高级检索

基于Citespace的煤与瓦斯共采研究知识图谱分析

徐超, 杨通, 王凯, 吴世敏, 付强, 周爱桃

徐 超,杨 通,王 凯,等. 基于Citespace的煤与瓦斯共采研究知识图谱分析[J]. 煤炭科学技术,2023,51(S1):86−95. DOI: 10.13199/j.cnki.cst.2022-0971
引用本文: 徐 超,杨 通,王 凯,等. 基于Citespace的煤与瓦斯共采研究知识图谱分析[J]. 煤炭科学技术,2023,51(S1):86−95. DOI: 10.13199/j.cnki.cst.2022-0971
XU Chao,YANG Tong,WANG Kai,et al. Knowledge map analysis of coal and gas co-mining based on Citespace[J]. Coal Science and Technology,2023,51(S1):86−95. DOI: 10.13199/j.cnki.cst.2022-0971
Citation: XU Chao,YANG Tong,WANG Kai,et al. Knowledge map analysis of coal and gas co-mining based on Citespace[J]. Coal Science and Technology,2023,51(S1):86−95. DOI: 10.13199/j.cnki.cst.2022-0971

基于Citespace的煤与瓦斯共采研究知识图谱分析

基金项目: 

国家自然科学基金资助项目(51974321,52130409);国家自然科学基金创新研究群体资助项目(52121003)

详细信息
    作者简介:

    徐超: (1988—),男,山东泰安人,副教授,博士生导师。E-mail:xuchao@cumtb.edu.cn

    通讯作者:

    杨通: (1995—),男,山西运城人,博士研究生。E-mail:yangtong3911@126.com

  • 中图分类号: TD712

Knowledge map analysis of coal and gas co-mining based on Citespace

Funds: 

National Natural Science Foundation of China (51974321,52130409); National Natural Science Foundation of China Innovation Research Group Project (52121003)

  • 摘要:

    为进一步了解我国煤与瓦斯共采领域的整体研究进展,以中国知网(CNKI)数据库作为样本来源,借助Citespace软件绘制出发文量、研究机构以及关键词聚类等知识图谱,对我国煤与瓦斯共采研究状况进行可视化分析。研究表明:在时间分布上,经历了缓慢萌芽期−快速成长期−平稳成熟期3个发展阶段,尤其是在2000—2014年之间开启了该领域快速发展的黄金时代,核心期刊和全部期刊的发文量均得到快速增长,反映出该阶段处于我国煤与瓦斯共采研究的高潮期;在合作网络方面,主要研究机构包括中国煤炭科工集团、中国矿业大学、河南理工大学等机构,均是国内从事煤炭领域研究的重要科研机构;结合关键词聚类和相关文献进行梳理分析,发现我国煤与瓦斯共采研究主要包括数值模拟、瓦斯、采空区和水力压裂等高频关键词,通过提取突现强度较高的前20位关键词,并按照突现年份重新排序,得到突现词随时间推进的演化情况;形成了以煤层增透、水力冲孔、以孔代巷以及碎软煤层等为主要突现关键词成为近年来研究人员高度关注的对象,表征了其是当前的研究热点,并有成为未来发展和关注的研究趋势。在此基础上,利用可视化知识图谱,挖掘研究领域的前沿热点和发展趋势,以期为我国煤与瓦斯共采研究提供科学参考。

    Abstract:

    In order to further understand the overall research progress in the field of coal and gas co-mining in China, taking CNKI database as the sample source, with the help of Citespace software, the knowledge maps such as the articles published, research institutions and keyword clustering are drawn to visually analyze the research status of coal and gas co-mining in China. The results show that the time distribution has experienced three stages: slow germination period, rapid growth period, and stable maturity period, especially the golden age of rapid development in this field between 2000 and 2014. The number of publications in core journals and all journals has been growing rapidly, which reflects that this stage is at the climax of coal and gas co-mining research in China. In terms of cooperation network, the main research institutions include China Coal Science and Engineering Group, China University of Mining and Technology, Henan Polytechnic University and other institutions, which are important research institutions in the field of coal in China. Combined with keyword clustering and related literature analysis, the research on coal and gas co-mining in China mainly includes high-frequency keywords such as numerical simulation, gas, goaf and hydraulic fracturing. By extracting the top 20 keywords with high burst intensity and reordering them according to the burst years, the evolution of burst words with time is obtained. The keywords such as coal seam permeability enhancement, hydraulic punching, replacing roadways with holes and breaking soft coal seams have become highly concerning to researchers in recent years. It is characterized as the current research hotspot and has become the future development and research trend. On this basis, the frontier hotspots and development trends in the research field are excavated by using the visual knowledge maps, so as to provide scientific reference for the research on coal and gas co-mining in China.

