高级检索

煤矿冲击地压防治体系中的关键问题探讨

姜福兴, 张翔, 朱斯陶

姜福兴,张 翔,朱斯陶. 煤矿冲击地压防治体系中的关键问题探讨[J]. 煤炭科学技术,2023,51(1):203−213. DOI: 10.13199/j.cnki.cst.2022-1483
引用本文: 姜福兴,张 翔,朱斯陶. 煤矿冲击地压防治体系中的关键问题探讨[J]. 煤炭科学技术,2023,51(1):203−213. DOI: 10.13199/j.cnki.cst.2022-1483
JIANG Fuxing,ZHANG Xiang,ZHU Sitao. Discussion on key problems in prevention and control system of coal mine rock burst[J]. Coal Science and Technology,2023,51(1):203−213. DOI: 10.13199/j.cnki.cst.2022-1483
Citation: JIANG Fuxing,ZHANG Xiang,ZHU Sitao. Discussion on key problems in prevention and control system of coal mine rock burst[J]. Coal Science and Technology,2023,51(1):203−213. DOI: 10.13199/j.cnki.cst.2022-1483

煤矿冲击地压防治体系中的关键问题探讨

基金项目: 

国家自然科学基金重点资助项目(51634001);国家自然科学青年基金资助项目(51904017);山东省重大科技创新工程资助项目(2019SDZY02)

详细信息
    作者简介:

    姜福兴: (1962—),男,江苏常州人,教授,博士生导师,,博士。E-mail:jiangfuxing1@163.com

    通讯作者:

    张翔: (1993—),男,山东日照人,博士研究生。E-mail:ckzhangxiang@163.com

  • 中图分类号: TD324

Discussion on key problems in prevention and control system of coal mine rock burst

Funds: 

National Natural Science Foundation of China (51634001); National Natural Science Foundation of China (51904017); Major Science and Technology Innovation Project of Shandong Province (2019SDZY02)

  • 摘要:

    针对我国煤矿冲击地压的防治现状,对煤矿冲击地压防治体系中的几个关键问题进行了探讨,得到以下主要结论:从灾害控制的角度界定了冲击地压与矿震及其相互关系,通过主导力源与煤层-围岩结构的分类组合,提出了32类冲击地压和5类矿震的分类,明确了冲击地压以消除灾害为治理目标,而矿震则需要根据致灾程度分级治理;提出并量化了基础应力影响指数、附加应力影响指数、冲击倾向性影响指数和支护强度影响指数4项冲击危险性评价指标,设计了包含应力条件、冲击倾向性条件和支护条件的冲击危险性多参量耦合评价方法;探讨了震动场、应力场和位移场3级冲击危险监测预警机理,提出了单参量特殊预警与多参量常规预警相结合的预警机制,设计了掘进影响区、回采影响区和不受采掘影响区的分区联合监测方法;根据多元评价指标中降低各因素冲击危险性的要求,提出了“低应力”“低扰动”“低倾向”“强支护”的冲击地压防治路线,设计了基于应力和围岩结构分类的局部卸压和解危措施的组合技术;针对矿震诱发井下冲击地压和地面震动损害的动力灾害,将此类灾害的治理等级划分为预防治理、对症治理和源头治理3级,设计了源头减震、分类治灾、卸压抗震的多级防控技术体系。

    Abstract:

    According to the present situation of prevention and control of coal mine rock burst in China, several key problems in the prevention and control system of coal mine rock burst are discussed, and the following main conclusions are obtained: from the perspective of disaster control, rock burst and mine earthquake and their relationship are defined, and 32 types of rock burst and 5 types of mine earthquake are put forward through the classification and combination of main force source and coal seam-surrounding rock structure, and it is clear that the goal of rock burst is to eliminate disasters, while mine earthquake needs to be treated according to the degree of disaster; Four impact risk evaluation indexes, namely, foundation stress impact index, additional stress impact index, impact tendency impact index and support strength impact index, are quantified, and a multi-parameter coupling evaluation method of impact risk including stress condition, impact tendency condition and support condition is designed. This paper probes into the monitoring and early warning mechanism of three-level impact hazards in vibration field, stress field and displacement field, puts forward an early warning mechanism combining single-parameter special warning with multi-parameter conventional warning, and designs a joint monitoring method for the excavation-affected area, mining-affected area and non-excavation-affected area. According to the requirements of reducing the impact risk of various factors in multiple evaluation indexes, the prevention and control routes of rock burst with low stress, low disturbance, low inclination and strong support are put forward, and the combination technology of local pressure relief and risk relief measures based on stress and surrounding rock structure classification is designed. In view of the dynamic disasters caused by underground rock burst and ground vibration caused by mine earthquake, the governance levels of such disasters are divided into three levels: prevention and control, symptomatic control and source control, and a multi-level prevention and control technology system of source shock absorption, classified disaster treatment, pressure relief and earthquake resistance is designed.

