高级检索

沟谷区多煤层开采覆岩破坏及径流水害防治研究

刘一龙, 杨天鸿, 马凯, 叶强, 赵永, 赵乾百

刘一龙,杨天鸿,马 凯,等. 沟谷区多煤层开采覆岩破坏及径流水害防治研究[J]. 煤炭科学技术,2023,51(7):243−254. DOI: 10.13199/j.cnki.cst.2023-0353
引用本文: 刘一龙,杨天鸿,马 凯,等. 沟谷区多煤层开采覆岩破坏及径流水害防治研究[J]. 煤炭科学技术,2023,51(7):243−254. DOI: 10.13199/j.cnki.cst.2023-0353
LIU Yilong,YANG Tianhong,MA Kai,et al. Study on overburden damage and prevention of runoff disaster in multiseam mining of gully region[J]. Coal Science and Technology,2023,51(7):243−254. DOI: 10.13199/j.cnki.cst.2023-0353
Citation: LIU Yilong,YANG Tianhong,MA Kai,et al. Study on overburden damage and prevention of runoff disaster in multiseam mining of gully region[J]. Coal Science and Technology,2023,51(7):243−254. DOI: 10.13199/j.cnki.cst.2023-0353

沟谷区多煤层开采覆岩破坏及径流水害防治研究

基金项目: 

国家自然科学基金联合基金重点资助项目(U1710253,U1903216);国家自然科学基金资助项目(52004052)

详细信息
    作者简介:

    刘一龙: (1993—),男,黑龙江绥化人,博士研究生。E-mail:liuyilong913@163.com

    通讯作者:

    杨天鸿: (1968—),男,辽宁抚顺人,教授,博士生导师。E-mail:yang_tianhong@126.com

  • 中图分类号: TD327

Study on overburden damage and prevention of runoff disaster in multiseam mining of gully region

Funds: 

Joint Funds of the National Natural Science Foundation of China(U1710253, U1903216); National Natural Science Foundation of China (52004052)

  • 摘要:

    沟谷地形下多煤层开采带来了严重且复杂的“裂隙发育—山体滑坡—河道堵塞—涌水加剧”链式灾害。探究沟谷地形与煤层重复采动耦合作用下的覆岩破坏特征与规律是滑坡、涌水灾害防治的关键。以西曲矿沟谷地形下多煤层开采为研究对象,综合采用集地表勘察、InSAR动态观测、降雨-径流分析和数值模拟为一体的“覆岩移动−地表变形−径流积水”分析方法,分析了沟谷区多煤层下行开采引发覆岩破坏与地表沉降的空间扩展全过程。结果表明:沟谷区下组煤充分采动后,煤层间关键层以下岩层移动范围无明显外扩特征,竖向裂隙发育,以张拉开裂为主。关键层上方岩层剪切裂隙占比明显增加,采动沉降效应与重力作用下的沟谷坡体易产生剪切滑移,甚至发生坡体下行裂隙与覆岩上行裂隙的贯通现象。重复采动造成山体滑坡形成的堆积体若阻塞河道并在汛期形成堰塞湖,则具有井下涌水风险。基于无人机倾斜摄影测量合成的高精度地形,通过降雨−径流模拟再现了山西“百年一遇”暴雨期间矾石沟流域不同历时降雨淹没范围与时间百分比,为矾石沟小流域的沟谷水灾害防范和风险评估提供了支撑,并提出了基于裂隙发育与地表淹没范围的地表径流水害综合防治方法。研究可为沟谷区多煤层开采条件下地表地质灾害防治与水资源保护提供有益参考。

    Abstract:

    Multi-seam mining in gully region has resulted in serious and complex chain disasters, including fissure development, mountain landslides, river blockage, and intensified water inflow. To prevent and control landslides and water inrush disasters, it is crucial to explore the characteristics and laws of overlying strata failure under the coupling effect of gully terrain and repeated mining in coal seams. This study focuses on the mining of multiseam in the gully terrain of Xiqu Coal Mine. The comprehensive analysis method, integrating surface exploration, InSAR dynamic observation, rainfall-runoff analysis, and numerical simulation, is used to analyze the entire process of spatial expansion of overlying strata failure and surface subsidence caused by downward mining of multiseam in the gully region. The results reveal that after the critical mining of the lower coal seam in the gully region, the lower strata beneath the key stratum in interlayered formations are prone to develop cutting failure and vertical fissure, with tensile cracking being the dominant mode of failure. The proportion of shear fractures in the overburden above the key stratum increases significantly, and the gully slope is prone to shear slip under the effects of mining subsidence and gravity. The connection phenomenon between the downward fractures of the slope and the upward fractures of the overburden can even occur. In addition, if the accumulation formed by mountain landslides due to repeated mining blocks the river channel and forms a barrier lake during the flood season, there is a risk of underground water inflow. To prevent such disasters, high-precision terrain synthesized by UAV tilt photogrammetry is used to simulate the rainfall inundation range and time percentage of different durations in Fanshigou watershed during the “100-year return period” rainstorm in Shanxi Province. The research proposes a comprehensive prevention and control method of surface runoff water disaster based on fissure development and surface inundation range, which provides support for gully water disaster prevention and risk assessment in Fanshigou small watershed. This study can serve as a useful reference for the prevention and control of surface geological disasters and the protection of water resources under the condition of multiseam mining in gully regions.

