高级检索

液压支架硬件在环仿真系统研究

朱良辰, 王世博, 马光明, 王赟, 朱煜

朱良辰,王世博,马光明,等. 液压支架硬件在环仿真系统研究[J]. 煤炭科学技术,2023,51(S2):294−305

. DOI: 10.13199/j.cnki.cst.2023-0453
引用本文:

朱良辰,王世博,马光明,等. 液压支架硬件在环仿真系统研究[J]. 煤炭科学技术,2023,51(S2):294−305

. DOI: 10.13199/j.cnki.cst.2023-0453

ZHU Liangchen,WANG Shibo,MA Guangming,et al. Research on hardware-in-the-loop simulation system of powered support[J]. Coal Science and Technology,2023,51(S2):294−305

. DOI: 10.13199/j.cnki.cst.2023-0453
Citation:

ZHU Liangchen,WANG Shibo,MA Guangming,et al. Research on hardware-in-the-loop simulation system of powered support[J]. Coal Science and Technology,2023,51(S2):294−305

. DOI: 10.13199/j.cnki.cst.2023-0453

液压支架硬件在环仿真系统研究

基金项目: 

工信部产业基础再造和制造业高质量发展专项资助项目(TC220A04W-1-167);国家自然基金面上资助项目(51874279)

详细信息
    作者简介:

    朱良辰: (2000—),男,江苏徐州人,硕士研究生。E-mail:TS21050204P31@cumt.edu.cn

    通讯作者:

    王世博: (1979—),男,河北新河人,教授,博士生导师。E-mail:wangshb@cumt.edu.cn

  • 中图分类号: TD713;TD355.4

Research on hardware-in-the-loop simulation system of powered support

Funds: 

Special Funding Project for Industrial Infrastructure Reconstruction and High Quality Development of Manufacturing Industry by the Ministry of Industry and Information Technology (TC220A04W-1-167); National Natural Science Foundation of China(51874279)

  • 摘要:

    为有效解决煤矿井下试验困难以及煤层割完不可再现的难题,向综采工作面液压支架控制策略的验证提供测试平台,建立了液压支架硬件在环仿真系统。首先,基于液压支架液压系统原理图在AMEsim中搭建液压系统模型,将液压系统模型与Simulink中液压支架机械系统动力学模型进行耦合,构建液压支架模型。其次,基于Simpole实时仿真平台搭建硬件系统,提出用继电器充当电磁阀驱动器与PCIe6323板卡间的端口匹配装置的方法,将软件系统的模型编译至Simpole实时仿真平台实现真实控制器对液压支架模型进行伸/收立柱、伸/收平衡千斤顶动作。使用ZY2400/12/20D型液压支架作为试验对象进行空载状态实物试验,通过液压支架实物试验值与硬件在环仿真值对比和实时性分析,验证液压支架硬件在环仿真系统的正确性。最后,对载荷作用下液压支架的动态特性进行硬件在环仿真分析,通过对比冲击载荷作用不同位置时液压支架的动态特性,发现随着冲击载荷作用位置由顶梁前端向尾端动,冲击载荷对立柱的作用逐渐减小,而平衡千斤顶先受压再受拉。顶梁与立柱、平衡千斤顶的两铰接点间存在一临界位置,在冲击载荷靠近临界位置时,平衡千斤顶受压或受拉程度越小,冲击载荷越远离临界位置时,平衡千斤顶受压或受拉程度越大。

    Abstract:

    To effectively solve the difficulties of conducting experiments in underground coal mines and the problem of irreproducible coal cutting, and to provide a testing platform for the verification of the control strategy of hydraulic supports on the fully-mechanized working face, this article establishes a hardware-in-the-loop simulation system for hydraulic supports. First, based on the hydraulic system schematic diagram of a hydraulic support, a hydraulic system model is built in AMESim. Then, the hydraulic system model is coupled with a mechanical system dynamic model of the hydraulic support in Simulink, to construct a hydraulic support model.Secondly, based on the Simpole real-time simulation platform, a hardware system is built. A method is proposed to use relays as the solenoid valve driver and a port matching device between the relay and the PCIe6323 board to compile the software system model to the Simpole real-time simulation platform to achieve real-time control of the hydraulic support model for extending/retracting the column and the balance jack.The ZY2400/12/20D hydraulic support is used as the experimental object for the unloaded physical experiment. The correctness of the hydraulic support hardware-in-the-loop simulation system is verified by comparing the physical experiment values of the hydraulic support with the hardware-in-the-loop simulation values and analyzing the real-time performance.Finally, the dynamic characteristics of the hydraulic support under load are analyzed by hardware-in-the-loop simulation. By comparing the dynamic characteristics of the hydraulic support under different positions of impact load, it is found that as the position of the impact load moves from the front end of the roof beam towards the tail end, the effect of the impact load on the column gradually decreases, and the balance jack is first compressed and then stretched. There is a critical position between the two hinged points of the top beam and the column and the balance jack. When the impact load is near the critical position, the smaller the compression or tension degree of the balance jack, the more far away from the critical position of the impact load, the greater the compression or tension degree of the balance jack.

  • 煤炭在我国能源矿产中仍具有重要地位,而综合机械化开采技术可以增加煤炭工业产量、改善劳动环境、提高劳动生产率和保障生产安全[1]。液压支架具有良好的支护性能、高强度与高可靠性等优点,是综采工作面中的关键设备。然而,地面搭建试验台进行液压支架性能评估成本大且缺少煤岩环境,井下繁重的生产任务要求不允许进行长时间试验评估,另外在试验过程中很可能由于操作不当导致液压支架故障甚至损坏[2]

    随着计算机技术的发展,仿真技术逐渐成为液压支架试验研究的重要手段[3-5]。王学文等[6]利用虚拟现实技术建立了考虑销轴间隙的液压支架位姿仿真模型,分析了销轴间隙对液压支架构件姿态的影响,并对不同销轴间隙情况下液压支架的位姿进行了判断。于波[7]使用Adams机械系统动力学自动分析仿真软件(Automatic Dynamic Analysis of Mechanical Systems,ADAMS)对液压支架和刮板输送机的自动化控制过程进行模拟,并比较分析了调控前后液压支架和刮板输送机的动态特性;仿真结果验证了液压支架自动跟机技术和刮板输送机自动推移控制技术的稳定性和适应性。万丽荣等[8]利用Adams软件建立了大采高工作面液压支架的多体动力学模型,并通过该模型研究支架失稳角度曲线来了解支架在不同高度下的失稳情况。而硬件在环仿真在各种仿真方法中置信度最高,众多学者利用硬件在环仿真技术有效解决复杂、价格昂贵控制对象或在真实世界中不能实现的极端条件下进行测试试验的难题[9-13]