  • 图  1   冲击地压与矿震综合分类方法

    Figure  1.   Comprehensive classification method of rock burst and mine earthquake

    图  2   采掘空间煤层-围岩结构类型

    Figure  2.   Structure type of coal seam - surrounding rock in mining space

    图  3   冲击危险性多参量耦合评价方案

    Figure  3.   Multi-factor coupling evaluation scheme of impact hazard

    图  4   冲击地压三级监测预警原理

    Figure  4.   Three-level monitoring and early warning principle of rock burst

    图  5   冲击危险分类分区监测预警流程

    Figure  5.   Monitoring and warning process of impact hazard classification and zoning

    图  6   冲击地压防治路线示意

    Figure  6.   Rock burst prevention route diagram

    图  7   矿震诱发型动力灾害模型示意

    Figure  7.   Mine earthquake induced dynamic disaster model diagram

    图  8   矿震诱发型动力灾害危险等级划分

    Figure  8.   Risk classification of dynamic disaster induced by mine earthquake

    图  9   矿震诱发型动力灾害防治体系

    Figure  9.   Prevention and control system of mine earthquake induced dynamic disasters

    表  1   Ic与冲击危险性关系

    Table  1   Relationship between Ic and impact hazard

    Ic<11≤Ic<1.51.5≤Ic<2≥2
    冲击危险性中等
    下载: 导出CSV

    表  2   WET与冲击危险性关系

    Table  2   Relationship between WET and impact hazard

    WET<22≤WET<3.53.5≤WET<5≥5
    冲击危险性中等
    下载: 导出CSV

    表  3   S与冲击危险性关系

    Table  3   Relationship between S and impact hazard

    S/能级<22≤S<66≤S<9≥9
    冲击危险性中等
    下载: 导出CSV

    表  4   冲击危险性工程判据指标

    Table  4   Engineering criterion index of impact hazard

    U<0.60.6≤U<0.750.75≤U<0.9≥0.9
    冲击危险性中等
    下载: 导出CSV

    表  5   基于工程分类的局部卸压、解危措施组合参考

    Table  5   Reference of combination of local pressure relief and risk relief measures based on engineering classification

    围岩类型不同主导力源局部卸压、解危措施
    自重应力煤柱应力构造应力开采残余应力采掘扰动应力震动附加应力
    厚煤层沿顶结构B/DC/DB/DB/DA/B/DB/D
    全煤结构B/D/GC/D/GB/D/GB/D/GA/B/D/GA/B/D/G
    沿底结构B/GC/GB/GB/GA/B/GA/B/G
    破底半煤岩结构B/GC/GB/GB/GA/B/GA/B/G
    中厚煤层沿顶沿底结构BCBBA/BB
    软底结构E/FE/FE/FE/FA/E/FE/F
    软顶结构F/GF/GF/GF/GA/F/GA/F/G
    薄煤层破顶破底结构CCCCCC
    倾斜煤层厚底煤结构B/D/GC/D/GB/D/GA/B/D/GA/B/D/GA/B/D/G
    薄底煤结构B/GC/GB/GA/B/GA/B/GA/B/G
    注:A为压裂或爆破断顶;B/C为帮部钻孔/爆破;D/E为钻孔/爆破断底;F为煤层注水;G为补强支护。
    下载: 导出CSV

    表  6   矿震三级治理等级划分

    Table  6   Classification of three-level governance of mine earthquake

    灾害等级建筑损害明显震感微弱震感无震感
    强冲击6543
    中等冲击5432
    弱冲击4321
    无冲击3210
    下载: 导出CSV
  • [1] 齐庆新,王守光,李海涛,等. 冲击地压应力流理论及其数值实现[J]. 煤炭学报,2022,47(1):172−179. doi: 10.13225/j.cnki.jccs.YG21.2003