  • 高强度、大规模的煤炭开采活动破坏矿区原始岩层结构,扰动地下含水层,产生大量矿井水[1-3],据不完全统计,仅2014—2019年,我国由煤炭开采所产生的矿井水总量就高达288.09亿t[4],大量未经处理的矿井水被抽排到地面,造成严重水资源浪费和环境污染,同时伴随地面塌陷和采空区积水等一系列问题,大幅增加了矿山修复与治理的成本和难度,严重制约煤矿的可持续发展[5-6]

    矿井水资源化利用技术手段的提出,为解决煤矿水资源浪费和污染问题开辟了新的途径,该技术切实贯彻了煤矿开采“安全、高效、绿色”发展理念[7-9]。我国关于矿井水资源化利用方面的研究,成果丰硕,武强[10]对我国矿井水资源化利用的存在的问题、研究进展、发展趋势做了详细的分析;何绪文[11-13]一直致力于探究矿井水资源化综合利用和矿井水处理技术创新;顾大钊[14-15]提出了煤矿地下水库的理论,为解决西部煤矿开采水资源短缺问题提供了有效的创新性技术手段;孙亚军[5,16]根据神东矿区水文地质特征,分析了如何针对不同矿井水类型采取相应的处理手段,并提出具有针对性的保水采煤关键技术,为干旱半干旱生态环境脆弱区的煤矿开采和水资源保护提供宝贵的实践经验。

    基于以上研究成果,以淮南煤田张集煤矿为研究区,首先利用Ca2+、Mg2+、Na++K+、Cl、SO4 2−、CO3 2−、HCO3 七大离子含量和pH、溶解性总固体(TDS)、电导率(EC)、总硬度(TH)11个指标对矿区矿井水进行水化学特征分析,然后依据我国《地下水水质标准》,进行矿井水水质分级分类判别和评价,最后根据钠吸附比(SAR)和EC关系,并结合离子来源,探求张集煤矿矿井水资源化利用途径。张集煤矿矿井水水量大,地表积水面积广,探求张集煤矿矿井水资源化利用的途径,对矿区的可持续发展意义重大,另外,到目前为止,该矿区还未有矿井水资源化利用的相关研究,较以往研究,本研究不仅结合水化学特征分析,和遵循矿井水资源化利用“分级分类”原则,而且进一步判定了研究区矿井水实际可用途径,为实现张集煤矿区矿井水资源化利用提供一定的理论依据。

    张集煤矿位于中国安徽省淮南市淮南煤田潘谢矿区的西南部(图1),矿区东西走向长约12 km,南北倾斜宽约9 km,面积约71 km2。研究区地表水系发达,西淝河从西到东贯穿整个矿区,内涝区从西到东横跨了研究区,由于采矿活动矿井水抽排,积水区面积也不断扩大,更加重了矿区水域承载负担,截止2018年预计矿区总积水面积可达53.17万m2,积水量预计将达到25.44万t。地下水埋藏情况变化较大,张集煤矿区由3个主要充水含水层组成,分别为新生界松散含水层、煤系砂岩裂隙含水层、灰岩岩溶含水层,地下水在新生界松散层中以水平运动为主,类型上属于孔隙承压水,是本区的水源补给。

    图  1  研究区示意
    Figure  1.  Sketch map of study area

    根据现有资料整理分析,分别在张集煤矿的西区、中央区和北区3个分区选取33个取样点(S1~S33),如图2所示,取样时间从2017-01-18—2018-07-25,其中同一个取样点不同时间取样多次,一共取得82个矿井水水样,并按采样的先后顺序将样品从ZJ135~ZJ227进行编号,水样来源有蓄水池、采空区、排水孔、水源井、放水孔、塌陷区等,水样来源几乎包含矿区所有矿井水来源。

    图  2  研究区采样点
    Figure  2.  Sampling points in the study area

    研究区矿井水水样的采集和测定依照《煤矿水水质分析的一般规定》及《地下水质量标准》。采取水样前需现场测定水温、pH、EC值并记录,pH采用玻璃电极法测定,水温用水温计测量,EC值用电导率仪可直接测定;现场测定结束后采集水样,采样前需用去离子水冲洗采样容器(按标准采用1 L聚乙烯瓶)3次,然后用待采矿井水冲洗容器3次,最后采集水样并装样密封。将水样带回实验室进行离子含量测定,TDS值在105 ℃下烘干称重得到,TH值采用EDTA容量法获得,采用酸碱滴定法测定HCO3 和CO3 2−;离子色谱法应用于Cl和SO4 2−的测定;Ca2+和Mg2+采用EDTA滴定法;而Na+和K+则用火焰原子吸附分光光度法测定。