    为给液压支架性能测试提供一个可靠的平台,本文建立了液压支架硬件在环仿真系统:首先建立以液压支架模型为主的软件系统,将软件系统的模型编译至基于Simpole实时仿真平台的硬件系统形成液压支架硬件在环仿真系统。然后通过硬件在环仿真试验与液压支架实物试验结果对比,验证实时性来证明该系统的正确性。最后在液压支架硬件在环仿真系统中进行载荷作用下仿真试验以研究冲击载荷作用在不同位置下液压支架的动态特性。

    液压支架是一种机液耦合机构,支架动作由立柱与平衡千斤顶这2类执行元件决定。选取ZY2400/12/20D型液压支架为研究对象,研究液压支架模型。图1为液压支架机液耦合架构示意,液压系统模型与机械系统模型通过立柱与平衡千斤顶液压驱动力、油缸位移和速度的交互建立耦合关系形成液压支架模型。

    图  1  液压支架机液耦合架构
    Figure  1.  Powered support machine-hydraulic coupling architecture

    AMESim因其建模的便捷性而被广泛应用于液压元件和液压系统的分析中[14-19]图2为液压支架液压系统原理图,当E1—E4有驱动电压时,对应位置处的先导阀开启,高压乳化液流过先导阀并推动主阀阀芯移动,使主阀进入工作位,高压乳化液流经主阀后进入对应工作油缸,从而推动油缸伸缩,使液压支架执行相应动作。

    图  2  液压支架液压系统原理
    Figure  2.  Schematic of hydraulic system of powered support

    根据液压支架液压系统原理图建立液压系统模型,其中电液换向阀由电磁先导阀和主阀组成。硬件在环仿真要求模型必须满足实时性,若按照实际电液换向阀进行建模,将会降低模型的运行速度,使模型无法满足实时性要求,因此采用工作机制类似的Y型的三位四通电磁换向阀简化实际的电液换向阀。在AMESim中搭建如图3所示的支架液压系统模型,模型参数见表1

    图  3  液压支架液压系统仿真模型
    Figure  3.  Simulation model of hydraulic support hydraulic system
    表  1  液压系统参数
    Table  1.  Hydraulic system parameters
    液压元件 参数名称 数值
    电液换向阀 阀口完全开启的信号值 1
    最大开口特征流量/(L·min−1 200
    特征流量对应压差/ MPa 10.2
    阀的固有频率/Hz 80
    阀的阻尼比 0.8
    临界流数 1000
    液控单向阀 开启压力/MPa 0.01
    先导比 3.5
    最大开口特征流量/(L·min−1 600
    特征流量对应压差/ MPa 5.07
    临界流数 1000
    液压锁 开启压力/MPa 0.01
    先导比 3.5
    最大开口特征流量/(L·min−1 150
    特征流量对应压差/ MPa 5.6
    临界流数 1000
    泵站处溢流阀 开启压力/MPa 32
    流量压力梯度/(L·min−1·MPa−1) 500
    其他溢流阀 开启压力/MPa 42
    流量压力梯度/(L·min−1·MPa−1) 500
    立柱 活塞直径/mm 200
    活塞杆直径/mm 185
    平衡千斤顶 活塞直径/mm 80
    活塞杆直径/mm 60
    下载: 导出CSV 
    | 显示表格

    根据液压支架液压系统原理图(图2)可知,液压回路中的主要通流元件为电液换向阀、液控单向阀、液压锁,因此上述三阀模型与其真实性能相近程度是准确构建液压支架液压系统模型的关键。通过电液换向阀、液控单向阀、液压锁的流量-压差特性的仿真曲线与样本曲线对比(图4图5图6)可以看出上述三阀的仿真曲线与样本曲线基本一致,证明了模型的正确性。

    图  4  电液换向阀的流量−压差特性曲线
    Figure  4.  Flow-pressure characteristic curve of the electro-hydraulic directional valve
    图  5  液控单向阀的流量−压差特性曲线
    Figure  5.  Flow-pressure characteristic curve of hydraulic control check valve
    图  6  双向液压锁的流量−压差特性曲线
    Figure  6.  Flow-pressure characteristic curve of two-way hydraulic lock

    采用联立约束法建立液压支架机械系统模型。图7为液压支架运动学分析示意,图中BCDEFGHIJ为各转动副中心点;P为顶梁最前端。过B点、F点建立坐标系XOY,过G点做X轴的垂线交X轴于A点。X轴正方向分别与各转动副连线、各构件质心位置矢量、转动副与构件质心的连线之间的夹角为θiβiαiδiZi表示各构件质心位置,连接Z6点、C点并延长与过D点的水平线交于K点,F1F5F6分别为立柱液压驱动力、平衡千斤顶液压驱动力与支架顶梁所受载荷;miIi分别为第i个构件的质量及转动惯量;Fi-j表示构件ij间运动副处的受力。

    图  7  液压支架运动学分析示意
    Figure  7.  Schematic of kinematics analysis of powered support

    将液压支架划分为3个运动环OBCDEFO、OAGHEFO、IJD,利用欧拉公式将3个运动环转化为闭环矢量方程,并与各构件质心坐标对时间求二阶微分建立加速度方程组(式(2)—式(13))。对支架各构件进行受力分析得到液压支架各构件的牛顿-欧拉方程组(式(14)—式(19)),加速度方程组、牛顿-欧拉方程组与液压支架高度方程(式(1))构成了液压支架机械系统动力学模型。方程组推导过程详见文献[20],利用上述方程组在Simulink中构建液压支架机械系统动力学模型,ZY2400/12/20D型液压支架机械系统参数见表2