  • 图  1   煤与瓦斯共采领域发文量趋势及期刊分布情况

    Figure  1.   The trend of articles published and distribution of journal in coal and gas co-mining field

    图  2   研究机构分布知识图谱

    Figure  2.   Knowledge map of research institutions distribution

    图  3   关键词知识图谱

    Figure  3.   Knowledge map of keywords

    图  4   关键词聚类

    Figure  4.   Keywords clustering

    图  5   关键词时区分布

    Figure  5.   Timezone distribution of keywords

    表  1   发文量位于前10位的研究机构排名

    Table  1   Top 10 articles published with the strongest research institutions

    编号研究机构发文量/篇
    1中煤科工集团重庆研究院有限公司293
    2中国矿业大学安全工程学院243
    3瓦斯灾害监控与应急技术国家重点实验室221
    4河南理工大学安全科学与工程学院200
    5中煤科工集团西安研究院有限公司159
    6煤科集团沈阳研究院有限公司158
    7中国矿业大学(北京)资源与安全工程学院131
    8煤矿安全技术国家重点实验室129
    9安徽理工大学能源与安全学院124
    10河南理工大学能源科学与工程学院98
    下载: 导出CSV

    表  2   引文突现位于前20位的关键词排名

    Table  2   Top 20 Keywords with the strongest citation bursts

    关键词年份强度起始年终止年2001~2022
    瓦斯治理200145.6520012009
    瓦斯200128.2420012010
    综合治理200116.5920012010
    治理200117.5120022009
    瓦斯抽放200127.9120032012
    瓦斯涌出20016.6720052013
    瓦斯事故20016.6420052010
    地面钻井20016.420062014
    先抽后采20015.5320062010
    保护层20019.320072012
    抽采20018.1320072012
    增透20016.5320142017
    安全工程20015.9220142016
    瓦斯浓度20015.620142020
    水力冲孔20016.620152019
    煤层增透20017.9220172022
    抽采效果20015.8220172022
    碎软煤层20015.7720182022
    以孔代巷20016.4620192022
    抽采钻孔20016.0720192022
    下载: 导出CSV

    表  3   聚类信息表

    Table  3   Clustering information table

    分类关键词(按照频次排序,频次大于10)
    研究对象瓦斯、采空区、上隅角、煤层气、突出煤层、松软煤层、卸压瓦斯、低透气性、保护层、煤层群、
    特厚煤层、裂隙带、底抽巷、碎软煤层
    增透措施水力压裂、卸压增透、水力冲孔、增透、煤层增透、水力割缝、增透技术、卸压、深孔预裂爆破、
    液态CO2、埋管抽采、强化抽采、水射流、割缝
    抽采方式高位钻孔、穿层钻孔、顺层钻孔、高抽巷、地面钻井、沿空留巷、保护层开采、
    定向长钻孔、埋管抽采
    工具/方法数值模拟、钻孔布置、流固耦合、相似模拟、抽采参数、物理模拟、优化
    测定参数/指标抽采效果、瓦斯压力、渗透率、抽采半径、瓦斯浓度、抽采负压、瓦斯含量、抽采率、
    煤层透气性、瓦斯流量、消突、卸压范围、残余瓦斯含量
    其他瓦斯超限、瓦斯运移、安全工程、封孔
    下载: 导出CSV
  • [1]

    YUAN Liang. Control of coal and gas outbursts in Huainan mines in China: A review[J]. Journal of Rock Mechanics and Geotechnical Engineering,2016,8(4):559−567. doi: 10.1016/j.jrmge.2016.01.005

    [2] 中华人民共和国统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2018.
    [3]

    LIU Jun,YANG Tong,WANG Lin,et al. Research progress in coal and gas co-mining modes in China[J]. Energy Science & Engineering,2020,8(9):3365−3376.