    82个矿井水样品的常规水化学指标检测结果,由Ca2+、Mg2+、Na++K+、Cl、SO4 2−、CO3 2−、HCO3 七种离子含量和pH、TDS、EC、TH共11个指标组成,然后对检测结果做一般性的水化学特征分析,统计分析结果见表1。由表1可看出矿井水的pH于7.16~12.24,均值为8.33,中值为8.25,矿区矿井水均为碱性水,pH最大的水样检测含有大量OH,无HCO3 ,为张集煤矿锅炉房排水,另外pH的变异系数仅为0.08,说明研究区矿井水pH变化很小,基本保持在8左右。TDS含量为255.47~7 291.74 mg/L,平均值为2 346.60 mg/L,变异系数为0.51,多数水样的TDS与中位数2 584.22 mg/L接近。

    表  1  张集煤矿矿井水一般水化学分析结果
    Table  1.  General hydrochemical analysis results of mine water in Zhangji Coal Mine
    参数最大值最小值平均值中位数标准差变异系数
    Ca2+质量浓度/(mg·L−1)530.661.6045.7633.4862.181.36
    Mg2+质量浓度/(mg·L−1)145.860.0016.7316.5317.771.06
    K++Na+质量浓度/(mg·L−1)2 964.181.00887.541 009.40514.690.58
    Cl质量浓度/(mg·L−1)3 247.227.09752.71831.31479.480.64
    SO4 2−质量浓度/(mg·L−1)1 594.600.00269.69186.36295.251.09
    CO3 2−质量浓度/(mg·L−1)420.070.0029.050.0072.492.50
    HCO3 质量浓度/(mg·L−1)3 368.670.00690.03395.11698.651.01
    TDS质量浓度/(mg·L−1)7 291.74255.472 346.602 584.221 199.760.51
    pH12.247.168.338.250.660.08
    EC/(μS·cm−1)10 560.00466.003 309.664 310.001 797.410.47
    TH/(mg·L−1)1 321.068.01183.96176.14183.801.00
    下载: 导出CSV 
    | 显示表格

    所有水样中阳离子均以K++Na+占绝对优势,Ca2+次之,Mg2+最少,而阴离子以Cl、HCO3 为主,两者相差不多,其次是SO4 2−,CO3 2−含量最少,但研究区所有离子含量的变异系数皆大于0.5,说明离子含量极不稳定,极易随时间和空间的变化而发生改变,其中CO3 2−含量少,但变异系数达到2.5,在整个采样范围内随时空变化特征最为明显。

    piper三线图可用来指示研究区矿井水水样的主要离子组成和化学成分,并可作为判别水样类型的方法[17]。在研究区33个取样点共取得33组水样得到82个矿井水样品,图3为33组水样的piper三线图,由图3可知,87.8%的水样碱金属离子大于碱土金属离子,即Na++K+>Ca2+、Mg2+,33组水样(S1~S33)阳离子值绝大多数落在Na+K轴,比例在80%~98%,而Ca2+值变化范围较大,阴离子含量则以Cl和HCO3 +CO3 2−为主要成分,有超过30组水样点分布在Cl轴80%和HCO3+CO3轴80%交界处。由图3可明显看出,除了第27组水样2个样品类型不同(分别是Cl·HCO3-Na+K型和Cl·HCO3-Ca型),其余同一取样点所采水样类型基本一致,研究区矿井水水样水化学类型主要有Cl·HCO3-Na+K型、HCO3·SO4-Na+K型、Cl·HCO3-Ca型和SO4-Na+K型,所占比例分别为59.8%、17.6%、13.4%、9.2%。

    图  3  研究区矿井水主要离子Piper图
    Figure  3.  Piper diagram of main ions in mine water of study area

    通过比对于不同采样时间、同一采样点采取的矿井水指标含量,探讨研究区矿井水指标含量的动态变化特征,推断矿井水指标变化规律及受控因素。选取了1412A工作面灰岩增补孔(图4a)、北区水仓蓄水池(图4b)、西二定向长钻孔(图4c)、西二疏水巷排水孔(图4d)、西三疏水巷定向长钻孔(图4e)、西二封闭墙排水孔(图4f)6个采样点,共采取33个矿井水水样作为分析对象,绘制图4

    图  4  化学指标-时间变化
    Figure  4.  Hydrochemical indicators-time variation chart

    图44a4c4d4e4f五张柱状图可看出同一采样点的各项离子浓度随时间的起伏变化不明显,范围基本在30 mg/L以内,说明同一采样点的水源补给较单一、稳定,而图4b蓄水池中矿井水离子指标含量从2017年6月至2017年12月出现显著增加而后又明显减少,据分析其原因可能是与研究区气候变化有关,6月到12月研究区自然降水逐渐减少,采样点位于蓄水池,受外界影响显著,池中矿井水经过6个月的蒸发作用,离子浓度逐步升高,而后突然降低可能是受采矿活动矿井水排放增大,水量增多使离子浓度在短时间内降低。