    表  2  ZY2400/12/20D型液压支架机械系统参数
    Table  2.  ZY2400/12/20D powered support mechanicalsystem parameters
    参数类别 参数符号 数值
    各运动构件质量/kg m11 288
    m12 231
    m2 124
    m3 190
    m4 1133
    m6 2100
    各运动构件转动惯量/(kg·m2) I11 84.5
    I12 31.8
    I2 18.6
    I3 24.0
    I4 89.3
    I6 1 063.2
    各构件质心位置长度/mm LBZ11 426.97
    LCZ12 540.47
    LGZ2 322.40
    LFZ3 292.50
    LEZ4 407.89
    LHZ4 203.00
    LIZ4 190.35
    LDZ4 509.89
    LJZ6 634.98
    LCZ6 91.61
    LDZ6 793.92
    各构件质心位置角度/rad DCK 0.079 59
    DEZ4 0.366 87
    KZ6J 0.114 14
    CDZ6 0.009 25
    EDZ4 0.290 25
    DZ4I 1.587 73
    CDP −0.001 05
    ∠CDJ 0.592 54
    ∠IDE 0.064 23
    ∠DEH 0.000 1
    EZ4H 0.437 38
    DZ4E 2.484 48
    闭环矢量结构尺寸/mm LGH 630
    LFE 585
    LEH 239.93
    LED 870.44
    LJD 205.91
    LID 548.36
    LDC 702.57
    下载: 导出CSV 
    | 显示表格
    $$ Q = {L_{{\text{OF}}}} + {L_{{\text{FE}}}}\sin ({\theta _3}) + {L_{{\text{ED}}}}\sin ({\theta _4}) + {L_{{\text{DP}}}}\sin ({\delta _8}) $$ (1)
    $$\begin{array}{c} - {L_{{\rm{BC}}}}\sin ({\theta _1}){{\ddot \theta }_1} + {L_{{\rm{FE}}}}\sin ({\theta _3}){{\ddot \theta }_3} + {L_{{\rm{ED}}}}\sin ({\theta _4}){{\ddot \theta }_4} + {L_{{\rm{DC}}}}\sin ({\theta _6}){{\ddot \theta }_6} + \cos ({\theta _1}){{\ddot L}_{{\rm{BC}}}} = \\ 2{{\dot L}_{{\rm{BC}}}}\sin ({\theta _1}){{\dot \theta }_1} + {L_{{\rm{BC}}}}\cos ({\theta _1})\dot \theta _1^2 - {L_{{\rm{FE}}}}\cos ({\theta _3})\dot \theta _3^2 - {L_{{\rm{ED}}}}\cos ({\theta _4})\dot \theta _4^2 - {L_{{\rm{DC}}}}\cos ({\theta _6})\dot \theta _6^2 \end{array} $$ (2)
    $$\begin{array}{c} {L_{{\rm{BC}}}}\cos ({\theta _1}){{\ddot \theta }_1} - {L_{{\rm{FE}}}}\cos ({\theta _3}){{\ddot \theta }_3} - {L_{{\rm{ED}}}}\cos ({\theta _4}){{\ddot \theta }_4} - {L_{{\rm{DC}}}}\cos ({\theta _6}){{\ddot \theta }_6} + \sin ({\theta _1}){{\ddot L}_{{\rm{BC}}}} = \\ - 2{{\dot L}_{{\rm{BC}}}}\cos ({\theta _1}){{\dot \theta }_1} + {L_{{\rm{BC}}}}\sin ({\theta _1})\dot \theta _1^2 - {L_{{\rm{FE}}}}\sin ({\theta _3})\dot \theta _3^2 - {L_{{\rm{ED}}}}\sin ({\theta _4})\dot \theta _4^2 - {L_{{\rm{DC}}}}\sin ({\theta _6})\dot \theta _6^2 \end{array} $$ (3)
    $$ - {L_{{\text{GH}}}}\sin ({\theta _2}){{\ddot \theta }_2} + {L_{{\text{FE}}}}\sin ({\theta _3}){{\ddot \theta }_3} + {L_{{\text{EH}}}}\sin ({\beta _3}){{\ddot \beta }_3} = {L_{{\text{GH}}}}\cos ({\theta _2})\dot \theta _2^2 - {L_{{\text{FE}}}}\cos ({\theta _3})\dot \theta _3^2 - {L_{{\text{EH}}}}\cos ({\beta _3})\dot \beta _3^2 $$ (4)
    $$ {L_{{\text{GH}}}}\cos ({\theta _2}){{\ddot \theta }_2} - {L_{{\text{FE}}}}\cos ({\theta _3}){{\ddot \theta }_3} - {L_{{\text{EH}}}}\cos ({\beta _3}){{\ddot \beta }_3} = {L_{{\text{GH}}}}\sin ({\theta _2})\dot \theta _2^2 - {L_{{\text{FE}}}}\sin ({\theta _3})\dot \theta _3^2 - {L_{{\text{EH}}}}\sin ({\beta _3})\dot \beta _3^2 $$ (5)
    $${L_{{\text{ID}}}}\sin ({\beta _2}){{\ddot \beta }_2} - {L_{{\text{IJ}}}}\sin ({\theta _5}){{\ddot \theta }_5} - {L_{{\text{JD}}}}\sin ({\beta _1}){{\ddot \beta }_1} + \cos ({\theta _5}){{\ddot L}_{{\text{IJ}}}} = 2{{\dot L}_{{\text{IJ}}}}\sin ({\theta _5}){{\dot \theta }_5} + {L_{{\text{IJ}}}}\cos ({\theta _5})\dot \theta _5^2 + {L_{{\text{JD}}}}\cos ({\beta _1})\dot \beta _1^2 - {L_{{\text{ID}}}}\cos ({\beta _2})\dot \beta _2^2 $$ (6)
    $$ - {L_{{\text{ID}}}}\cos ({\beta _2}){{\ddot \beta }_2} + {L_{{\text{IJ}}}}\cos ({\theta _5}){{\ddot \theta }_5} + {L_{{\text{JD}}}}\cos ({\beta _1}){{\ddot \beta }_1} + \sin ({\theta _5}){{\ddot L}_{{\text{IJ}}}} = - 2{{\dot L}_{{\text{IJ}}}}\cos ({\theta _5}){{\dot \theta }_5} + {L_{{\text{IJ}}}}\sin ({\theta _5})\dot \theta _5^2 + {L_{{\text{JD}}}}\sin ({\beta _1})\dot \beta _1^2 - {L_{{\text{ID}}}}\sin ({\beta _2})\dot \beta _2^2 $$ (7)
    $$ \left\{ \begin{gathered} {{\ddot x}_{O{Z_{11}}}} = - {L_{{\text{B}}{{\text{Z}}_{{\text{11}}}}}}\left[ {\cos ({\theta _1})\dot \theta _1^2 + \sin ({\theta _1}){{\ddot \theta }_1}} \right] \\ {{\ddot y}_{O{Z_{11}}}} = {L_{{\text{B}}{{\text{Z}}_{{\text{11}}}}}}\left[ { - \sin ({\theta _1})\dot \theta _1^2 + \cos ({\theta _1}){{\ddot \theta }_1}} \right] \\ \end{gathered} \right. $$ (8)
    $${ \left\{ \begin{array}{l} {{\ddot x}_{{\rm{O}}{{\rm{Z}}_{12}}}} = - {L_{{\rm{FE}}}}\left[ {\cos ({\theta _3})\dot \theta _3^2 + \sin ({\theta _3}){{\ddot \theta }_3}} \right] - {L_{{\rm{ED}}}}\left[ {\cos ({\theta _4})\dot \theta _4^2 + \sin ({\theta _4}){{\ddot \theta }_4}} \right] - {L_{{\rm{DC}}}}\left[ {\cos ({\theta _6})\dot \theta _6^2 + \sin ({\theta _6}){{\ddot \theta }_6}} \right] + {L_{{\rm{C}}{{\rm{Z}}_{{\rm{12}}}}}}\left[ {\cos ({\theta _1})\dot \theta _1^2 + \sin ({\theta _1}){{\ddot \theta }_1}} \right]\\ {{\ddot y}_{{\rm{O}}{{\rm{Z}}_{12}}}} = {L_{{\rm{FE}}}}\left[ { - \sin ({\theta _3})\dot \theta _3^2 + \cos ({\theta _3}){{\ddot \theta }_3}} \right] + {L_{{\rm{ED}}}}\left[ { - \sin ({\theta _4})\dot \theta _4^2 + \cos ({\theta _4}){{\ddot \theta }_4}} \right] + {\kern 1pt} {\kern 1pt} {L_{{\rm{DC}}}}\left[ { - \sin ({\theta _6})\dot \theta _6^2 + \cos ({\theta _6}){{\ddot \theta }_6}} \right] - {L_{{\rm{C}}{{\rm{Z}}_{{\rm{12}}}}}}\left[ { - \sin ({\theta _1})\dot \theta _1^2 + \cos ({\theta _1}){{\ddot \theta }_1}} \right] \end{array} \right.} $$ (9)
    $$ \left\{ \begin{gathered} {{\ddot x}_{{\text{O}}{{\text{Z}}_{\text{2}}}}} = - {L_{{\text{G}}{{\text{Z}}_{\text{2}}}}}\left[ {\cos ({\theta _2})\dot \theta _2^2 + \sin ({\theta _2}){{\ddot \theta }_2}} \right] \\ {{\ddot y}_{{\text{O}}{{\text{Z}}_{\text{2}}}}} = {L_{{\text{G}}{{\text{Z}}_{\text{2}}}}}\left[ { - \sin ({\theta _2})\dot \theta _2^2 + \cos ({\theta _2}){{\ddot \theta }_2}} \right] \\ \end{gathered} \right. $$ (10)