    [4] 谢和平,吴立新,郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报,2019,44(7):1949−1960. doi: 10.13225/j.cnki.jccs.2019.0585

    XIE Heping,WU Lixin,ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society,2019,44(7):1949−1960. doi: 10.13225/j.cnki.jccs.2019.0585

    [5] 王国法,范京道,徐亚军,等. 煤炭智能化开采关键技术创新进展与展望[J]. 工矿自动化,2018,44(2):5−12. doi: 10.13272/j.issn.1671-251x.17307

    WANG Guofa,FAN Jingdao,XU Yajun,et al. Innovation progress and prospect on key technologies of intelligent coal mining[J]. Journal of Mine Automation,2018,44(2):5−12. doi: 10.13272/j.issn.1671-251x.17307

    [6] 王 亮,郭海军,程远平,等. 岩浆岩环境煤层瓦斯异常赋存特征与动力灾害防控关键技术[J]. 煤炭学报,2022,47(3):1244−1259. doi: 10.13225/j.cnki.jccs.xr21-1365

    WANG Liang,GUO Haijun,CHENG Yuanping,et al. Abnormal coal seam gas occurrence characteristics and the dynamic disaster control technologies in the magmatic rock intrusion area[J]. Journal of China Coal Society,2022,47(3):1244−1259. doi: 10.13225/j.cnki.jccs.xr21-1365

    [7] 周世宁,何学秋. 煤和瓦斯突出机理的流变假说[J]. 中国矿业大学学报,1990,19(2):1−8.

    ZHOU Shining,HE Xueqiu. Rheological hypothesis of coal and methane outburst mechanism[J]. Journal of China University of Mining&Technology,1990,19(2):1−8.

    [8] 周世宁,林柏泉,李增华. 高瓦斯煤层开采的新思路及待研究的主要问题[J]. 中国矿业大学学报,2001,30(2):111−113. doi: 10.3321/j.issn:1000-1964.2001.02.001

    ZHOU Shining,LIN Baiquan,LI Zenghua. New thinking about exploitation of coal seams with high gas content and main problems to be researched[J]. Journal of China University of Mining&Technology,2001,30(2):111−113. doi: 10.3321/j.issn:1000-1964.2001.02.001

    [9] 钱鸣高,许家林. 覆岩采动裂隙分布的“O”形圈特征研究[J]. 煤炭学报,1998,23(5):466−469. doi: 10.3321/j.issn:0253-9993.1998.05.004

    QIAN Minggao,XU Jialin. Study on the“O-shape” circle distribution characteristics of mining-induced fractures in the overlaying strata[J]. Journal of China Coal Society,1998,23(5):466−469. doi: 10.3321/j.issn:0253-9993.1998.05.004

    [10] 许家林,钱鸣高. 岩层采动裂隙分布在绿色开采中的应用[J]. 中国矿业大学学报,2004,33(2):141−144. doi: 10.3321/j.issn:1000-1964.2004.02.004

    XU Jialin,QIAN Minggao. Study and application of mining-induced fracture distribution in green mining[J]. Journal of China University of Mining & Technology,2004,33(2):141−144. doi: 10.3321/j.issn:1000-1964.2004.02.004

    [11] 袁 亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报,2016,41(1):1−6. doi: 10.13225/j.cnki.jccs.2015.9027

    YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society,2016,41(1):1−6. doi: 10.13225/j.cnki.jccs.2015.9027

    [12] 袁 亮. 低透气煤层群首采关键层卸压开采采空侧瓦斯分布特征与抽采技术[J]. 煤炭学报,2008,33(12):1362−1367. doi: 10.3321/j.issn:0253-9993.2008.12.007

    YUAN Liang. Gas distribution of the mined-out side and extraction technology of first mined key seam relief-mining in gassy multi-seams of low permeability[J]. Journal of China Coal Society,2008,33(12):1362−1367. doi: 10.3321/j.issn:0253-9993.2008.12.007

    [13] 袁 亮. 留巷钻孔法煤与瓦斯共采技术[J]. 煤炭学报,2008,33(8):898−902. doi: 10.13225/j.cnki.jccs.2008.08.011

    YUAN Liang. The technique of mining and gas extraction by roadway retaining and borehole drilling[J]. Journal of China Coal Society,2008,33(8):898−902. doi: 10.13225/j.cnki.jccs.2008.08.011

    [14] 袁 亮. 卸压开采抽采瓦斯理论及煤与瓦斯共采技术体系[J]. 煤炭学报,2009,34(1):1−8.

