Research and application of heap spraying technology based on safe and high-efficiency supporting structure
-
摘要:
针对煤矿井下作业环境的特殊性和现有支护技术的不足,提出了堆喷技术,确定了工艺参数,研发了堆喷外加剂(S2),揭示了S2强化堆喷料性能的作用机理,形成了一套完整的堆喷构筑矿用支护结构体的工艺方法,并应用于沿空留巷等工程实践。结果表明:①堆喷技术可以根据需要构筑支护结构体,不受空间断面限制,操作工远离危险区,安全高效控制围岩;②堆喷料潮拌及输料管路分段加水工艺,提前湿润物料,可以促进堆喷料水化作用、增强粘附性及和易性、降低粉尘和回弹率;③S2的促凝组分包括NaAlO2、Al2(SO4)3、NaF、Al(OH)3和快硬硫铝酸盐水泥(SAC-42.5),增粘抗裂组分为硅灰(GS)、聚丙烯纤维(JB),提高了支护结构材料的凝结速度和抗压强度,且具有微膨胀特性;④现场堆喷标准试件的单轴抗压强度测试结果为1天12.0 MPa,3天18.1 MPa,7天27.5 MPa,28天42.1 MPa,90天42.3 MPa,具有高强承载能力,且后期强度不倒缩,强度增长过程分为三个阶段:初期快速增长阶段(龄期0~14 d)、中期持续增长阶段(龄期14~28 d)、后期稳定阶段(龄期>28 d);⑤堆喷技术构筑巷旁隔离墙实现沿空留巷,拓展了矿用支护结构体的高效施工方法。
Abstract:Aiming at the special characteristics of underground coal mine operation environment and the deficiency of existing support technology, heap spraying technology was proposed, technological parameters were determined, heap spraying admixture (S2) was developed, the mechanism of S2 was revealed, and a complete set of heap spraying construction technology was formed and applied to gob-side entry retaining. The results show that: ① Heap spraying technology can be used to construct the supporting structure according to need, which is not restricted by operating space and the operator is far away from the danger zone, so that the surrounding rock can be controlled safely and efficiently. ② Heap spraying material tide mixing and conveying pipeline segmentation with water process, wetting materials in advance, can promote material hydration, enhance adhesion and workability, reduce dust and rebound rate. ③ The accelerating components of S2 include NaAlO2, Al2(SO4)3, NaF, Al(OH)3 and fast-hardening sulfoaluminate cement (SAC-42.5), and the viscosifying and anti-cracking components are silica fume (GS), polymer propylene fiber (JB), S2 improves the compressive strength of the supportintg structure material and has micro-expansion properties. ④ Uniaxial compressive strength of the standard specimens molded by heap spraying is 12.0 MPa at 1 d, 18.0 MPa at 3 d, 27.5 MPa at 7 d, 42.1 MPa at 28 d and 42.3 MPa at 90 d, with high strength supporting capacity, and late strength does not shrink, the strength growth process is divided into three stages: the initial rapid growth stage (age 0−14 d), the medium sustained growth stage (age 14−28 d), and the later stable stage (age>28 d). ⑤Heap spraying technology can build the isolation wall along roadway to realize gob-side entry retaining, having a positive effect on expanding the construction method of supporting structure.
-
-
表 1 堆喷料各组分的作用及参数
Table 1 Function and parameters of each component of heap spraying material
组分 材料 材料参数 功能 堆喷主料 水泥(P·O 42.5) 425号普通硅酸盐水泥 胶凝材料 砂 细度模数为2.6~3.0的天然砂 细骨料 石子 粒径为5~10 mm的碎石 粗骨料 堆喷辅料 堆喷外加剂(S2) 无机多功能复合料 支护结构材料制备的关键掺料 水 洁净且pH值为6~8 拌和作用 表 2 堆喷外加剂原材料的化学成分
Table 2 Chemical composition of raw materials
材料 化学成分质量占比/% SiO2 Al2O3 Fe2O3 CaO MgO SO3 TiO2 Loss SAC-42.5 8.72 34.13 2.31 39.86 1.42 7.11 6.15 0.30 硅灰(GS) 7.65 52.17 2.38 36.15 1.59 0.04 — 0.02 石膏(G) 0.36 0.03 0.05 41.60 0.05 52.08 — 5.83 表 3 堆喷外加剂(S2)的配方
Table 3 Composition of heap spraying admixture (S2)
S2 所用原材料质量/(kg·t−1) GS SAC-42.5 G SM Al(OH)3 Al2(SO4)3 NaF MV JB JS S2-1 130 230 70 501 25 20 3 2 14 5 S2-2 140 220 80 489 30 18 2 2 14 5 S2-3 150 210 90 477 35 16 1 2 14 5 S2-4 160 200 100 464 40 14 1 2 14 5 S2-5 170 190 110 451 45 12 1 2 14 5 颗粒间接触模量/GPa 1.0 黏结刚度比 1.5 颗粒间摩擦因数 0.5 平行黏结模量/GPa 0.5 平行黏结刚度比 1.5 黏聚力/MPa 20 抗拉强度/MPa 20 内摩擦角/(°) 45 -
[1] 2021煤炭行业发展年度报告[R]. 北京:中国煤炭工业协会,2022. [2] 黄炳香,张 农,靖洪文,等. 深井采动巷道围岩流变和结构失稳大变形理论[J]. 煤炭学报,2020,45(3):911−926. HUANG Bingxiang,ZHANG Nong,JING Hongwen, et al. Large deformation theory of rheology and structural instability of the surrounding rock in deep mining roadway[J]. Journal of China Coal Society,2020,45(3):911−926.