    QI Qingxin,WANG Shouguang,LI Haitao,et al. Stress flow theory for coal bump and its numerical implementation[J]. Journal of China Coal Society,2022,47(1):172−179. doi: 10.13225/j.cnki.jccs.YG21.2003

    [2] 窦林名,田鑫元,曹安业,等. 我国煤矿冲击地压防治现状与难题[J]. 煤炭学报,2022,47(1):152−171. doi: 10.13225/j.cnki.jccs.yg21.1873

    DOU Linming,TIAN Xinyuan,CAO Anye,et al. Present situation and problem of coal mine rock burst prevention and control in China[J]. Journal of China Coal Society,2022,47(1):152−171. doi: 10.13225/j.cnki.jccs.yg21.1873

    [3] 潘一山. 煤矿冲击地压扰动响应失稳理论及应用[J]. 煤炭学报,2018,43(8):2091−2098. doi: 10.13225/j.cnki.jccs.2018.0604

    PAN Yishan. Disturbance response instability theory of rock burst in coal mine[J]. Journal of China Coal Society,2018,43(8):2091−2098. doi: 10.13225/j.cnki.jccs.2018.0604

    [4] 潘俊锋,闫耀东,马小辉,等. 考虑时变特性的煤层大巷群冲击地压机理及防治[J]. 煤炭学报,2022,47(9):3384−3395.

    PAN Junfeng,YAN Yaodong,MA Xiaohui,et al. Mechanism and prevention of rock burst in coal seam roadway group considering time-varying characteristics[J]. Journal of China Coal Society,2022,47(9):3384−3395.

    [5] 刘金海,姜福兴,朱斯陶,等. 典型深厚表土煤层冲击地压模式研究[J]. 煤炭学报,2020,45(5):1753−1763. doi: 10.13225/j.cnki.jccs.2020.0367

    LIU Jinhai,JIANG Fuxing,ZHU Sitao,et al. Rock burst model of typical coal seam under thick alluvium[J]. Journal of China Coal Society,2020,45(5):1753−1763. doi: 10.13225/j.cnki.jccs.2020.0367

    [6] 王恩元,冯俊军,张奇明,等. 冲击地压应力波作用机理[J]. 煤炭学报,2020,45(1):100−110.

    WANG Enyuan,FENG Junjun,ZHANG Qiming,et al. Mechanism of rockbust stress wave[J]. Journal of China Coal Society,2020,45(1):100−110.

    [7] 谭云亮,张 明,徐 强,等. 坚硬顶板型冲击地压发生机理及监测预警研究[J]. 煤炭科学技术,2019,47(1):166−172.

    TAN Yunliang,ZHANG Ming,XU Qiang,et al. Study on occurrence mechanism and monitoring and early warning of rock burst caused by hard roof[J]. Coal Science and Technology,2019,47(1):166−172.

    [8] 姜福兴,曲效成,王颜亮,等. 基于云计算的煤矿冲击地压监控预警技术研究[J]. 煤炭科学技术,2018,46(1):199−206,244.

    JIANG Fuxing,QU Xiaocheng,WANG Yanliang,et al. Study on monitoring & control and early warning technology of mine pressure bump based on cloud computing[J]. Coal Science and Technology,2018,46(1):199−206,244.

    [9] 何学秋,陈建强,宋大钊,等. 典型近直立煤层群冲击地压机理及监测预警研究[J]. 煤炭科学技术,2021,49(6):13−22.

    HE Xuqiu,CHEN Jianqiang,SONG Dazhao,et al. Study on mechanism of rock burst and early warning of typical steeply inclined coal seams[J]. Coal Science and Technology,2021,49(6):13−22.

    [10] 潘俊锋,王书文,刘少虹,等. 浅部矿井静载荷主导型冲击地压监测方法与实践[J]. 煤炭科学技术,2016,44(6):64−70,98.

    PAN Junfeng,WANG Shuwen,LIU Shaohong,et al. Practices and monitoring method of static loading dominant type mine strata pressure bump in shallow depth mine[J]. Coal Science and Technology,2016,44(6):64−70,98.

    [11] 朱斯陶,姜福兴,刘金海,等. 复合厚煤层巷道掘进冲击地压机制及监测预警技术[J]. 煤炭学报,2020,45(5):1659−1670.

