高级检索

基于循环神经网络的煤层气井产气量预测方法研究

董维强, 孟召平, 沈振, 宗志敏, 陈涛

董维强, 孟召平, 沈振, 宗志敏, 陈涛. 基于循环神经网络的煤层气井产气量预测方法研究[J]. 煤炭科学技术, 2021, 49(9): 176-183.
引用本文: 董维强, 孟召平, 沈振, 宗志敏, 陈涛. 基于循环神经网络的煤层气井产气量预测方法研究[J]. 煤炭科学技术, 2021, 49(9): 176-183.
DONG Weiqiang, MENG Zhaoping, SHEN Zhen, ZONG Zhimin, CHEN Tao. Research on coalbed methane well gas production forecast methodbased on cyclic neural network[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(9): 176-183.
Citation: DONG Weiqiang, MENG Zhaoping, SHEN Zhen, ZONG Zhimin, CHEN Tao. Research on coalbed methane well gas production forecast methodbased on cyclic neural network[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(9): 176-183.

基于循环神经网络的煤层气井产气量预测方法研究

Research on coalbed methane well gas production forecast methodbased on cyclic neural network

  • 摘要: 煤层气井产气量是衡量一口煤层气井产气能力和工程开发效果的重要指标,准确预测日产气量是保证煤层气高效生产的一个关键问题。以沁水盆地南部郑庄区块3号煤层为研究对象,选取煤层气井排采动态参数,如井底流压、液柱高度、套压、日产水量和冲次作为自变量,分析了日产气量与这些排采参数之间的相关性,建立了基于循环神经网络的煤层气井产气量预测模型与方法。研究结果表明,煤层气井日产气量与冲次呈正相关性,日产气量与井底流压、套压、液柱高度和日产水量呈负相关性。基于深度学习随机森林算法中的特征重要性分析,研究了排采动态参数与日产气量之间的非线性关系以及预测模型中对日产气量的贡献率,得到了排采参数对日产气量影响的重要性排序表现为:井底流压>液柱高度>套压>日产水量>冲次。在此基础上,基于循环神经网络改进的长短时记忆神经网络预测模型,将Z4-026井排采数据代入模型计算,预测了煤层气井未来60 d产气量情况,并将预测结果与传统的支持向量机回归模型、随机森林回归模型以及BP神经网络模型对比,发现改进的长短时记忆神经网络预测模型,拟合效果相对较好,实际日产气量与预测日产气量之间的误差小于5%。在郑庄区块5口煤层气井的产气量预测分析中,相对误差小于10%。因此该方法将为煤层气井产气量预测和制定合理的排采制度提供了有效途径。
    Abstract: The gas production of a coalbed methane well is an important indicator to measure the gas production capacity of a coalbed methane well and the effect of engineering development. Accurately predicting the daily gas production is a key issue to ensure the efficient production of coalbed methane. Taking the No.3 coal seam of Zhengzhuang block in southern Qinshui Basin as the research object, the dynamic parameters of CBM well drainage such as bottom hole flow pressure, liquid column height, casing pressure, daily water production and stroke frequency, were selected as independent variables to analyze the daily gas production. The correlation between these drainage parameters established a CBM well gas production prediction model and method based on cyclic neural network. The results show that, there is a positive correlation between the gas production of CBM well and stroke, gas production is negatively correlated with bottom hole flow pressure, casing pressure, liquid column height and daily water production. Based on feature importance analysis in deep learning random forest algorithm, the nonlinear relationship between the drainage and production parameters and daily gas production was studied and the contribution rate of drainage parameters to daily gas production in forecast model, the order of importance of the influence of drainage and production parameters on daily gas production was shown as follows: bottom hole flow pressure >liquid column height >casing pressure >daily water production > stroke frequency. On that basis, an improved prediction model of short and long time memory based on cyclic neural network, substitute the drainage and production data of Well Z4-026 into the model for calculation, the gas production of CBM Wells in the next 60 days was predicted, the prediction results were compared with the traditional support vector machine regression model, random forest regression model and BP neural network model, the prediction results are compared with the traditional support vector machine regression model, random forest regression model and BP neural network model. It is found that the improved shortand longterm memory neural network prediction model has relatively good fitting effect. The error between actual and forecast production is less than 5%. In the prediction and analysis of gas production of five CBM wells in Zhengzhuang block, the relative error is less than 10%. Therefore, this method will provide an effective way for the prediction of CBM gas production and the formulation of reasonable drainage and production system.
  •   RNN结构及其隐含层单元展开

      长短时记忆神经网络记忆单元结构

      日产气量与排采参数之间关系

      模型训练集和验证集损失函数下降曲线

      Z4-026井日产气量实际值与拟合值对比

      4种机器学习方法日产气量实际值与拟合值对比

  • 期刊类型引用(10)

    1. 张晓蕾,高进东,赵开功,李严肃,李长明,谢子彬. 煤矿事故智能应急预案生成方法研究. 矿业安全与环保. 2024(01): 78-85+91 . 百度学术
    2. 赵中昊,冯彬浩,曾成,杨梦. 基于文本挖掘的煤矿事故案例分析与可视化研究. 电脑与信息技术. 2024(03): 63-67 . 百度学术
    3. 李长明,赵开功,张晓蕾,王睿迪,李严肃. 煤矿智能化项目风险评价云模型及其应用. 中国安全科学学报. 2024(05): 168-174 . 百度学术
    4. 王启飞,赵逸涵,刘帅,刘昊霖,孙英峰,李成武. 煤矿事故大数据驱动的风险治理模式研究综述. 中国安全科学学报. 2024(07): 28-37 . 百度学术
    5. 魏珂. 多功能作业车防倾覆稳定系统关键技术研究. 工矿自动化. 2024(S2): 272-276 . 百度学术
    6. 李全贵,李建波,胡千庭,吴江杰,郑梦浩,李赏,周俊江. 基于案例推理的煤与瓦斯突出预警模型研究. 矿业安全与环保. 2023(05): 24-29+36 . 百度学术
    7. 盛伟,关城,张苏,傅炜,王金贵. 基于情景相似的电网企业台风灾害应急决策. 中国安全科学学报. 2023(11): 174-180 . 百度学术
    8. 霍建军,杨景惠,孙波. 综采辅巷多通道回撤工艺通风系统管理研究. 煤炭科学技术. 2022(S1): 142-146 . 本站查看
    9. 陈赟,陈玉斌,刘湘慧. 基于CBDT和KNN的地铁施工坍塌事故应急措施生成研究. 长沙理工大学学报(自然科学版). 2021(03): 45-54 . 百度学术
    10. 庞义辉. 液压支架支护状态感知与数据处理技术. 工矿自动化. 2021(11): 66-73 . 百度学术

    其他类型引用(8)

图(6)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  19
  • PDF下载量:  444
  • 被引次数: 18
出版历程
  • 网络出版日期:  2023-04-02
  • 发布日期:  2021-09-24

目录

    /

    返回文章
    返回