[3] 白锦文,崔博强,戚庭野,等. 关键柱柱旁充填岩层控制基础理论[J]. 煤炭学报,2021,46(2):424−438. BAI Jinwen,CUI Boqiang,QI Tingye, et al. Fundamental theory for rock strata control of key pillar-side backfilling[J]. Journal of China Coal Society,2021,46(2):424−438.
[4] 韩昌良,张 农,王晓卿,等. 沿空留巷砌块式墙体结构承载特性及应用研究[J]. 采矿与安全工程学报,2013,30(5):673−678,685. HANG Changliang,ZHANG Nong,WANG Xiaoqing, et al. Bearing behavior of lock wall structure in gob-side entry retaining and its application[J]. Journal of Mining & Safety Engineering,2013,30(5):673−678,685.
[5] 康红普,张 晓,王东攀,等. 无煤柱开采围岩控制技术及应用[J]. 煤炭学报,2022,47(1):16−44. KANG Hongpu,ZHANG Xiao,WANG Dongpan, et al. Strata control technology and applications of non-pillar coal mining[J]. Journal of China Coal Society,2022,47(1):16−44.
[6] 姚直书,赵丽霞,程 桦,等. 深厚表土层冻结井筒高强钢筋混凝土内壁设计优化与实测分析[J]. 煤炭学报,2019,44(7):2125−2132. YAO Zhishu,ZHAO Lixia,CHENG Hua, et al. Research and application of high strength steel fiber concrete compound shaft lining with inner steel plate in deep alluvium shaft repair[J]. Journal of China Coal Society,2019,44(7):2125−2132.
[7] 程 桦,张 楠,姚直书,等. 厚表土井筒修复内套钢板混凝土井壁技术研究[J]. 煤炭科学技术,2019,47(6):58−65. CHENG Hua,ZHANG Nan,YAO Zhishu, et al. Study on the technology of inner steel plate concrete shaft lining for thick topsoil wellbore repair[J]. Coal Science and Technology,2019,47(6):58−65.
[8] 唐建新,胡 海,涂兴东,等. 普通混凝土巷旁充填沿空留巷试验[J]. 煤炭学报,2010,35(9):1425−1429. TANG Jianxin,HU Hai,TU Xingdong, et al. Experimental on roadside packing gob-side entry retaining for ordinary concrete[J]. Journal of China Coal Society,2010,35(9):1425−1429.
[9] DIMITRI Feys,GEERT De Schutter,KAMAL H. Khayat, et al. Changes in rheology of self-consolidating concrete induced by pumping[J]. Materials and Structures,2016,49:4657−4677. doi: 10.1617/s11527-016-0815-7
[10] 马广兴. 柔模混凝土沿空留巷和切顶卸压沿空留巷对比分析[J]. 能源与环保,2018,40(10):185−189. MA Guangxing. Comparing analysis on gob-side entry retaining for flexible concrete and gob-side entry retaining with roof cutting and pressure releasing[J]. China Energy and Environmental Protection,2018,40(10):185−189.
[11] ZHANG Feiteng,WANG Xiangyu,BAI Jianbiao, et al. Post-peak mechanical characteristics of the high-water material for backfilling the gob-side entry retaining:from experiment to field application[J]. Arabian Journal of Geosciences,2020,386(13):1−13.
