1.0 5.6 1.0 2.7 0.4 2.5 0.4 9.6 2.4 0.1 50 38.7 12.8
    RJZ9-4 81.8 9.6 33.9 7.2 1.3 6.1 1.1 6.8 1.2 3.4 0.5 3.1 0.4 9.2 2.2 0.1 76.7 53.8 11.3
    RJZ9-5 17.5 1.8 6.3 1.3 0.2 1.2 0.2 1.5 0.3 0.8 0.1 0.8 0.1 6.8 2.3 0.1 22.8 17.2 7.3
    RJZ9-6 19.4 2.4 9.3 2.3 0.4 2.3 0.5 3.2 0.6 1.8 0.3 1.7 0.3 9.4 1.1 0.1 35.5 19.8 10.6
    RJZ9-7 13.2 1.6 6.3 1.3 0.2 1.2 0.2 1.2 0.2 0.7 0.1 0.7 0.1 0.5 0.1 0 2.1 1.5 0.5
    RJZ9-8 3.9 0.4 1.6 0.3 0.1 0.4 0.1 0.6 0.1 0.5 0.1 0.5 0.1 0.7 0.1 0.4 3.3 1.8 0.5
    RJZ9-9 18.8 2.2 8.5 2.1 0.4 2.2 0.5 2.9 0.6 1.6 0.3 1.5 0.2 6.0 1.5 0.6 42.2 19.5 5.5
    RJZ9-10 366.2 35.7 115 21.0 3.4 16.1 2.3 12.0 2.0 5.4 0.7 4.1 0.6 7.2 1.3 0.1 39.7 27.2 5.3
    RJZ9-11 79.2 8.2 27.3 5.1 0.9 4.5 0.8 5.1 1.0 2.9 0.4 2.3 0.3 3.8 0.9 0.1 34.8 17.1 3.6
    下载: 导出CSV

    表  4   煤中微量元素富集程度统计

    Table  4   Enrichment degree of trace elements in coal

    煤层高度富集富集轻度富集正常范围亏损
    5Li、BaRb、ZrBe、Sc、V、Cr、Ni、Zn、Ga、Sr、
    Y、Nb、Sn、Cs、La、Ce、Pr、Nd、
    Sm、Er、Yb、Hf、Ta、Pb、Th
    Co、Cu、Eu、Gd、Tb、Dy、Ho、Tm、Lu、Tl、U
    9CrTl、ULi、Zr、Hf、Th、Sc、Ga、Sr、Y、Nb、
    Sn、La、Ce、Pr、Nd、Sm、Er、Ta、
    Pb、Be、V、Co、Ni、Cu、Zn、Rb、Yb
    Cs、Ba、Eu、Gd、Tb、
    Dy、Ho、Tm、Lu
    9LiZr、Hf、
    Th
    Sc、Cr、Ga、Sr、Y、Nb、Sn、La、
    Ce、 Pr、Nd、Sm、Tb、Er、Ta、Pb、U
    Be、V、Co、Ni、Cu、Zn、Rb、Ba、Eu、
    Gd、Dy、Ho、Tm、Yb、Lu
    Cs、Tl
    下载: 导出CSV
  • [1] 宁树正, 邓小利, 李聪聪, 等. 中国煤中金属元素矿产资源[M]. 北京: 科学出版社, 2019.
    [2] 宁树正,邓小利,李聪聪,等. 中国煤中金属元素矿产资源研究现状与展望[J]. 煤炭学报,2017,42(9):2214−2225. doi: 10.13225/j.cnki.jccs.2017.0683

    NING Shuzheng,DENG Xiaoli,LI Congcong,et al. Research status and prospect of metal element mineral resources in China[J]. Journal of China Coal Society,2017,42(9):2214−2225. doi: 10.13225/j.cnki.jccs.2017.0683

    [3] 代世峰,赵 蕾,魏 强,等. 中国煤系中关键金属资源: 富集类型与分布[J]. 科学通报,2020,65:3715−3729.

    DAI Shifeng,ZHAO Lei,WEI Qiang,et al. Resources of critical metals in coal-bearing sequences in China: Enrichment types and distribution (in Chinese)[J]. Chin Sci Bull,2020,65:3715−3729.

    [4] 魏 强,代世峰. 中国煤型锗矿床中的关键金属和有害元素: 赋存特征与富集成因[J]. 煤炭学报,2020,45(1):296−303.

    WEI Qiang,DAI Shifeng. Critical metals and hazardous elements in the coal-hosted germanium ore deposits of China: Occurrence characteristics and enrichment causes[J]. Journal of China Coal Society,2020,45(1):296−303.

    [5] 代世峰,刘池洋,赵 蕾,等. 煤系中战略性金属矿产资源: 意义和挑战[J]. 煤炭学报,2022,47(5):1743−1749.

    DAI Shifeng,LIU Chiyang,ZHAO Lei,et al. Strategic metal resources in coal-bearing strata: Significance and challenges[J]. Journal of China Coal Society,2022,47(5):1743−1749.