    YUAN Liang. Theory of pressure-relieved gas extraction and technique system of integrated coal production and gas extraction[J]. Journal of China Coal Society,2009,34(1):1−8.

    [15] 袁 亮,薛俊华. 低透气性煤层群无煤柱煤与瓦斯共采关键技术[J]. 煤炭科学技术,2013,41(1):5−11. doi: 10.13199/j.cst.2013.01.8.yuanl.012

    YUAN Liang,XUE Junhua. Key technology of pillarless coal and gas simultaneous mining in low permeability seam group[J]. Coal Science and Technology,2013,41(1):5−11. doi: 10.13199/j.cst.2013.01.8.yuanl.012

    [16] 张千贵,李权山,范翔宇,等. 中国煤与煤层气共采理论技术现状及发展趋势[J]. 天然气工业,2022,42(6):130−145.

    ZHANG Qiangui,LI Quanshan,FAN Xiangyu,et al. Current situation and development trend of theories and technologies for coal and CBM co-mining in China[J]. Natural Gas Industry,2022,42(6):130−145.

    [17] 李树刚,杨二豪,林海飞,等. 深部开采卸压瓦斯精准抽采体系构建及实践[J]. 煤炭科学技术,2021,49(5):1−10. doi: 10.13199/j.cnki.cst.2021.05.001

    LI Shugang,YANG Erhao,LIN Haifei,et al. Construction and practice of accurate gas drainage system for pressure relief gas in deep mining[J]. Coal Science and Technology,2021,49(5):1−10. doi: 10.13199/j.cnki.cst.2021.05.001

    [18] 程志恒,陈 亮,邹全乐,等. 近距离煤层群煤与瓦斯高效共采技术体系研究−以山西吕梁沙曲矿区为例[J]. 煤炭科学技术,2021,49(2):122−137. doi: 10.13199/j.cnki.cst.2021.02.016

    CHENG Zhiheng,CHEN Liang,ZOU quanle,et al. Study on high-efficiency co-mining technology system of coal and gas in contiguous seams: A case study of Shaqu Mining Area in Lüliang, Shanxi Province[J]. Coal Science and Technology,2021,49(2):122−137. doi: 10.13199/j.cnki.cst.2021.02.016

    [19] 陈召英,郝海金,郝春生,等. 煤层气井地面压裂和井下长钻孔联合抽采技术研究[J]. 煤炭科学技术,2019,47(8):142−146. doi: 10.13199/j.cnki.cst.2019.08.018

    CHEN Zhaoying,HAO Haijin,HAO Chunsheng,et al. Study on combined extraction technology of underground long borehole and CBM ground-well fracturing[J]. Coal Science and Technology,2019,47(8):142−146. doi: 10.13199/j.cnki.cst.2019.08.018

    [20] 武华太. 煤矿区瓦斯三区联动立体抽采技术的研究和实践[J]. 煤炭学报,2011,36(8):1312−1316.

    WU Huatai. Study and practice on technology of three-zones linkage 3D coalbed methane drainage in coal mining area[J]. Journal of China Coal Society,2011,36(8):1312−1316.

    [21] 刘彦青,赵 灿,李国富,等. 晋城矿区煤与煤层气协调开发模式优化决策方法[J]. 煤炭学报,2020,45(7):2575−2589. doi: 10.13225/j.cnki.jccs.DZ20.0773

    LIU Yanqing,ZHAO Can,LI Guofu,et al. Optimized decision method of coordinated development mode of coal and coalbed methane in Jincheng mining area[J]. Journal of China Coal Society,2020,45(7):2575−2589. doi: 10.13225/j.cnki.jccs.DZ20.0773

    [22] 李日富. 松藻矿区采动稳定区煤层气地面井抽采试验及应用效果[J]. 矿业安全与环保,2018,45(2):44−48.

    LI Rifu. Drainage test of CBM ground well in mining stability area of Songzao coal mine[J]. Mining Safety & Environmental Protection,2018,45(2):44−48.