[12] 熊祖强,刘旭锋,王 成,等. 高水巷旁充填材料单轴压缩变形破坏与能耗特征分析[J]. 中国安全生产科学技术,2017,13(1):65−70. XIONG Zuqiang,LIU Xufeng,WANG Cheng, et al. Analysis on deformation failure and energy consumption characteristics of high-water roadside filling materials under uniaxial compression[J]. Journal of Safety Science and Technology,2017,13(1):65−70.
[13] 李西凡,熊祖强,王 鹏. 高水巷旁充填材料力学性能改进试验研究[J]. 中国安全科学学报,2020,30(5):95−100. LI Xifan,XIONG Zuqiang,WANG Peng. Experimental study on improvement of mechanical properties of high-water filling materials in gob-side entry retaining[J]. China Safety Science Journal,2020,30(5):95−100.
[14] 任兴云,郝兵元,王宏伟. 矩形巷道顶板锚索布置参数优化研究与实践[J]. 中南大学学报(自然科学版),2021,52(9):3322−3330. REN Xingyun,HAO Bingyuan,WANG Hongwei. Research and practice on optimization of the layout parameters of roof cable in rectangular roadway[J]. Journal of Central South University (Science and Technology),2021,52(9):3322−3330.
[15] 郝兵元,任兴云,李铁良,等. 一种用于煤矿井下的堆喷混凝土快速筑墙方法[P]. 中国:ZL 201810566315.0,20181116. [16] 喷射混凝土材料与工程技术及应用-喷射混凝土材料与工程技术分会2020年度行业发展报告(摘编)[J]. 混凝土世界,2021(12):24−29. [17] 康红普. 煤矿巷道支护与加固材料的发展及展望[J]. 煤炭科学技术,2021,49(4):1−11. KANG Hongpu. Development and prospects of support and reinforcement materials for coal mine roadways[J]. Coal Science and Technology,2021,49(4):1−11.
[18] 白金超,成云海,郑强强,等. 干、湿喷混凝土受载力学特性及破坏机制[J]. 煤炭学报,2020,45(8):2777−2786. BAI Jinchao,CHENG Yunhai,ZHENG Qiangqiang, et al. Mechanical characteristics and failure mechanism of dry and wet shotcrete under loading[J]. Journal of China Coal Society,2020,45(8):2777−2786.
[19] 王家滨,牛荻涛,张永利. 喷射混凝土力学性能、渗透性及耐久性试验研究[J]. 土木工程学报,2016,49(5):96−109. WANG Jiabin,NIU Ditao,ZHANG Yongli. Investigation of mechanical,permeability and durability performance of shotcrete with and without steel fiber[J]. China Civil Engineering Journal,2016,49(5):96−109.
[20] 张荣立,何国纬,李 铎. 采矿工程设计手册[M]. 背景:煤炭工业出版社,2010. [21] CHEN Lianjun,LI Pengcheng,LIU Guoming, et al. Development of cement dust suppression technology during shotcrete in mine of China-A review[J]. Journal of Loss Prevention in the Process Industries,2018,55:232−242. doi: 10.1016/j.jlp.2018.07.001
[22] LINDEMANN H,GERBERS R,IBRAHIM S, et al. Development of a shotcrete 3D-Printing (SC3DP) technology for additive manufacturing of reinforced freeform concrete structures[J]. International Union of Laboratories and Experts in Construction Materials,2019,19:287−298.
[23] 宁逢伟,蔡跃波,白 银,等. 湿喷混凝土射流密实过程研究进展[J]. 人民长江,2021,52(10):208−213. NING Fengwei,CAI Yuebo,BAI Yin, et al. Research progress of compaction process of wet-sprayshotcrete jet flow[J]. Yangtze River,2021,52(10):208−213.
[24] 颜永弟. 喷射混凝土最佳喷速及一次喷层厚度的理论解[J]. 岩土工程学报,1998,20(4):105−108. YAN Yongdi. Theoretical solution of optimum jet velocity and layer thickness of once gunited concrete[J]. Chinese Journal of Geotechnical Engineering,1998,20(4):105−108.
[25] 中华人民共和国建设部. 普通混凝土力学性能试验方法标准:GB/T 50081-2002[S]. 北京:中国建筑工业出版社,2002. [26] 中华人民共和国建设部. 混凝土外加剂应用技术规范:GB 50119-2013[S]. 北京:中国建筑工业出版社,2013. [27] KAREN L Scrivener,PATRICK Juilland,PAULO J M Monteiro. Advances in understanding hydration of Portland cement[J]. Cement and Concrete Research,2015,04982:1−19.