    对变量进行相关性分析的目的,在于表征两个变量之间的相互关系和变化趋势[18],另外能够反映变化趋势的方向和程度,并在一定程度上对试验样本做来源预测分析[19]。试验对82个水样的10组指标数据依次采取双变量进行相关分析,由于Pearson和Spearman相关系数只能应用于连续变量,而水样数据为无序离散变量,因此,选用Kendall公式计算水化学指标参数的相关系数[20-21],然后依据所得相关系数值对样品水化学指标数据之间的关联性进行分析,推断各离子指标之间的相互关系度,每种水化学指标的影响作用范围,水质检测标准TDS最主要的控制因素是哪项指标,并根据实际取样环境进一步推断离子来源。

    由计算结果(表2)可得,矿井水水样品中对TDS值贡献度最高的是钠离子和钾离子,相关系数值高达0.821,结果极显著,且TDS总体上与各离子指标含量相关性最大,阴离子中与TDS相关系数值比较高的是Cl、SO4 2−和HCO3 ,反映这3种离子在TDS中所占比重较高;而水质检测标准TH与钙、镁离子密切相关,这也与实际测量结果一致,同时,钙、镁离子之间呈正相关,两者的来源应该多是碳酸盐岩溶解,而二者与CO3 2−、HCO3 的含量呈负相关关系也证实了这一点,前者与后者会生成沉淀,因此CO3 2−、HCO3 的含量越多,Ca2+和Mg2+含量越少,而碳酸盐岩溶解度也与游离离子含量成反比。

    表  2  水化学指标相关系数矩阵
    Table  2.  Correlation coefficient matrix of hydrochemical indexes
    离子Ca2+Mg2+Na++K+ClSO4 2−CO3 2−HCO3 ECTHPH
    TDS−0.229**−0.215**0.821**0.456**0.465**0.225**0.435**0.786**−0.196**0.100
    Ca2+0.509**−0.403**0.0630.080−0.357**−0.523**−0.210**0.847**−0.268**
    Mg2+−0.307**0.148−0.071−0.219*−0.466**−0.200**0.663**−0.133
    Na++K+0.341**0.307**0.301**0.555**0.681**−0.368**0.160*
    Cl0.413**−0.0610.0090.461**0.129−0.046
    SO42-−0.193*0.0600.357**0.027−0.221
    CO32-0.275**0.207*−0.316**0.653**
    HCO30.428**−0.515**0.133
    EC−0.189*0.094
    TH−0.231**
    注:**相关性在0.01水平上显著,*相关性在0.05水平上显著。
    下载: 导出CSV 
    | 显示表格

    PH对水质是否合格至关重要,而根据计算结果发现,CO3 2−离子是决定本次水样PH的最主要因素,这也为后期矿井水水处理提供理论依据,如果想要改变矿井水的酸碱度,可通过去除矿井水中的CO3 2−来达到目的;EC一点程度上可反应TDS,同样可作为水质检验的标准,由相关系数值也可看出,EC与TDS的值大致相同,说明二者作用意义基本一致;SO4 2−跟所有指标的相关性皆小于0.5,即与其他指标的关联性都不大,说明其缘由可能是农业灌溉、生活污水等人类活动而产生的废水汇入矿井水,属于外来物质,与矿区矿井水本身来源关系不显著。

    完成了以上样品指标的水化学特征分析,我们还需要总体把握研究区矿井水水样的水化学特征,由于本次试验选取的样品指标较多,为减少变量个数,降低工作强度,同时尽可能完整保留原始数据信息,达到综合研究全部样品数据的目的,我们采用了主成分分析方法。将水样重新进行组分分析,得到2个新的综合变量F1F2,主成分F1F2的方差贡献率分别为35.121%、25.503%,然后对Ca2+、Mg2+、Na++K+、Cl、SO4 2−、CO3 2−、HCO3 七个离子指标的主成分综合得分值再分析,并绘制分析变量荷载分布图(图5)。

    图  5  矿井水分析变量荷载分布
    Figure  5.  Distribution of variable load of mine water analysis

    图5可知,Na++K+、Cl在2个主成分上都有较高荷载值,即Na++K+、Cl是研究区矿井水的主要离子组分,反映张集矿矿井水出现高度“咸化”,水质逐渐恶化,结合采样点水文地质资料获悉,Na++K+离子含量较高由于煤炭开采、钻井勘探等原因,导通各含水层,富含Mg2+、Ca2+离子的地下水流经岩土层将Na++K+置换出来,不断地进行阳离子交换作用,使得矿井水含盐量逐渐增高;综合来看,HCO3> 、CO3 2−荷载得分值与SO4 2−、Mg2+、Ca2+荷载得分值在2条主成分轴上均相反,反映在水样中HCO3 、CO3 2−离子的含量与SO4 2−、Mg2+和Ca2+离子的含量之间存在明显的相互作用,原始的封闭还原环境中,SO4 2−发生脱硫酸作用被还原成H2S,使得HCO3 含量增高,而由于采矿活动,使还原环境变为氧化环境,水中携带了大量的O2和CO2,导致碳酸盐岩被溶解产生Ca2+,而HCO3 与CO3 2−是相辅相成的存在。