    ZHU Sitao,JIANG Fuxing,LIU Jinhai,et al. Mechanism and monitoring and early warning technology of rock burst in the heading face of compound thick coal seam[J]. Journal of China Coal Society,2020,45(5):1659−1670.

    [12] 马斌文,邓志刚,赵善坤,等. 钻孔卸压防治冲击地压机理及影响因素分析[J]. 煤炭科学技术,2020,48(5):35−40.

    MA Binwen,DENG Zhigang,ZHAO Shankun,et al. Analysis on mechanism and influencing factors of drilling pressure relief to prevent rock burst[J]. Coal Science and Technology,2020,48(5):35−40.

    [13] 姜福兴,刘 烨,刘 军,等. 冲击地压煤层局部保护层开采的减压机理研究[J]. 岩土工程学报,2019,41(2):368−375.

    JIANG Fuxing,LIU Ye,LIU Jun,et al. Pressure-releasing mechanism of local protective layer in coal seam with rock burst[J]. Chinese Journal of Geotechnical Engineering,2019,41(2):368−375.

    [14] 曹安业,朱亮亮,杜中雨,等. 巷道底板冲击控制原理与解危技术研究[J]. 采矿与安全工程学报,2021,49(11):93−98.

    CAO Anye,ZHU Liangliang,DU Zhongyu,et al. Control principle and pressure-relief technique of rock burst occurred in roadway floor[J]. Journal of Mining & Safety Engineering,2021,49(11):93−98.

    [15] 孔令海,邓志刚,梁开山,等. 深部煤巷顶帮控制防治冲击地压研究[J]. 煤炭科学技术,2018,46(10):83−89.

    KONG Linghai,DENG Zhigang,LIANG Kaishan,et al. Study on mine rock burst prevention and control with roof and sidewalls control in mine deep seam gateway[J]. Coal Science and Technology,2018,46(10):83−89.

    [16] 翟明华,姜福兴,齐庆新,等. 冲击地压分类防治体系研究与应用[J]. 煤炭学报,2017,42(12):3116−3124.

    QU Minghua,JIANG Fuxing,QI Qingxin,et al. Research and practice of rock burst classified control system[J]. Journal of China Coal Society,2017,42(12):3116−3124.

    [17] 姜耀东,潘一山,姜福兴,等. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报,2014,39(2):205−213.

    JIANG Yaodong,PAN Yishan,JIANG Fuxing,et al. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society,2014,39(2):205−213.

    [18] 潘一山,李忠华,章梦涛. 我国冲击地压分布、类型、机理及防治研究[J]. 岩石力学与工程学报,2003,22(11):1844−1851. doi: 10.3321/j.issn:1000-6915.2003.11.019

    PAN Yishan,LI Zhonghua,ZHANG Mengtao,et al. Distribution, type, mechanism and prevention of rockbrust in China[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(11):1844−1851. doi: 10.3321/j.issn:1000-6915.2003.11.019

    [19] 齐庆新,陈尚本,王怀新,等. 冲击地压、岩爆、矿震的关系及其数值模拟研究[J]. 岩石力学与工程学报,2003,22(11):1852−1858. doi: 10.3321/j.issn:1000-6915.2003.11.020

    QI Qingxin,CHEN Shangben,WANG Huaixin,et al. Study on the relations among coal bump, rock burst and mining tremor with numerical simulation[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(11):1852−1858. doi: 10.3321/j.issn:1000-6915.2003.11.020

    [20] 窦林名,曹晋荣,曹安业,等. 煤矿矿震类型及震动波传播规律研究[J]. 煤炭科学技术,2021,49(6):23−31.

    DOU Linming,CAO Jinrong,CAO Anye,et al. Research on types of coal mine tremor and propagation law of shock waves[J]. Coal Science and Technology,2021,49(6):23−31.

    [21] 杨光宇,姜福兴,李 琳,等. 煤矿冲击地压危险性的工程判据研究[J]. 采矿与安全工程学报,2018,35(6):1200−1207,1216.

    YANG Guangyu,JIANG Fuxing,CAO Anye,et al. Engineering criterion study on coal mining rock burst hazard[J]. Journal of Mining & Safety Engineering,2018,35(6):1200−1207,1216.

    [22] 姜福兴,刘 懿,翟明华,等. 基于应力与围岩分类的冲击地压危险性评价研究[J]. 岩石力学与工程学报,2017,36(5):1041−1052.