    $$ \left\{ \begin{gathered} {{\ddot x}_{{\text{O}}{{\text{Z}}_{\text{3}}}}} = - {L_{{\text{F}}{{\text{Z}}_{\text{3}}}}}\left[ {\cos ({\theta _3})\dot \theta _3^2 + \sin ({\theta _3}){{\ddot \theta }_3}} \right] \\ {{\ddot y}_{{\text{O}}{{\text{Z}}_{\text{3}}}}} = {L_{{\text{F}}{{\text{Z}}_{\text{3}}}}}\left[ { - \sin ({\theta _3})\dot \theta _3^2 + \cos ({\theta _3}){{\ddot \theta }_3}} \right] \\ \end{gathered} \right. $$ (11)
    $$ \left\{ \begin{array}{l} {{\ddot x}_{O{Z_4}}} = - {L_{{\rm{FE}}}}\left[ {\cos ({\theta _3})\dot \theta _3^2 + \sin ({\theta _3}){{\ddot \theta }_3}} \right] - {L_{{\rm{E}}{{\rm{Z}}_{\rm{4}}}}}\left[ {\cos ({\delta _2})\dot \delta _2^2 + \sin ({\delta _2}){{\ddot \delta }_2}} \right]\\ {{\ddot y}_{O{Z_4}}} = {L_{{\rm{FE}}}}\left[ { - \sin ({\theta _3})\dot \theta _3^2 + \cos ({\theta _3}){{\ddot \theta }_3}} \right] + {L_{{\rm{E}}{{\rm{Z}}_{\rm{4}}}}}\left[ { - \sin ({\delta _2})\dot \delta _2^2 + \cos ({\delta _2}){{\ddot \delta }_2}} \right] \end{array} \right. $$ (12)
    $$ \left\{ \begin{array}{l} {{\ddot x}_{{\rm{O}}{{\rm{Z}}_6}}} = - {L_{{\rm{FE}}}}\left[ {\cos ({\theta _3})\dot \theta _3^2 + \sin ({\theta _3}){{\ddot \theta }_3}} \right] - {L_{{\rm{ED}}}}\left[ {\cos ({\theta _4})\dot \theta _4^2 + \sin ({\theta _4}){{\ddot \theta }_4}} \right] - {L_{{\rm{D}}{{\rm{Z}}_6}}}\left[ {\cos ({\delta _4})\dot \delta _4^2 + \sin ({\delta _4}){{\ddot \delta }_4}} \right]\\ {{\ddot y}_{{\rm{O}}{{\rm{Z}}_6}}} = {L_{{\rm{FE}}}}\left[ { - \sin ({\theta _3})\dot \theta _3^2 + \cos ({\theta _3}){{\ddot \theta }_3}} \right] + {L_{{\rm{ED}}}}\left[ { - \sin ({\theta _4})\dot \theta _4^2 + \cos ({\theta _4}){{\ddot \theta }_4}} \right] + {\kern 1pt} {L_{{\rm{D}}{{\rm{Z}}_6}}}\left[ { - \sin ({\delta _4})\dot \delta _4^2 + \cos ({\delta _4}){{\ddot \delta }_4}} \right] \end{array} \right.$$ (13)
    $$ \left\{ \begin{gathered} {F_1}\cos ({\theta _1}){\text{ + }}{F_{_1}}_{11 - 12}\sin ({\theta _1}) - {F_{_2}}_{11 - 12}\sin ({\theta _1}) -{F_{6{\text{-}}12x}} = {m_1}_2{{\ddot x}_{{\text{O}}{{\text{Z}}_{{\text{12}}}}}} \\ {F_1}\sin ({\theta _1}) - {F_{_1}}_{11 - 12}\cos ({\theta _1}) + {F_{_2}}_{11 - 12}\cos ({\theta _1}) - {m_{12}}g - {F_{{\text{6-12y}}}} = {m_1}_2{{\ddot y}_{{\text{O}}{{\text{Z}}_{{\text{12}}}}}} \\ {F_{_1}}_{11 - 12}{L_3} - {F_{_2}}_{11 - 12}{L_4} + {F_{6{\text{-}}12x}}{L_{{\text{C}}{{\text{Z}}_{{\text{12}}}}}}\sin ({\theta _1}) -{F_{{\text{6-12y}}}}{L_{{\text{C}}{{\text{Z}}_{{\text{12}}}}}}\cos ({\theta _1}) = {I_{12}}{{\ddot \theta }_1} \\ \end{gathered}\right. $$ (14)
    $$ \left\{ \begin{gathered} {F_{0 - 11x}} - {F_1}\cos ({\theta _1}) - {F_{_1}}_{12 - 11}\sin ({\theta _1}) + {F_{_2}}_{12 - 11}\sin ({\theta _1}) = {m_1}_1{{\ddot x}_{{\text{O}}{{\text{Z}}_{{\text{11}}}}}} \\ {F_{0 - 11y}} - {F_1}\sin ({\theta _1}) + {F_{_1}}_{12 - 11}\cos ({\theta _1}) - {F_{_2}}_{12 - 11}\cos ({\theta _1}) - {m_{11}}g = {m_1}_1{{\ddot y}_{{\text{O}}{{\text{Z}}_{{\text{11}}}}}} \\ {F_{_1}}_{12 - 11}{L_2} - {F_{_2}}_{12 - 11}{L_1} - {m_{11}}g{L_{{\text{B}}{{\text{Z}}_{{\text{11}}}}}}\cos ({\theta _1}) = {I_{11}}{{\ddot \theta }_1} \end{gathered}\right. $$ (15)
    $$ \left\{ \begin{gathered} {F_{42x}} + {F_0}_{2x} = {m_2}{{\ddot x}_{{\text{O}}{{\text{Z}}_{\text{2}}}}} \\ {F_{02}}_y - {m_2}g + {F_{42y}} = {m_2}{{\ddot y}_{{\text{O}}{{\text{Z}}_{\text{2}}}}} \\ {F_{42y}}{L_{{\text{GH}}}}{\text{c}}os({\theta _2}) - {F_{42x}}{L_{{\text{GH}}}}\sin ({\theta _2}) - {m_2}g{L_{{\text{G}}{{\text{Z}}_{\text{2}}}}}\cos ({\theta _2}) = {I_2}{{\ddot \theta }_2} \\ \end{gathered} \right. $$ (16)
    $$ \left\{ \begin{gathered} {F_{43x}} + {F_0}_{3x} = {m_3}{{\ddot x}_{{\text{O}}{{\text{Z}}_{\text{3}}}}} \\ {F_{03}}_y - {m_3}g + {F_{43y}} = {m_3}{{\ddot y}_{{\text{O}}{{\text{Z}}_{\text{3}}}}} \\ {F_{43y}}{L_{{\text{FE}}}}\cos ({\theta _3}) - {F_{43x}}{L_{{\text{FE}}}}\sin ({\theta _3}) - {m_3}g{L_{{\text{F}}{{\text{Z}}_{\text{3}}}}}\cos ({\theta _3}) = {I_3}{{\ddot \theta }_3} \\ \end{gathered} \right. $$ (17)
    $$ \left\{ \begin{gathered} - {F_{34x}} - {F_{24x}} - {F_5}\cos ({\theta _5}) - {F_{64x}} = {m_4}{{\ddot x}_{{\text{O}}{{\text{Z}}_{\text{4}}}}}\\ - {F_{34y}} - {F_{24y}} - {F_5}\sin ({\theta _5}) - {F_{64y}} - {m_4}g = {m_4}{{\ddot y}_{{\text{O}}{{\text{Z}}_{\text{4}}}}} \\ {F_{34y}}{L_{E{Z_4}}}\cos ({\delta _2}) - {F_{34x}}{L_{E{Z_4}}}\sin ({\delta _2}) - {F_{24x}}{L_{H{Z_4}}}\sin ({\delta _7}) + {F_{24y}}{L_{H{Z_4}}}\cos ({\delta _7}) + {F_5}{{\text{L}}_{{\text{I}}{{\text{Z}}_{\text{4}}}}}\sin ({\theta _5} - {\delta _6}) - {F_{64y}}{L_{D{Z_4}}}\cos ({\delta _5}) +\\ {F_{64x}}{L_{D{Z_4}}}\sin ({\delta _5}) = {I_4}{{\ddot \theta }_4} \end{gathered} \right. $$ (18)
    $$ \left\{ \begin{gathered} {F_{46x}} + {F_5}\cos ({\theta _5}) + {F_{12 - 6x}} = {m_6}{{\ddot x}_{{\text{O}}{{\text{Z}}_{\text{6}}}}} \\ {F_{46y}} + {F_5}\sin ({\theta _5}) + {F_{12 - 6y}} - {m_6}g - {F_6} = {m_6}{{\ddot y}_{{\text{O}}{{\text{Z}}_{\text{6}}}}} \\ - {F_{12 - 6y}}{L_{{\text{C}}{{\text{Z}}_{\text{6}}}}}\cos ({\delta _1}) + {F_{12 - 6x}}{L_{{\text{C}}{{\text{Z}}_{\text{6}}}}}\sin ({\delta _1}) - {F_5}{L_{{\text{J}}{{\text{Z}}_{\text{6}}}}}\sin \left[ {{\theta _5} - {\delta _3}} \right] - {F_{46{\text{y}}}}{L_{{\text{D}}{{\text{Z}}_6}}}\cos ({\delta _4}) + {F_{46x}}{L_{{\text{D}}{{\text{Z}}_6}}}\sin ({\delta _4}) - {F_6}{L_6} = {I_6}{{\ddot \theta }_6} \\ \end{gathered} \right. $$ (19)