    [23] 胡国忠,许家林,秦 伟,等. 基于关键层运动的邻近层卸压瓦斯抽采优化设计方法[J]. 煤炭科学技术,2021,49(5):52−59. doi: 10.13199/j.cnki.cst.2021.05.007

    HU Guozhong,XU Jialin,QIN Wei,et al. Optimization designing method of pressure-relief gas drainage in adjacent layers based on key strata movement[J]. Coal Science and Technology,2021,49(5):52−59. doi: 10.13199/j.cnki.cst.2021.05.007

    [24] 申宝宏,刘见中,雷 毅. 我国煤矿区煤层气开发利用技术现状及展望[J]. 煤炭科学技术,2015,43(2):1−4. doi: 10.13199/j.cnki.cst.2015.02.001

    SHEN Baohong,LIU Jianzhong,LEI Yi. Present status and prospects of coalbed methane development and utilization technology of coal mine area in China[J]. Coal Science and Technology,2015,43(2):1−4. doi: 10.13199/j.cnki.cst.2015.02.001

    [25]

    CHEN Chaomei,DUBIN Rachael,KIM Meen Chul. Emerging trends and new developments in regenerative medicine: a scientometric update (2000-2014)[J]. Expert Opinion On Biological Therapy,2014,14(9):1295−1317. doi: 10.1517/14712598.2014.920813

    [26]

    CHEN Chaomei,HU Zhigang,LIU Shengbo,et al. Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace[J]. Expert Opinion On Biological Therapy,2012,12(5):593−608. doi: 10.1517/14712598.2012.674507

    [27] 付秀梅,李晓楠,林春宇,等. 基于科学知识图谱的生态足迹研究演进、框架与前沿中外比较[J]. 生态学报,2022,42(13):5543−5557.

    FU Xiumei,LI Xiaonan,LIN Chunyu,et al. Evolution, framework and frontier comparison of ecological footprint research based on scientific knowledge map[J]. Acta Ecologica Sinica,2022,42(13):5543−5557.

    [28]

    JIANG Jiaxing,FAN Lin. Visualizing the knowledge domain of language experience: A bibliometric analysis[J]. Sage Open,2022,12(1):1−17.

    [29]

    WANG Han,FU Zhenghui,LU Wentao,et al. Research on sulfur oxides and nitric oxides released from coal-fired flue gas and vehicle exhaust: a bibliometric analysis[J]. Environmental Science and Pollution Research,2019,26(17):17821−17833. doi: 10.1007/s11356-019-05066-5

    [30] 段凯鑫,郭红光,成雅彤. 生物煤层气的文献计量与发展综述[J]. 煤矿安全,2020,51(8):206−212. doi: 10.13347/j.cnki.mkaq.2020.08.044

    DUAN Kaixin,GUO Hongguang,CHENG Yantong. A review of bibliometrics and development of biological coalbed methane[J]. Safety in Coal Mines,2020,51(8):206−212. doi: 10.13347/j.cnki.mkaq.2020.08.044

    [31] 王恩现,李 贺,李雪松,等. 我国洁净煤技术研究的文献计量与可视化分析[J]. 煤炭经济研究,2019,39(12):41−47. doi: 10.13202/j.cnki.cer.2019.12.004

    WANG Enxian,LI He,LI Xuesong,et al. Bibliometric and visualized analysis of China's clean coal technology research[J]. Coal Economic Research,2019,39(12):41−47. doi: 10.13202/j.cnki.cer.2019.12.004

    [32] 张 村,宋子玉,赵毅鑫. 2010—2020 年国际煤层气开采发展趋势的文献计量分析[J]. 西安科技大学学报,2022,42(3):484−492.

    ZHANG Cun,SONG Ziyu,ZHAO Yixin. A bibliometric analysis of trends in international coalbed methane exploitation for the period 2010—2020[J]. Journal of Xi’an University of Science and Technology,2022,42(3):484−492.

    [33] 郭 柱, 李 显, 李致煜, 等. 低阶煤的热溶萃取提质研究进展[J/OL]. 煤炭科学技术: 1-25[2023-04-21]. https://doi.org/10.13199/j.cnki.cst.2022-0289.

    GUO Zhu, LI Xian, LI Zhiyu, et al. Research progress on degradative solvent extraction of low-rank coals[J/OL]. Coal Science and Technology: 1-25[2023-04-21]. https://doi.org/10.13199/j.cnki.cst.2022-0289.