    为消除变量之间的量纲影响,使其具有可比性,对Ca2+、Mg2+、Na++K+、Cl、SO4 2−、CO3 2−、HCO3 指标含量数据作标准化处理,将标准化处理后的数据代入主成分计算公式(式(1)和式(2)),求得共82组主成分得分数据,并得到研究区离子指标主成分得分散点图(图6)。

    图  6  主成分计算结果荷载投影图
    Figure  6.  Load projection of principal component calculation results

    主成分计算表达式如下:

    $$\begin{aligned} & F_1={-0.209}{x}_{1}{-0.132}{x}_{2}{+0.363}{x}_{3}{+0.209}{x}_{4}{-0.044}{x}_{5}+ \\ &\qquad\qquad\qquad\qquad{0.284}{x}_{6}{+0.296}{x}_{7} \end{aligned}$$ (1)
    $$ \begin{aligned} & F_2={0.261}{x}_{1}{+0.302}{x}_{2}{+0.234}{x}_{3}{+0.354}{x}_{4}{-0.453}{x}_{c}5-\\ &\qquad\qquad\qquad\qquad {0.030}{x}_{6}{-0.122}{x}_{7} \end{aligned}$$ (2)

    式中:$ F_1 $$ F_2 $为两个主成分;$ {x}_{i} $$ i=\mathrm{1,2},\cdots, 7 $)为标准化处理后的7个离子指标含量。

    图6显示,水样整体沿主成分F1轴展布,说明水样来源含水层中存在脱硫酸作用和阳离子交换作用,导致矿井水盐度增高;另有多数水样点集中在F2轴上半部分,结合图5可知,矿井水流经碳酸盐岩层,伴随石灰岩、白云岩溶解,水质发生“硬化”,综上所述,张集煤矿矿井水存在“咸化”、“硬化”现象,水质情况不容乐观。

    为遵循矿井水“分级应用”的原则,本研究参照以上研究结果及现行《地下水质量标准》(表3),分别对研究区矿井水水样中的TH、TDS、SO4 2−、Cl、Na+指标含量进行判别分类,然后根据单个指标分类,得到82个样品的综合水质分级结果。

    表  3  地下水质量一般化学指标及限值(部分)
    Table  3.  General chemical indexes and limits of groundwater quality (part)
    类别Ⅰ类Ⅱ类Ⅲ类Ⅳ类Ⅴ类
    TH/(mg·L−1)≤150≤300≤450≤650>650
    TDS/(mg·L−1)≤300≤500≤1 000≤2 000>2 000
    SO4 2−/(mg·L−1)≤50≤150≤250≤350>350
    Cl/(mg·L−1)≤50≤150≤250≤350>350
    Na+/(mg·L−1)≤100≤150≤200≤400>400
    下载: 导出CSV 
    | 显示表格

    图7显示,SO4 2−、Na+、Cl和TDS指标的分类结果中第Ⅴ类所占例较大,Ⅴ类的样品个数分别为27、65、63和57,水质较差,而TH指标等级较低,共有36和40个Ⅰ类和Ⅱ类,说明研究区TH指标良好。每组样品水质等级划分如图7b所示,张集煤矿矿井水水样均不符合Ⅰ类水质标准,而Ⅱ、Ⅲ类占13%,Ⅴ类占比高达81%,Ⅳ类为6%。

    图  7  水化学指标类别堆积柱形图及样品水质分类饼图
    Figure  7.  Stacked column chart of hydrochemical index categories and pie chart of sample water quality classification

    由水质评价结果,可知研究区离子组分含量较高,为判断研究区矿井水中主要组分的来源,了解研究区的水环境条件,以便为矿井水水质改善和资源化利用提供理论依据。

    研究采用Gibbs半对数图探究离子成因机制,由张集煤矿矿井水水样Gibbs图(图8)显示,水样点主要分布在图的上半部分,多数落在蒸发结晶作用带,少数在岩石风化带,说明研究区矿井水受蒸发结晶和岩石风化控制作用明显,这也与矿井水的实际来源相符,研究区矿井水水样多数从地下抽排至地表,离子来自含水层围岩和第四纪松散层土壤,到达地表后被蒸发结晶,另外,取样时间几乎都在研究区降水较少时节,受大气降水作用影响较小,这也解释了检测结果中矿井水TDS含量偏高的原因。

    图  8  矿井水Gibbs半对数图
    Figure  8.  Gibbs semilogarithmic diagram of mine water

    根据水质分级结果,研究区矿井水样品等级有Ⅱ、Ⅲ、Ⅳ和Ⅴ类4个等级,但由于指标不全,不能保证研究区矿井水其他指标达标,因此作为Ⅱ、Ⅲ类用水功能有待进一步研究,而可以确定的是,水样全部符合《地下水质量标准》Ⅴ类标准,即不宜做生活饮用水,水域功能可作为一般工业用水区、人体非直接接触娱乐用水区、农业用水或者一般景观水域等。