    [6] 李 晶,王 园,袁 伟,等. 陕西典型矿区煤系关键金属元素富集特征及其成因机制[J]. 煤炭学报,2022,47(5):1808−1821. doi: 10.13225/j.cnki.jccs.mj22.0225

    LI Jing,WANG Yuan,YUAN Wei,et al. Enrichment characteristics and mechanism of critical metal elements enriched in coals from typical coalfields in Shaanxi Province[J]. Journal of China Coal Society,2022,47(5):1808−1821. doi: 10.13225/j.cnki.jccs.mj22.0225

    [7] 赵存良. 鄂尔多斯盆地与煤伴生多金属元素的分布规律和富集机理[D]. 北京: 中国矿业大学(北京), 2015.

    ZHAO Cunliang. Distribution and enrichment mechanism of multi-metallic elements associated with coal in Ordos Basin [D]. Beijing: China University of Mining & Technology-Beijing, 2015.

    [8] 秦国红,邓丽君,刘 亢,等. 鄂尔多斯盆地西缘煤中稀土元素特征[J]. 煤田地质与勘探,2016,44(6):8−14. doi: 10.3969/j.issn.1001-1986.2016.06.002

    QIN Guohong,DENG Lijun,LIU Kang,et al. Characteristic of rare earth elements in coal in western margin of Ordos basin[J]. Coal Geology & Exploration,2016,44(6):8−14. doi: 10.3969/j.issn.1001-1986.2016.06.002

    [9] 秦国红. 鄂尔多斯盆地晚古生代煤中微量元素富集特征与成因类型[D]. 北京: 中国矿业大学(北京), 2020.

    QIN Guohong. Enrichment characteristics and genetic types of trace elements in the Late Paleozoic Coal from Ordos Basin[D]. Beijing: China University of Mining & Technology-Beijing, 2020.

    [10] 石志祥,马家亮,高 政,等. 宁东煤田中部侏罗纪煤的矿物学特征[J]. 煤炭学报,2017,42(6):1535−1543.

    SHI Zhixiang,MA Jialiang,GAO Zheng,et al. Mineralogical of the Jurassic coals in the middle of Ningdong Coalfield[J]. Journal of China Coal Society,2017,42(6):1535−1543.

    [11] 曹代勇, 魏迎春, 等. 鄂尔多斯盆地煤系矿产赋存规律与资源评价[M]. 北京: 科学出版社, 2019.
    [12] 吴 蒙,秦云虎,王晓青,等. 宁东地区晚古生代煤中硫的地化特征及其对有害元素富集的影响[J]. 煤炭学报,2020,45(S2):932−942.

    WU Meng,QIN Yunhu,WANG Xiaoqing,et al. Geochemical characteristics of sulfur and its impact on accumulation of hazardous trace elements in late Paleozoic coal from Ningdong area[J]. Journal of China Coal Society,2020,45(S2):932−942.

    [13] 吴 亮,何 伟. 宁夏宁东煤田灵武矿区煤中砷含量及赋存形态探讨[J]. 煤炭与化工,2021,44(4):57−60,117.

    WU Liang,HE Wei. Discussion on arsenic content and occurrence form in Ningdong coalfield in Ningxia[J]. Coal and Chemical Industry,2021,44(4):57−60,117.

    [14] 何 伟,吴 亮,魏向成,等. 宁东煤田中侏罗统延安组稀有稀散稀土元素地球化学特征及其对沉积环境的指示意义[J]. 岩矿测试,2022,41(6):962−977.

    HE Wei,WU Liang,WEI Xiangcheng,et al. Geochemical characteristics of three kinds of rare elements in middle jurassic yan’an formation of ningdong coalfield and their indicative significance to sedimentary environment[J]. Rockand Mineral Analysis,2022,41(6):962−977.

    [15] 刘 亢. 鄂尔多斯盆地西缘煤系矿产资源共生组合特征研究[D]. 北京: 中国矿业大学(北京), 2016.

    LIU Kang. Combination characters of coal series mineral resources in the west margin of ordos basin[D]. Beijing: China University of Mining & Technology-Beijing, 2016.

    [16] GB/T 482—2008, 煤层煤样采取方法[S].
    [17] 王双明. 鄂尔多斯盆地叠合演化及构造对成煤作用的控制[J]. 地学前缘, 2017, 24(2): 54-63.

    WANG Shuangming. Ordos Basin superposed evolution and structural controls of coal forming activities. Earth Science Frontiers, 2017, 24(2): 54-63.

    [18] GB/T212—2008, 煤的工业分析方法[S].
    [19] GB/T214—2007, 煤中全硫的测定方法[S].
    [20]

    QUEROL X,WHATELEY M K G,FERNANDEZ-TURIEL L,et al. Geological controls on the mineralogy and geochemistry of the Bey pazari lignite, central Anatolia, Turkey[J]. International Journal of Coal Geology,1997,33(3):255−271. doi: 10.1016/S0166-5162(96)00044-4

    [21]

    DAI S, SEREDIN V V, WARD C R, et al. Enrichment of U-Se-Mo - Re - V in coals preserved within marine carbonate successions: geochemical and mineralogical data from the Late Permian Guiding coalfield, Guizhou, China[J]. Mineralium Deposita, 2015, 50(2): 159-186.