    图8为液压支架硬件在环仿真系统的硬件系统,控制器发出控制信号控制电磁阀驱动器相应驱动口输出12 V电压,继电器将12 V电压转化为开关触点信号。PCIe6323板卡采集开关触点信号,并将开关触点信号传递给软件系统,PCIeX1定时器板卡为仿真测试系统提供统一精确的时钟体系。

    图  8  液压支架硬件在环仿真系统硬件系统
    Figure  8.  Hardware system of the hardware-in-the-loop simulation system of powered support

    通过对液压支架模型中的机械系统模型施加顶板载荷,对液压系统模型施加控制器信号构成软件系统。图9为液压支架硬件在环仿真系统软件系统及接口图。利用Simpole实时仿真平台自带的SimpoleSystem模块对机械系统模型与液压系统模型的交互参数进行机液联合仿真接口配置并绑定形成液压支架模型,LegForce、LegV与LegX分别为立柱液压驱动力、油缸速度和油缸位移接口,JackForce、JackV与JackX分别为平衡千斤顶液压驱动力、油缸速度、油缸位移接口。利用PCIe6323板卡驱动模块输出控制器信号给液压系统模型,LegUp、LegDown、JackUp、JackDown分别对应伸立柱、降立柱、伸平衡千斤顶、收平衡千斤顶命令,将其与AMESim部分硬件在环仿真接口按照对应关系进行接口绑定,实现控制器对换向阀模型开闭的控制,进而实现控制器对液压支架模型运动的控制。