    矿井水在地面积聚以后受蒸发作用明显,常规离子含量过高,植物生长需要适宜的水化学环境,因此需进一步判断是否可做农业灌溉用水。从相关性分析可知,组成TDS的主要离子是Na++K+,由主成分分析可知研究区矿井水咸化严重,钠离子或钾离子含量过高对土壤和植物存在毒害作用,从而限制矿井水资源化利用,因此,采用钠吸附比(SAR)来进行水质检测,钠吸附比常应用于地表及地下水灌溉性水质评价[22],计算公式如下:

    $$ {\rm{SAR}}=\frac{c({{\rm{Na}}}^+)}{{\left[c({{\rm{Ca}}}^{2+})+c({{\rm{Mg}}}^{2+})\right]}^{1/2}} $$ (3)

    式中:$ {\rm{SAR}} $为钠离子吸附比;$ c $为离子浓度,mg/L。

    研究利用SAR与EC之间的关系,进行张集矿矿井水盐渍化和钠离子毒害效应评价,并作为判断矿井水资源化利用可行性的依据。图9显示,整体来看研究区矿井水SAR和EC值基本偏高,虽然水样中有钠毒害较低风险的存在,但EC值皆在E1-E2界线之上,钠毒害风险较低但会受到盐渍化威胁,另外,79.3%的水样点分布在S3-E4区和S4-E4区,说明钠毒害及盐渍化风险均较高。即研究区矿井水不适宜用做农业灌溉用水,可作为工业生产、城市绿化、水体景观等用途。

    图  9  SAR-EC风险判别分区
    E1、E2、E3、E4—盐渍化低、中、较高、高风险;S1、S2、S3、S4—钠毒害低、中、较高、高风险
    Figure  9.  Risk discrimination division of SAR-EC

    1)张集煤矿矿井水TDS主要贡献阳离子为Na+和K+,阴离子主要组成是Cl和HCO3 ,水化学类型中Cl·HCO3-Na+K型占总数的59.8%,水中离子主要来源为蒸发结晶和岩石风化作用。

    2)研究区矿井水仅达到Ⅴ类水质标准,且水质“咸化”“硬化”现象严重,存在较高的钠离子毒害与盐渍化风险,不适宜用做农业灌溉用水,参考历来煤矿矿井水资源化利用的成功案例和研究区自身特点,张集矿矿井水实际可用作道路洒水、矿区绿化、冷却降温、洗煤,向周边煤化工厂或工业园区提供工业用水等。

    3)位于地面下的采样点,受外界环境影响较小,矿井水来源稳定,在治理过程中,严格把控水源,针对TDS及Na+、K+、HCO3 含量较高的特点,选取合适的物理、化学或生物方法进行净化处理,提高水质,使矿井水得到更广泛的应用。

  • 图  1   研究区地质与开采条件

    Figure  1.   Geological and mining context of the study area

    图  2   综合地层柱状图

    Figure  2.   Synthetical stratum histogram

    图  3   研究区现场勘察和航拍影像

    Figure  3.   Field survey and UAV image in the study area

    图  4   基于InSAR数据的研究区累计沉降

    Figure  4.   Cumulative subsidence in the study area based on InSAR data

    图  5   地表最大沉降点累计沉降值

    Figure  5.   Cumulative settlement value of the maximum settlement point on the ground

    图  6   数值计算模型及开采范围

    Figure  6.   Numerical calculation model and mining range

    图  7   岩层移动与地表变形特征

    Figure  7.   Characteristics of strata movement and surface deformation

    图  8   覆岩裂隙与坡体裂隙发育特征

    Figure  8.   Development characteristics of overlying strata and slope fractures

    图  9   重复采动作用下覆岩二次破坏特征

    Figure  9.   Secondary failure characteristics of overlying strata under repeated mining

    图  10   沟谷下开采引发的地表沉降与裂隙发育特征

    Figure  10.   Characteristics of surface subsidence and fractures development caused by mining under the gully

    图  11   降雨引发的研究区地表淹没过程

    Figure  11.   Ground inundation process caused by rainfall in the study area

    图  12   河床断面及加固效果

    Figure  12.   River bed section and reinforcement effect

    表  1   煤岩物理力学参数

    Table  1   Physical and mechanical parameters of coal and rock

    岩性密度/
    (kg·m−3
    单轴抗拉
    强度/MPa
    黏聚力/
    MPa
    弹性模
    量/GPa
    泊松比μ
    砂质泥岩25203.004.3614.200.26
    砂泥岩互层26003.254.9515.400.22
    14601.282.405.200.30
    石灰岩27503.905.9016.570.20
    砂岩27003.505.6016.700.21
    下载: 导出CSV