[28] Sara Bahafifid,Siavash Ghabezloo,Myriam Duc, et al. Effect of the hydration temperature on the microstructure of Class G cement:C-S-H composition and density[J]. Cement and Concrete Research,2017,95:270−281. doi: 10.1016/j.cemconres.2017.02.008
[29] 李学彬,曲广龙,杨春满,等. 弱胶结巷道新型聚合物喷层材料及其喷射支护技术研究[J]. 采矿与安全工程学报,2019,36(1):95−102. LI Xuebin,QU Guanglong,YANG Chunman, et al. Study on new polymer spray-layer material and its spray support technology for weakly cemented rock roadway[J]. Journal of Mining & Safety Engineering,2019,36(1):95−102.
[30] 中华人民共和国住房和城乡建设部. 混凝土强度检验评定标准:GB/T 50107-2010[S]. 北京:中国建筑工业出版社,2010. [31] 中华人民共和国住房和城乡建设部. 喷射混凝土应用技术规程:JGJ/T 372-2016[S]. 北京:中国建筑工业出版社,2016. [32] 王方田,尚俊剑,赵 宾,等. 切顶卸压沿空留巷围岩结构特征及锚索强化支护技术[J]. 岩石力学与工程学报,2021,40(11):2296−2305. WANG Fangtian,SHANG Junjian,ZHAO Bin, et al. Surrounding rock structural characteristics and anchor-cable strengthened support technology of the gob-side entry retaining with roof cutting and pressure releasing[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(11):2296−2305.
[33] 郝兵元,任兴云,李宪军,等. 一种综采放顶煤工作面堆喷混凝土沿空留巷方法[P]. 中国:ZL202111115809.5,20211130. [34] 谢生荣,张 晴,陈冬冬,等. 沿空留巷顶板非对称锚固深梁承载结构模型研究及应用[J]. 采矿与安全工程学报,2020,37(2):298−310. XIE Shengrong,ZHANG Qing,CHEN Dongdong, et al. Research and application of asymmetric anchorage deep beam bearing structure model in gob-side entry retaining roof[J]. Journal of Mining & Safety Engineering,2020,37(2):298−310.
[35] DU Zhaowen,CHEN Shaojie,MA Junbiao, et al. Gob-Side Entry retaining involving bag filling material for support wall construction[J]. Sustainability,2020,12:6353. doi: 10.3390/su12166353
-
期刊类型引用(12)
1. 李晓涛. 煤矿液压支架顶梁的耐久性分析及结构优化. 自动化应用. 2025(01): 83-85 . 百度学术
2. 袁成健,田莹,贾安昊,范春永,周锋. 爆炸载荷作用下纯水支架稳定性仿真研究. 煤矿机械. 2025(03): 202-207 . 百度学术
3. 杜锦丰,张永辉,侯宇栋,白焱镖. 煤矿综采工作面液压支架研究综述. 内蒙古煤炭经济. 2025(01): 5-8 . 百度学术
4. 康健,张博成,杨逾. 基于贝叶斯-响应面法的煤矿开挖过程中不同含水状态岩体力学参数分析. 河南科学. 2024(03): 313-320 . 百度学术
5. 伍永平,杜玉乾,解盘石,王红伟,胡博胜,闫壮壮,王同,胡涛. 大倾角煤层伪俯斜工作面平行四边形液压支架结构设计与运动响应. 煤炭科学技术. 2024(04): 314-325 . 本站查看
6. 郭涛. 基于模拟仿真的煤矿液压支架结构优化改进研究. 自动化应用. 2024(16): 193-195 . 百度学术
7. 柴蓉霞,姜潇远,王秦生,于正洋,龙雪,刘军. 基于能量分配原理的煤矿机械冲击行为研究及装置设计. 中国机械工程. 2024(09): 1584-1596 . 百度学术
8. 曾庆良,班新亮,孟昭胜,万丽荣,雷小万. 基于Unity3D的工作面液压支架群组空间支护姿态数字孪生重构方法. 煤炭科学技术. 2024(11): 74-88 . 本站查看
9. 史艳兵. ZY9000/45/22D型液压支架顶梁结构优化研究. 机械管理开发. 2024(12): 160-162 . 百度学术
10. 卢璐凯,孟昭胜,雷小万,胡雨龙. 掘进临时支护支架设计及静载特性分析. 煤炭工程. 2024(12): 213-219 . 百度学术
11. 牛飞,牛进忠. 考虑疲劳寿命的液压支架掩护梁结构优化改进研究. 自动化应用. 2023(16): 190-192 . 百度学术
12. 刘世明. 大采高液压支架掩护梁的模拟仿真与结构改进. 自动化应用. 2023(20): 176-178 . 百度学术
其他类型引用(2)