高级检索

基于地震多属性融合技术的煤层巷道探测识别方法

彭凡, 杜文凤, 刘洪栓

彭凡, 杜文凤, 刘洪栓. 基于地震多属性融合技术的煤层巷道探测识别方法[J]. 煤炭科学技术, 2021, 49(6): 235-241.
引用本文: 彭凡, 杜文凤, 刘洪栓. 基于地震多属性融合技术的煤层巷道探测识别方法[J]. 煤炭科学技术, 2021, 49(6): 235-241.
PENG Fan, DU Wenfeng, LIU Hongshuan. Coal seam roadway identification method based on seismic multi-attribute fusion technology[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(6): 235-241.
Citation: PENG Fan, DU Wenfeng, LIU Hongshuan. Coal seam roadway identification method based on seismic multi-attribute fusion technology[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(6): 235-241.

基于地震多属性融合技术的煤层巷道探测识别方法

Coal seam roadway identification method based on seismic multi-attribute fusion technology

  • 摘要: 常规地震属性解释方法利用单一属性,或多种属性单独解释、相互印证的方式来识别地下异常地质体。虽然在一定程度上能够满足勘探要求,但客观存在准确性不高的问题。为了准确查明地下煤层巷道的展布情况和边界范围,提出了基于地震多属性融合技术的煤层巷道探测识别方法。设计了地质模型,利用正演模拟研究了巷道的地震响应特征。巷道是一种处于煤层之中且与煤层有着共同顶底板岩层的特殊地质空腔体,一般充水或空气。由于与顶底围岩间存在的较大波阻抗差异而形成的强反射界面,会导致巷道处反射波能量出现局部变强的现象。从正演结果中提取多种煤层地震属性表明,相对波阻抗和振幅类属性可以很好的描述这种异常。沿目的煤层从实际地震数据中提取了相对波阻抗、瞬时振幅和平均振幅3种不同地震属性,将这3种地震属性视为R、G、B颜色分量,利用RGB色彩融合技术对这3种地震属性进行融合。利用含有3种地震属性信息融合后的属性,成功查明了煤层巷道的平面位置及其边界范围,说明利用地震多属性融合技术来识别巷道是行之有效的。结果表明,相较于单一地震属性,地震多属性融合后的属性可以展现出更丰富的地质信息,巷道及边界更为清晰和连续,提高了解释精度,为探测识别煤矿巷道提供了依据。
    Abstract: Conventional seismic attribute interpretation method uses single seismic attribute, or multiple seismic attributes to separately interpret and verify each other to identify subsurface anomalous geological bodies. Although it can meet the exploration requirements to a certain extent, the accuracy is unsatisfactory. In order to accurately identify the distribution and boundary of the coal seamroadway, an interpretation method based on seismic multi-attribute fusion technology is proposed. A geological model was designed, and itsseismic response characteristics were studied. Aroadway can be regarded as a special geological hollow body that is in the coal seam and has the common top and bottom rock formation with the coal seam. Generally, the roadway is filled with water or air. The strong reflection interface formed due to the obvious impedance difference between the roadway and the surrounding rock will lead to the phenomenon that the reflected wave energy at the roadway becomes stronger locally. Extracting a variety of seismic attributes from the forward results showed that the relative acoustic impedance and amplitude attributes can well describe the seismic reflection anomalies caused by the roadway. Three different seismic attributes including relative acoustic impedance, instantaneous amplitude and mean amplitude were extracted from the seismic volume along the target coal seam. These three seismic attributes were regarded as R, G, and B color components, respectively, and fused by RGB color fusion technology to obtain afusion attribute including three seismic attribute information. The position and boundary of the coal seam roadway wasfound out successfully by using the fusedattributes, which showed that it is effective to use seismic multi-attribute fusion technology to identify roadway. The results showed that, compared with the single seismic attribute, the attribute after the fusion of multiple seismic attributes can show more geological information, and the roadway and its boundary were clearer and more continuous, which improved the interpretation accuracy and provided a basis for detecting and identifying coal mine roadway.
  •   正演地质模型

      正演模拟结果

      目的煤层地震属性

      不同RGB顺序融合结果

      地震多属性融合结果

      巷道识别结果与实际位置对比

  • 期刊类型引用(7)

    1. 殷文. 低勘探程度地区层序地层分析及沉积规律——以五墩凹陷侏罗系为例. 吉林大学学报(地球科学版). 2025(01): 70-83 . 百度学术
    2. 王勃,李晓昭,申思洪任,王滢,舍子龙,苏玉彬,左原宾. 矿山地下空间探测技术现状及发展趋势. 绿色矿山. 2024(03): 273-290 . 百度学术
    3. 郝帅,王怀秀,刘最亮. 基于K-means SMOTE和随机森林算法的陷落柱识别模型. 煤矿安全. 2023(02): 174-180 . 百度学术
    4. 杜文凤. 三维地震可视化解释在大同矿区的应用. 同煤科技. 2022(02): 1-4 . 百度学术
    5. 任辰锋. 多场多属性信息融合精细定位煤矿导水通道技术研究. 煤炭工程. 2022(05): 131-136 . 百度学术
    6. 刘淑芬,张海翔,李占东,冯加志,吕云舒. 地震属性融合定量储层预测实验设计. 实验技术与管理. 2022(07): 181-186+195 . 百度学术
    7. 丁同福,汪敏华,刘满才,朱昌淮,文东明,陈晓雷. 叠层多分支水平井精准建造陷落柱堵水塞技术. 煤炭科学技术. 2022(07): 244-251 . 本站查看

    其他类型引用(7)

图(6)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  1
  • PDF下载量:  314
  • 被引次数: 14
出版历程
  • 网络出版日期:  2023-04-02
  • 发布日期:  2021-06-24

目录

    /

    返回文章
    返回