    [22]

    KETRIS M P,YUDOVICH Y E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology,2009,78(2):135−148. doi: 10.1016/j.coal.2009.01.002

    [23] 宁树正, 朱士飞, 曹代勇, 等. 2017. 含煤岩系矿产综合勘查评价研究(2015-2016年度)[R]. 北京: 中国煤炭地质总局.
    [24] 代世峰,任徳贻,周义平等. 煤型稀有金属矿床: 成因类型、赋存状态和利用评价[J]. 煤炭学报,2014,39(8):1707−1715.

    DAI Shifeng,REN Deyi,ZHOU Yiping,et al. Coal-hosted rare metal deposits: Genetic types, modes of occurrence, and utilization evaluation[J]. Journal of China Coal Society,2014,39(8):1707−1715.

    [25] 熊 科, 何田田. 2019. 宁夏宁鲁煤电有限责任公司任家庄煤矿九号煤煤质补充勘探报告[R]. 保定: 中国煤炭地质总局一七三勘探队.
    [26] 田和明,代世峰,李大华,等. 重庆南川晚二叠世凝灰岩的元素地球化学特征[J]. 地质论评,2014,60(1):169−177. doi: 10.16509/j.georeview.2014.01.019

    TIAN Heming,DAI Shifeng,LI Dahua,et al. Geochemical Features of the Late Permian Tuff in Nanchuan District, Chongqing, Southwestern China[J]. Geological Review,2014,60(1):169−177. doi: 10.16509/j.georeview.2014.01.019

    [27] 陈全红,李文厚,胡孝林,等. 鄂尔多斯盆地晚古生代沉积岩源区构造背景及物源分析[J]. 地质学报,2012,86(7):1150−1162. doi: 10.3969/j.issn.0001-5717.2012.07.011

    CHEN Quanhong,LI Wenhou,HU Xiaolin,et al. Tectonic setting and provenance analysis of late paleozoic sedimentary rocks in the Ordos Basin[J]. Acta Geologica Sinica,2012,86(7):1150−1162. doi: 10.3969/j.issn.0001-5717.2012.07.011

    [28]

    WINCHESTER J A,FLOYD P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology,1977,20:325−343. doi: 10.1016/0009-2541(77)90057-2

    [29] 曹代勇,徐 浩,刘 亢,等. 鄂尔多斯盆地西缘煤田构造演化及其控制因素[J]. 地质科学,2015,50(2):410−427. doi: 10.3969/j.issn.0563-5020.2015.02.005

    CAO Daiyong,XU Hao,LIU Kang,et al. Coalfield tectonic evolution and its controlling factors at the western margin of Ordos Basin[J]. Chinese Journal of Geology,2015,50(2):410−427. doi: 10.3969/j.issn.0563-5020.2015.02.005

    [30] 李 俊, 赵红格, 汪 建, 等. 鄂尔多斯盆地西缘中部三叠系延长组碎屑岩沉积环境及物源示踪[J/OL]. 沉积学报, 1−23[2023-02-14]. https://doi.org/10.14027/j.issn.1000-0550.2022.120.

    LI Jun, ZHAO Hongge, WANG Jian, et al. Sedimentary Environment and Provenance Tracing of Clastic Rocks from the Triassic Yanchang Formation in the Western Margin of the Ordos Basin[J/OL]. Acta Sedimentologica Sinica, 1−23[2023-02-14]

  • 期刊类型引用(6)

    1. 周仙丽,王家乐,李杰. 矸石粉基胶结充填材料析水特性试验研究. 煤矿安全. 2024(04): 164-168 . 百度学术
    2. 李晓磊,杜献杰,冯国瑞,巨峰,王建伟,刘文昊,郑远翔. 水泥–粉煤灰基矸石胶结充填体破坏特征及强度形成机制. 煤炭科学技术. 2024(05): 36-45 . 本站查看
    3. 曹兰柱,胡亚涛,姜聚宇,蔡明祥,李磊. 端帮充填开采支撑煤柱参数设计方法. 安全与环境学报. 2024(08): 2987-2993 . 百度学术
    4. 陈兵,刘忠平,高亮,张哲鹏,翟迪. 充填体破坏特征的聚类分析及数值模拟. 矿业安全与环保. 2024(04): 117-126 . 百度学术
    5. 赵茂平,武竹. 沟谷山地区粉煤灰基质自流充填减沉技术与工程实践. 煤炭科学技术. 2024(11): 309-322 . 本站查看
    6. 吕文玉,李世杰,伍永平,解盘石,谭毅,吴昀潞. “膏体-矸石”复合承载结构的力学特性试验研究. 采矿与岩层控制工程学报. 2023(05): 47-53 . 百度学术

    其他类型引用(4)

图(8)  /  表(5)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  11
  • PDF下载量:  42
  • 被引次数: 10
出版历程
  • 收稿日期:  2023-02-13
  • 网络出版日期:  2023-10-30
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回