    表  2   2021−10−03—2021−10−06每小时降雨量

    Table  2   Hourly rainfall from 2021−10−03 to 2021−10−06

    时刻降雨量/mm
    2021-10-032021-10-042021-10-052021-10-06
    00:00000.51.2
    01:00002.22.9
    02:00001.42
    03:0001.60.81.5
    04:0001.73.90.1
    05:001.26.21.11.4
    06:008.65.21.31.4
    07:0015.50.61.8
    08:004.610.12.61.3
    09:003.76.223.3
    10:003.16.53.62.7
    11:001.25.24.94.9
    12:000.16.54.72.5
    13:000.26.93.20.6
    14:001.54.54.30
    15:001.33.25.70
    16:000.50.960
    17:0003.15.20
    18:000.12.240
    19:0003.44.10
    20:0001.82.70
    21:0002.42.20
    22:0003.920
    23:0001.21.20
    下载: 导出CSV
  • [1] 武 强,崔芳鹏,赵苏启,等. 矿井水害类型划分及主要特征分析[J]. 煤炭学报,2013,38(4):561−565.

    WU Qiang,CUI Fangpeng,ZHAO Suqi,et al. Type classification and main characteristics of mine water disasters[J]. Journal of China Coal Society,2013,38(4):561−565.

    [2] 尹尚先,王玉国,李文生. 矿井水灾害: 原因·对策·出路[J]. 煤田地质与勘探,2023,51(1):214−221.

    YIN Shangxian,WANG Yuguo,LI Wensheng. Cause, countermeasures and solutions of water hazards in coal mines in China[J]. Coal Geology & Exploration,2023,51(1):214−221.

    [3] 朱 阁,武 雄,李平虎,等. 黄土地区煤矿地表水防排水研究[J]. 煤炭学报,2014,39(7):1354−1360.

    ZHU Ge,WU Xiong,LI Pinghu,et al. Coalmine surface water prevention and drainage in loess area[J]. Journal of China Coal Society,2014,39(7):1354−1360.

    [4] 侯恩科,冯 栋,谢晓深,等. 浅埋煤层沟道采动裂缝发育特征及治理方法[J]. 煤炭学报,2021,46(4):1297−1308.

    HOU Enke,FENG Dong,XIE Xiaoshen,et al. Development characteristics and treatment methods of mining surface cracks in shallow-buried coal seam gully[J]. Journal of China Coal Society,2021,46(4):1297−1308.

    [5] 董书宁,虎维岳. 中国煤矿水害基本特征及其主要影响因素[J]. 煤田地质与勘探,2007,35(5):34−38.

    DONG Shuning,HU Weiyue. Basic characteristics and main controlling factors of coal mine water hazard in China[J]. Coal Geology & Exploration,2007,35(5):34−38.

    [6] 李文平,王启庆,刘士亮,等. 生态脆弱区保水采煤矿井(区)等级类型[J]. 煤炭学报,2019,44(3):718−726.

    LI Wenping,WANG Qiqing,LIU Shiliang,et al. Grade types of water-preserved coal mining coalmines in ecologically fragile area[J]. Journal of China Coal Society,2019,44(3):718−726.

    [7] 王方田,屠世浩,张艳伟,等. 冲沟地貌下浅埋煤层开采矿压规律及顶板控制技术[J]. 采矿与安全工程学报,2015,32(6):877−882.

    WANG Fangtian,TU Shihao,ZHANG Yanwei,et al. Ground pressure rules and roof control technology for the longwall mining of shallow seam beneath the gully topography[J]. Journal of Mining & Safety Engineering,2015,32(6):877−882.

    [8] 武 强,申建军,王 洋. “煤-水”双资源型矿井开采技术方法与工程应用[J]. 煤炭学报,2017,42(1):8−16.

    WU Qiang,SHEN Jianjun,WANG Yang. Mining techniques and engineering application for “Coal-Water” dual-resources mine[J]. Journal of China Coal Society,2017,42(1):8−16.

    [9] 朱 伟,滕永海. 堰塞湖下特厚煤层综放开采安全性及采动影响研究[J]. 采矿与岩层控制工程学报,2021,3(1):39−46.

    ZHU Wei,TENG Yonghai. Study on the safety and mining influence of fully-mechanized caving mining with ultra-thick seam under barrier lake[J]. Journal of Mining and Strata Control Engineering,2021,3(1):39−46.

    [10]

    FATHI Salmi E,NAZEM M,KARAKUS M. Numerical analysis of a large landslide induced by coal mining subsidence[J]. Engineering Geology,2017,217:141−152. doi: 10.1016/j.enggeo.2016.12.021

    [11]

    LI Zhu,YU Shengchao,ZHU Weibing,et al. Dynamic loading induced by the instability of voussoir beam structure during mining below the slope[J]. International Journal of Rock Mechanics and Mining Sciences,2020,132:104343. doi: 10.1016/j.ijrmms.2020.104343

    [12] 张 杰,杨 涛,王 斌,等. 浅埋煤层沟谷径流下开采顶板突水预测分析[J]. 采矿与安全工程学报,2017,34(5):868−875.

    ZHANG Jie,YANG Tao,WANG Bin,et al. Prediction analysis of roof water-inrush in shallow coal seam with surface valley runoff[J]. Journal of Mining & Safety Engineering,2017,34(5):868−875.