    图  9  液压支架硬件在环仿真系统软件系统及接口
    Figure  9.  Hardware-in-the-loop simulation system software system and interface of powered support

    使用ZY2400/12/20D型液压支架作为试验对象,主要试验设备包括ZY2400/12/20D型液压支架、数据采集系统、压力传感器、拉线位移传感器。图10为液压支架试验装置的实物图,将压力传感器布置在泵站出口处、立柱与平衡千斤顶上下腔,将位移传感器固定于立柱与平衡千斤顶油缸上。通过控制器控制液压支架执行伸立柱、降立柱、伸平衡千斤顶、收平衡千斤顶动作,用数据采集系统采集液压支架运动作过程中泵站出口及立柱与平衡千斤顶上下腔工作压力、立柱与与平衡千斤顶位移。

    图  10  液压支架试验装置实物
    Figure  10.  Physical of hydraulic support experimental device

    对液压支架空载运动状态进行硬件在环仿真试验,硬件在环仿真过程中机液耦合模型的动力输入设置为实际泵站流量80 L/min,泵站溢流阀模型溢流压力设置为实际泵站溢流压力20 MPa。通过硬件在环试验仿真值与液压支架实物的试验结果对比(图11图14),可以看出除支架执行升架动作外,其他动作的泵站、油缸进液腔压力和活塞杆位移在油缸工作状态下的实物试验值与仿真值曲线变化趋势与数值大小近乎相同,而支架执行升架动作时,泵站、油缸进液腔压力的实物试验值比仿真值产生较大抖动,但总体变化的中心点与仿真值吻合,且立柱位移与仿真值几乎一致,所以该动作仿真值也可视为与实物试验值基本吻合,证明了液压支架硬件在环仿真系统的正确性。

    图  11  伸立柱过程硬件在环仿真值与试验值对比
    Figure  11.  Comparison of the simulation value and experimental value of hardware in the loop during column extension
    图  14  收平衡千斤顶过程硬件在环仿真值与试验值对比
    Figure  14.  Comparison of simulation value and experimental value of hardware in the loop during the balance jack retraction process
    图  12  降立柱过程硬件在环仿真值与试验值对比
    Figure  12.  Comparison of simulation value and experimental value of hardware in loop during column lowering
    图  13  伸平衡千斤顶过程硬件在环仿真值与试验值对比
    Figure  13.  Comparison of simulation value and experimental value of hardware in the loop during extending balance jack

    硬件在环仿真要求模型必须为实时仿真模型[21],判断模型是否为实时仿真模型的标准就是看模型能否在一个仿真步长内完成一次解算。 Simpole实时仿真平台具有实时性分析功能,图15中“帧计数”表示模型当前总共解算的次数,“超时次数”表示模型每一步解算耗费的CPU时间超过其仿真步长的次数,“平均解算时间”表示模型运行过程中平均每一步解算所耗费的CPU解算时间。“超时次数”越少、“平均运行时间”越小则表明模型的实时性越高。

    图  15  模型实时性分析
    Figure  15.  Real-time analysis of the model

    利用Simpole实时仿真平台的实时性分析功能对硬件在环仿真过程中液压支架执行伸立柱、降立柱、伸平衡千斤顶、收平衡千斤顶动作模型的实时性进行分析,AMESim模型分别解算了720 923、626 511、102 683、121 029次,而对应的解算超时次数分别为43、38、6、7次,超时次数远小于解算次数,平均运行时间分别为9 、10、9、10 μs,平均运行时间小于仿真步长50 μs;Simulink模型分别解算了360 497、313 290、51 349、60 522次,而对应的解算超时次数均为1,超时次数远小于解算次数,平均运行时间均为71 μs,平均运行时间小于仿真步长100 μs,因此液压支架仿真模型满足实时性要求。

    对载荷作用下液压支架的动态特性进行硬件在环仿真分析。如图16所示,根据液压支架承载过程的4个阶段设定载荷大小以及控制器控制信号,同时设定初撑增阻、承载增阻阶段载荷作用位置为立柱与顶梁铰接点处且这2个阶段载荷作用位置在仿真过程中保持不变。通过改变承载恒阻阶段冲击载荷作用位置,考察冲击载荷作用下不同载荷作用位置对液压支架动态特性的影响。以液压支架顶梁前端为坐标原点,等间隔取9个载荷作用点进行硬件在环仿真分析,如图17所示。冲击载荷作用下不同载荷作用位置液压支架动态特性如图18图19所示。

    图  16  电磁换向阀模型控制信号及液压支架负载
    Figure  16.  Electromagnetic reversing valve model control signal and powered support load
    图  17  承载恒阻阶段载荷作用位置
    Figure  17.  Intention of the position of the load in the constant resistance stage
    图  18  冲击载荷作用下不同作用位置液压缸长度变化及立柱相关曲线
    Figure  18.  Change of hydraulic cylinder length and the correlation curve of column in different position under impact load
    图  19  冲击载荷作用下不同作用位置平衡千斤顶相关曲线
    Figure  19.  Balance jack correlation curve at different positions under impact load

    定义立柱与平衡千斤顶长度增加时,增加量为正值,长度减少时,减少量为负值。随着冲击载荷作用位置由顶梁前端向尾端动,受冲击时立柱下腔始终处于受压状态,立柱下腔的压力、立柱下腔安全阀流出的流量、立柱长度压缩量越来越小,冲击载荷对立柱的作用逐渐减小。

    平衡千斤顶受力与立柱有所不同,在液压支架承受冲击载荷时,在平衡千斤顶和顶梁铰接位置与立柱和顶梁铰接位置之间存在临界位置,当冲击载荷作用位置在顶梁前端到临界位置时平衡千斤顶受压,反之受拉。在临界位置之前,随着载荷作用位置向尾端靠近,受冲击时平衡千斤顶受压程度越来越小,在临界位置之后,随着载荷作用位置向尾端靠近,受冲击时平衡千斤顶受拉程度越来越大。冲击载荷作用下,平衡千斤顶受压时上下腔溢流阀均未溢流,千斤顶长度的微弱改变是上腔液压管道容腔体积变化造成的,受拉时长度的改变是上腔溢流阀溢流造成的。

    1)根据液压系统原理图搭建支架液压系统,并与机械系统动力学模型耦合形成支架机液耦合模型。

    2)基于Simpole平台搭建硬件系统,使用继电器实现液压支架控制器与PCIe6323板卡的连接,继而实现真实控制器对液压支架模型的控制。将软件系统的模型编译至Simpole平台最终形成液压支架硬件在环仿真系统。