    [34]

    YANG Fuqiang,QIU Dongyang. Exploring coal spontaneous combustion by bibliometric analysis[J]. Process Safety and Environmental Protection,2019,132:1−10. doi: 10.1016/j.psep.2019.09.017

    [35]

    JIANG Kai,ASHWORTH Peta. The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective[J]. Renewable & Sustainable Energy Reviews,2021,138:110521. doi: 10.1016/j.rser.2020.110521

    [36]

    ALI Maghzian,ALIREZA Aslani,RAHIM Zahedi. Review on the direct air CO2 capture by microalgae: Bibliographic mapping[J]. Energy Reports,2022,8:3337−3349. doi: 10.1016/j.egyr.2022.02.125

    [37]

    SHAO Zhuangzhuang,TAN Bo,GUO Yan,et al. Visualization and analysis of mapping knowledge domains for coal pores studies[J]. Fuel,2022,320:123761. doi: 10.1016/j.fuel.2022.123761

    [38] 李 杰,张 丹,贾进章. 国际安全科学高影响学者视角的安全问题演化[J]. 中国安全科学学报,2021,31(5):106−112.

    LI Jie,ZHANG Dan,JIA Jinzhang. Study on safety problems evolution from a perspective of influential researchers in safety science[J]. China Safety Science Journal,2021,31(5):106−112.

    [39] 陈冬冬,孙四清,张 俭,等. 井下定向长钻孔水力压裂煤层增透技术体系与工程实践[J]. 煤炭科学技术,2020,48(10):84−89.

    CHEN Dongdong,SUN Siqing,ZHANG Jian,et al. Technical system and engineering practice of coal seam permeability improvement through underground directional long borehole[J]. Coal Science and Technology,2020,48(10):84−89.

    [40] 张福旺,秦汝祥,杨应迪. 密集水力冲孔增透抽采瓦斯试验研究[J]. 煤炭科学技术,2022,50(4):142−148.

    ZHANG Fuwang,QIN Ruxiang,YANG Yingdi. Experimental study on gas extraction with intensive hydraulic punching and penetration enhancement[J]. Coal Science and Technology,2022,50(4):142−148.

    [41] 苏现波,宋金星,郭红玉,等. 煤矿瓦斯抽采增产机制及关键技术[J]. 煤炭科学技术,2020,48(12):1−30.

    SU Xianbo,SONG Jinxing,GUO Hongyu,et al. Increasing production mechanism and key technology of gas extraction in coal mines[J]. Coal Science and Technology,2020,48(12):1−30.

    [42] 徐雪战. 低透气煤层超高压水力割缝与水力压裂联合增透技术[J]. 煤炭科学技术,2020,48(7):311−317.

    XU Xuezhan. Combined permeability enhancement technology of ultra-high pressure hydraulic slot and hydraulic fracturing in low permeability coal seam[J]. Coal Science and Technology,2020,48(7):311−317.

    [43] 陶云奇,张 帆,吴金刚,等. 以孔代巷区域瓦斯抽采技术体系应用[J]. 煤矿安全,2020,51(12):175−178. doi: 10.13347/j.cnki.mkaq.2020.12.036

    TAO Yunqi,ZHANG Fan,WU Jingang,et al. Application of Regional Gas Drainage Technology System by Borehole Instead of Tunnel[J]. Safety in Coal Mines,2020,51(12):175−178. doi: 10.13347/j.cnki.mkaq.2020.12.036

    [44] 黄光利,冉庆雷,贾立刚. 大直径钻孔以孔代巷瓦斯治理技术应用研究[J]. 煤炭技术,2021,40(8):99−102.

    HUANG Guangli,RAN Qinglei,JIA Ligang. Study on application of gas control technology with large diameter borehole instead of tunnel[J]. Coal Technology,2021,40(8):99−102.

    [45] 郑凯歌. 碎软低透煤层底板梳状长钻孔分段水力压裂增透技术研究[J]. 采矿与安全工程学报,2020,37(2):272−281. doi: 10.13545/j.cnki.jmse.2020.02.007

    ZHENG Kaige. Permeability improving technology by sectional hydraulic fracturing for comb-like long drilling in floor of crushed and soft coal seam with low permeability[J]. Journal of Mining & Safety Engineering,2020,37(2):272−281. doi: 10.13545/j.cnki.jmse.2020.02.007

    [46] 王正帅. 碎软煤层顺层钻孔水力割缝增透技术研究[J]. 煤炭科学技术,2019,47(8):147−151.

    WANG Zhengshuai. Research on hydraulic slitting anti-reflection technology for borehole drilled along broken soft coal seam[J]. Journal of Mining & Safety Engineering,2019,47(8):147−151.

图(5)  /  表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-23
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2023-05-31

目录

    /

    返回文章
    返回