    [13] 李建伟,刘长友,赵 杰,等. 沟谷区域浅埋煤层采动矿压发生机理及控制研究[J]. 煤炭科学技术,2018,46(9):104−110.

    LI Jianwei,LIU Changyou,ZHAO Jie,et al. Study on occurrence mechanism and control technology of mining-induced strata pressure in shallow depth coal seams of valley region[J]. Coal Science and Technology,2018,46(9):104−110.

    [14] 赵 杰,刘长友,李建伟. 沟谷区域浅埋煤层工作面覆岩破断及矿压显现特征[J]. 煤炭科学技术,2017,45(1):34−40.

    ZHAO Jie,LIU Changyou,LI Jianwei. Overburden failure and strata pressure behavior characteristics under condition of shallow coal seam in gully terrain[J]. Coal Science and Technology,2017,45(1):34−40.

    [15] 刘 辉,邓喀中,雷少刚,等. 采动地裂缝动态发育规律及治理标准探讨[J]. 采矿与安全工程学报,2017,34(5):884−890.

    LIU Hui,DENG Kazhong,LEI Shaogang,et al. Dynamic developing law and governance standard of ground fissures caused by underground mining[J]. Journal of Mining & Safety Engineering,2017,34(5):884−890.

    [16] 孙 魁,李永红,刘海南,等. 彬长矿区“对滑型”黄土滑坡及其形成机制[J]. 煤炭学报,2017,42(11):2989−2997.

    SUN Kui,LI Yonghong,LIU Hainan,et al. “Opposite-slide” loess landslides and its formation mechanism in Binchang mining area[J]. Journal of China Coal Society,2017,42(11):2989−2997.

    [17] 钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010: 176−230.
    [18] 钱鸣高, 缪协兴, 许家林. 岩层控制的关键层理论[M]. 徐州: 中国矿业大学出版社, 2003: 10−63.
    [19]

    DONG J,LIAO M,XU Q,et al. Detection and displacement characterization of landslides using multi-temporal satellite SAR interferometry: a case study of Danba County in the Dadu River Basin[J]. Engineering Geology,2018,240:95−109. doi: 10.1016/j.enggeo.2018.04.015

    [20]

    WEI L, FENG Q, LIU F, et al. Precise topographic model assisted slope displacement retrieval from small baseline subsets results: case study over a high and steep mining slope[J]. Sensors (Basel, Switzerland), 2020, 20(22): 6674.

    [21]

    CHEN B,LI Z,YU C,et al. Three-dimensional time-varying large surface displacements in coal exploiting areas revealed through integration of SAR pixel offset measurements and mining subsidence model[J]. Remote Sensing of Environment,2020,240:111663. doi: 10.1016/j.rse.2020.111663

    [22]

    ZHAO C,LU Z,ZHANG Q. Time-series deformation monitoring over mining regions with SAR intensity-based offset measurements[J]. Remote Sensing Letters,2013,4:436−445. doi: 10.1080/2150704X.2012.746482

    [23]

    CHENG G,YANG T,LIU H,et al. Characteristics of stratum movement induced by downward longwall mining activities in middle-distance multi-seam[J]. International Journal of Rock Mechanics and Mining Sciences,2020,136:104517. doi: 10.1016/j.ijrmms.2020.104517

    [24] 刘一龙,杨天鸿,叶 强,等. 山区多煤层重复采动下地表变形特征[J]. 采矿与安全工程学报,2022,39(3):507−516.

    LIU Yilong,YANG Tianhong,YE Qiang,et al. Characteristics of surface deformation under repeated mining in mountainous area[J]. Journal of Mining & Safety Engineering,2022,39(3):507−516.

    [25] 沈泽宇,丁永生,孔 乔. 降雨径流与洪水淹没模型耦合的应用研究[J]. 地球信息科学学报,2021,23(8):1473−1483.

    SHEN Zeyu,DING Yongsheng,KONG Qiao. Application study of coupling rainfall-runoff modeling and flood plain inundation mapping[J]. Journal of Geo-information Science,2021,23(8):1473−1483.

  • 期刊类型引用(3)

    1. 王学文,王孝亭,谢嘉成,王雪松,李娟莉,李婷,李素华,刘曙光. 综采工作面XR技术发展综述:从虚拟3D可视化到数字孪生的演化. 绿色矿山. 2024(01): 75-84 . 百度学术
    2. 李济军. 浅析智能化综采技术在开采含夹矸中厚煤层的应用. 煤. 2024(09): 51-54 . 百度学术
    3. 刘双勇,刘维洲,赵永刚,闫俊宇,郁彦彬,尹海丽,吴孟武. 工业元宇宙技术在高压铸造岛全生命周期中的应用研究. 特种铸造及有色合金. 2024(11): 1489-1497 . 百度学术

    其他类型引用(0)

图(12)  /  表(2)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  31
  • PDF下载量:  89
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-03-22
  • 网络出版日期:  2023-06-25
  • 刊出日期:  2023-07-24

目录

/

返回文章
返回