    3)对支架空载状态进行硬件在环仿真试验与实物试验,通过结果对比与模型实时性验证,证明了硬件在环仿真系统的正确性。对支架进行加载硬件在环仿真试验,研究冲击载荷作用不同位置时对液压支架的影响。试验结果表明:随着冲击载荷作用位置由顶梁前端向尾端动,冲击载荷对立柱的作用逐渐减小;平衡千斤顶先受压再受拉:在平衡千斤顶和顶梁铰接位置与立柱和顶梁铰接位置之间存在临界位置,当冲击载荷作用在临界位置时平衡千斤顶受力状态会切换,在冲击载荷作用位置靠近临界位置时,受压程度逐渐减小,之后受拉且程度逐渐增大。

  • 图  1   液压支架机液耦合架构

    Figure  1.   Powered support machine-hydraulic coupling architecture

    图  2   液压支架液压系统原理

    Figure  2.   Schematic of hydraulic system of powered support

    图  3   液压支架液压系统仿真模型

    Figure  3.   Simulation model of hydraulic support hydraulic system

    图  4   电液换向阀的流量−压差特性曲线

    Figure  4.   Flow-pressure characteristic curve of the electro-hydraulic directional valve

    图  5   液控单向阀的流量−压差特性曲线

    Figure  5.   Flow-pressure characteristic curve of hydraulic control check valve

    图  6   双向液压锁的流量−压差特性曲线

    Figure  6.   Flow-pressure characteristic curve of two-way hydraulic lock

    图  7   液压支架运动学分析示意

    Figure  7.   Schematic of kinematics analysis of powered support

    图  8   液压支架硬件在环仿真系统硬件系统

    Figure  8.   Hardware system of the hardware-in-the-loop simulation system of powered support

    图  9   液压支架硬件在环仿真系统软件系统及接口

    Figure  9.   Hardware-in-the-loop simulation system software system and interface of powered support

    图  10   液压支架试验装置实物

    Figure  10.   Physical of hydraulic support experimental device

    图  11   伸立柱过程硬件在环仿真值与试验值对比

    Figure  11.   Comparison of the simulation value and experimental value of hardware in the loop during column extension

    图  14   收平衡千斤顶过程硬件在环仿真值与试验值对比

    Figure  14.   Comparison of simulation value and experimental value of hardware in the loop during the balance jack retraction process

    图  12   降立柱过程硬件在环仿真值与试验值对比

    Figure  12.   Comparison of simulation value and experimental value of hardware in loop during column lowering

    图  13   伸平衡千斤顶过程硬件在环仿真值与试验值对比

    Figure  13.   Comparison of simulation value and experimental value of hardware in the loop during extending balance jack

    图  15   模型实时性分析

    Figure  15.   Real-time analysis of the model

    图  16   电磁换向阀模型控制信号及液压支架负载

    Figure  16.   Electromagnetic reversing valve model control signal and powered support load

    图  17   承载恒阻阶段载荷作用位置

    Figure  17.   Intention of the position of the load in the constant resistance stage

    图  18   冲击载荷作用下不同作用位置液压缸长度变化及立柱相关曲线

    Figure  18.   Change of hydraulic cylinder length and the correlation curve of column in different position under impact load

    图  19   冲击载荷作用下不同作用位置平衡千斤顶相关曲线

    Figure  19.   Balance jack correlation curve at different positions under impact load

    表  1   液压系统参数

    Table  1   Hydraulic system parameters

    液压元件 参数名称 数值
    电液换向阀 阀口完全开启的信号值 1
    最大开口特征流量/(L·min−1 200
    特征流量对应压差/ MPa 10.2
    阀的固有频率/Hz 80
    阀的阻尼比 0.8
    临界流数 1000
    液控单向阀 开启压力/MPa 0.01
    先导比 3.5
    最大开口特征流量/(L·min−1 600
    特征流量对应压差/ MPa 5.07
    临界流数 1000
    液压锁 开启压力/MPa 0.01
    先导比 3.5
    最大开口特征流量/(L·min−1 150
    特征流量对应压差/ MPa 5.6
    临界流数 1000
    泵站处溢流阀 开启压力/MPa 32
    流量压力梯度/(L·min−1·MPa−1) 500
    其他溢流阀 开启压力/MPa 42
    流量压力梯度/(L·min−1·MPa−1) 500
    立柱 活塞直径/mm 200
    活塞杆直径/mm 185
    平衡千斤顶 活塞直径/mm 80
    活塞杆直径/mm 60
    下载: 导出CSV

    表  2   ZY2400/12/20D型液压支架机械系统参数

    Table  2   ZY2400/12/20D powered support mechanicalsystem parameters

    参数类别 参数符号 数值
    各运动构件质量/kg m11 288
    m12 231
    m2 124
    m3 190
    m4 1133
    m6 2100
    各运动构件转动惯量/(kg·m2) I11 84.5
    I12 31.8
    I2 18.6
    I3 24.0
    I4 89.3
    I6 1 063.2
    各构件质心位置长度/mm LBZ11 426.97
    LCZ12 540.47
    LGZ2 322.40
    LFZ3 292.50
    LEZ4 407.89
    LHZ4 203.00
    LIZ4 190.35
    LDZ4 509.89
    LJZ6 634.98
    LCZ6 91.61
    LDZ6 793.92
    各构件质心位置角度/rad DCK 0.079 59
    DEZ4 0.366 87
    KZ6J 0.114 14
    CDZ6 0.009 25
    EDZ4 0.290 25
    DZ4I 1.587 73
    CDP −0.001 05
    ∠CDJ 0.592 54
    ∠IDE 0.064 23
    ∠DEH 0.000 1
    EZ4H 0.437 38
    DZ4E 2.484 48
    闭环矢量结构尺寸/mm LGH 630
    LFE 585
    LEH 239.93
    LED 870.44
    LJD 205.91
    LID 548.36
    LDC 702.57
    下载: 导出CSV
  • [1] 王国法,杜毅博,徐亚军,等. 中国煤炭开采技术及装备50年发展与创新实践−纪念《煤炭科学技术》创刊50周年[J]. 煤炭科学技术,2023,51(1):1−18.

    WANG Guofa,DU Yibo,XU Yajun,et al. Development and innovation practice of China coal mining technology and equipment for 50 years: Commemorate the 50th anniversary of the publication of Coal Science and Technology[J]. Coal Science and Technology,2023,51(1):1−18.

    [2] 王世博,葛世荣,邹文才,等. 综采工作面半实物仿真系统技术架构[J]. 智能矿山,2020,1(1):125−131.

    WANG Shibo,GE Shirong,ZOU Wencai,et al. Technology architecture of semi-physical simulation system for fully mechanized min-ing face[J]. Intelligent Mine,2020,1(1):125−131.