    JIANG Fuxing,LIU Yi,QU Minghua,et al. Evaluation of rock burst hazard on the classification of stress and surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(5):1041−1052.

    [23] 朱斯陶,刘金海,姜福兴,等. 我国煤矿顶板运动型矿震及诱发灾害分类、预测与防控[J]. 煤炭学报,2022,47(2):807−816. doi: 10.13225/j.cnki.jccs.XR21.1800

    ZHU Sitao,LIU Jinhai,JIANG Fuxing,et al. Classification, prediction, prevention and control of roof movement-type mine earthquakes and induced disasters in China coal mines[J]. Journal of China Coal Society,2022,47(2):807−816. doi: 10.13225/j.cnki.jccs.XR21.1800

    [24] 刘金海,孙 浩,田昭军,等. 煤矿冲击地压的推采速度效应及其动态调控[J]. 煤炭学报,2018,43(7):1858−1865.

    LIU Jinhai,SUN Hao,TIAN Zhaojun,et al. Effect of advance speed on rock burst in coal mines and its dynamic contral method[J]. Journal of China Coal Society,2018,43(7):1858−1865.

    [25] 杨光宇,温经林,李 琳,等. 特厚煤层巷道冲击特征及冲击危险性评价方法研究[J]. 中国安全生产科学技术,2019,15(5):92−98. doi: 10.11731/j.issn.1673-193x.2019.05.015

    YANG Guangyu,WEN Jinglin,LI Lin,et al. Study on rock burst characteristics of roadway in extra-thick coal seam and risk assessment method of rock burst[J]. Journal of Safety Science and Technology,2019,15(5):92−98. doi: 10.11731/j.issn.1673-193x.2019.05.015

    [26] 姜福兴,杨光宇,魏全德,等. 煤矿复合动力灾害危险性实时预警平台研究与展望[J]. 煤炭学报,2018,43(2):333−339.

    JIANG Fuxing,YANG Guangyu,WEI Quande,et al. Study and prospect on coal mine composite dynamic disaster real-time prewarning platform[J]. Journal of China Coal Society,2018,43(2):333−339.

    [27] GB 6722—2014, 爆破安全规程[S]. 北京: 中国标准出版社, 2014.
    [28] 高明仕,赵一超,温颖远,等. 震源扰动型巷道冲击矿压破坏力能准则及实践[J]. 煤炭学报,2016,41(4):808−814.

    GAO Mingshi,ZHAO Yichao,WEN Yingyuan,et al. Stress and energy criterion of the roadway destruction subjected to disturbance type rock burst and its practice[J]. Journal of China Coal Society,2016,41(4):808−814.

  • 期刊类型引用(7)

    1. 殷文. 低勘探程度地区层序地层分析及沉积规律——以五墩凹陷侏罗系为例. 吉林大学学报(地球科学版). 2025(01): 70-83 . 百度学术
    2. 王勃,李晓昭,申思洪任,王滢,舍子龙,苏玉彬,左原宾. 矿山地下空间探测技术现状及发展趋势. 绿色矿山. 2024(03): 273-290 . 百度学术
    3. 郝帅,王怀秀,刘最亮. 基于K-means SMOTE和随机森林算法的陷落柱识别模型. 煤矿安全. 2023(02): 174-180 . 百度学术
    4. 杜文凤. 三维地震可视化解释在大同矿区的应用. 同煤科技. 2022(02): 1-4 . 百度学术
    5. 任辰锋. 多场多属性信息融合精细定位煤矿导水通道技术研究. 煤炭工程. 2022(05): 131-136 . 百度学术
    6. 刘淑芬,张海翔,李占东,冯加志,吕云舒. 地震属性融合定量储层预测实验设计. 实验技术与管理. 2022(07): 181-186+195 . 百度学术
    7. 丁同福,汪敏华,刘满才,朱昌淮,文东明,陈晓雷. 叠层多分支水平井精准建造陷落柱堵水塞技术. 煤炭科学技术. 2022(07): 244-251 . 本站查看

    其他类型引用(7)

图(9)  /  表(6)
计量
  • 文章访问数:  703
  • HTML全文浏览量:  14
  • PDF下载量:  755
  • 被引次数: 14
出版历程
  • 收稿日期:  2022-09-01
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-01-29

目录

    /

    返回文章
    返回