    [3] 任怀伟,巩师鑫,刘新华,等. 煤矿千米深井智能开采关键技术研究与应用[J]. 煤炭科学技术,2021,49(4):149−158.

    REN Huaiwei,GONG Shixin,LIU Xinhua,et al. Research and application of key technologies for intelligent mining of kilometer deep mine in coal mine[J]. Coal Science and Technology,2021,49(4):149−158.

    [4] 张 帆,李 闯,李 昊. 智能综采工作面刮板输送机直线度监测方法研究[J]. 煤炭科学技术,2022,50(4):246−255.

    ZHANG Fan,LI Chuang,LI Hao. Study on monitoring method of straightness of scraper conveyor in intelligent fully mechanized mining face[J]. Coal Science and Technology,2022,50(4):246−255.

    [5] 谢嘉成,王学文,杨兆建,等. 综采工作面煤层装备联合虚拟仿真技术构想与实践[J]. 煤炭科学技术,2019,47(5):162−168.

    XIE Jiacheng,WANG Xuewen,YANG Zhaojian,et al. Conception and practice of joint virtual simulation technology of coal seam equipment in fully mechanized mining face[J]. Coal Science and Technology,2019,47(5):162−168.

    [6] 王学文,崔 涛,谢嘉成,等. 考虑销轴间隙的液压支架运动虚拟仿真方法[J]. 煤炭科学技术,2021,49(2):186−193.

    WANG Xuewen,CUI Tao,XIE Jiacheng,et al. Virtual simulation method of hydraulic support movement considering pin clearance[J]. Coal Science and Technology,2021,49(2):186−193.

    [7] 于 波. 巴彦高勒煤矿采煤工作面自动化控制关键技术研究[J]. 煤炭科学技术,2021,49(S1):63−68.

    YU Bo. Research on key technologies of automatic control of mining face in bayangaole coal mine [J]. Coal Science and Technology,201,49(S1):63−68.

    [8] 万丽荣,刘 鹏,孟昭胜,等. 特大采高液压支架稳定性分析研究[J]. 煤炭科学技术,2017,45(1):148−153.

    WAN Lirong,LIU Peng,MENG Zhaosheng,et al. Stability analysis of hydraulic support with large mining height[J]. Coal Science and Technology,2017,45(1):148−153.

    [9]

    K Jagdesh,M Mike,K Mazaher,et al. Hardware-in-the-loop testing of a battery energy storage controller for harbour area smart grid:a case study for vaasa harbour grid[J]. Energy Reports,2023,9(S3):447-454.

    [10] 张旭辉, 杜永刚, 霍鑫健, 等. 综采工作面巡检机器人柔性轨道设计与运动学仿真[J]. 煤炭科学技术,2022,50(12):240−246.

    ZHANG Xuhui, DU Yonggang, HUO Xinjian, et al. Design of flexible track and kinematics simulation of inspec-tion robot in fully-mechanized mining face[J]. Coal Science and Technology,2022,50(12):240−246.

    [11] 张明德,刘 延,褚观耀. 基于卡尔曼滤波的车辆硬件在环系统的精确设计[J]. 自动化与仪器仪表,2021(10):80−83.

    ZHANG Mingde,LIU Yan,CHU Guanyao. Precise design of vehicle hardware in loop system based on kalman filter[J]. Automation & Instrumentation,2021(10):80−83.

    [12] 雍加望,冯能莲,陈 宁. 自动驾驶汽车硬件在环仿真实验平台研发[J]. 实验技术与管理,2021,38(2):127−131,135.

    YONG Jiawang,FENG Nenglian,CHEN Ning. Research and development of hardware in-loop simulation experimental platform for autonomous vehicle[J]. Experimental Technology and Management,2021,38(2):127−131,135.

    [13] 周治国,孙佳恩,于家宝,等. 一种可用于ZYNQ硬件在环仿真的永磁无刷直流电机测控系统(英文)[J]. 系统仿真学报,2020,32(11):2121−2128.

    ZHOU Zhiguo,SUN Jia’en,YU Jianguo,et al. A permanent magnet brushless DC motor measurement and control system for ZYNQ hardware-in-the-loop simulation[J]. Journal of System Simulation,2020,32(11):2121−2128.

    [14]

    W Zhou. Simulation of hydraulic system faults for marine machinery based on AMESim[J]. Journal of Coastal Research,2019,94(sp1):357−361. doi: 10.2112/SI94-073.1

    [15]

    Z Wei,Y Qinghao,X Yifan,et al. Research on control strategy of electro-hydraulic lifting system based on AMESim and Matlab[J]. Symmetry,2023,15(2):435−435.

    [16]

    W Jiawei,L Huanlong,Z JianyI. Research on start-up characteristics of electric motor driven reversely by hydraulic pump/motor[J]. Proceedings of the Institution of Mechanical Engineers,2023,237(5):1047−1064.

    [17] 王雅东,赵丽娟,张美晨. 采煤机自适应调高控制策略[J]. 煤炭学报,2022,47(9):3505−3522.

    WANG Yadong,ZHAO Lijuan,ZHANG Meichen. Adaptive elevation control strategy for shearer[J]. Journal of China Coal Society,2022,47(9):3505−3522.

    [18] 张建卓,王 洁,潘一山,等. 6500kN静-动复合加载液压冲击试验机研究[J]. 煤炭学报,2020,45(5):1648−1658.

    ZHANG Jianzhuo,WANG Jie,PAN Yishan,et al. Research on 6500kN static dynamic compound loading hydraulic impact testing machine[J]. Journal of China Coal Society,2020,45(5):1648−1658.

    [19]

    ZENG X T,WANG D L. Analysis of the influence of accumulator configuration on stable liquid supply[J]. International Journal of Simulation Modeling,2023,22(1):52−63.

    [20] 马光明,王世博,葛世荣,等. 基于联立约束法的液压支架动力学建模[J]. 计算机仿真,2022,39(3):308−314.

    MA Guangming,WANG Shibo,GE Shirong,et al. Dynamic modeling of hydraulic support based on simultaneous constraint method[J]. Computer Simulation,2022,39(3):308−314.

    [21]

    ZHAO Y,ZHAMG W,SANG D,et al. On joint hardware-in-the-loop simulation of aircraft control system and propulsion sys-tem[A]//2017 36th Chinese Control Conference (CCC). IEEE,2017:10387−10391.

  • 期刊类型引用(0)

    其他类型引用(1)

图(19)  /  表(2)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  4
  • PDF下载量:  10
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-03-04
  • 网络出版日期:  2024-04-01
  • 刊出日期:  2023-12-29

目录

/

返回文章
返回