Stress transfer control technology for fracturing weak structural bodies in subgrade dynamic pressure roadways
-
摘要:
为了满足煤矿安全生产的需要,许多巷道都会布置在煤层底板中,如部分运输大巷、排水巷道、瓦斯抽采巷道等。采动应力容易造成底板巷道围岩应力升高,加剧底板巷道围岩变形,造成支护永久失效、顶板下沉、巷道底鼓、两帮收敛等破坏。针对此,提出了在应力传递路径上实施水力压裂,在指定的区域制造出一定空间形态的水压裂缝网,形成压裂弱结构体,实现区域范围内的应力转移,从而降低巷道区域范围内的应力,控制巷道的围岩稳定性的控制技术,并通过理论分析及现场工程验证等方式,揭示了底板动压巷道压裂弱结构体应力转移的力学机制,建立了相应的力学模型,对压裂弱结构体的合理位置、范围等影响因素进行了求解。得出:①压裂弱结构体使局部应力场发生明显变化,出现应力升高区和应力降低区,应力降低区主要分布在弱结构体与采动应力连线的方向上,主要集中在一个拱形的范围内;由于膨胀效应,在与应力来源垂直的方向上产生应力集中,出现应力升高区。②最大主应力变化幅度与压裂弱结构体的长轴长L、短轴长H、到巷道的距离P、与巷道连线的水平夹角β、压裂层的强度C及内摩擦角α、压裂的损伤变量D等有关。其中到巷道的距离P对卸压效果影响最大,损伤变量D对卸压效果影响最小。③采用提出的计算方法设计了淮北矿业集团袁店一矿的103运输集中巷的卸压方案,工程应用结果表明,底板动压巷道变形速率明显减缓,验证了底板强动压巷道压裂弱结构体应力转移模型的合理性。
Abstract:In order to meet the needs of safe production in coal mines, many roadways are arranged in the bottom plate of coal seams, such as part of transportation alleys, drainage roadways, and gas extraction roadways. The mining stress generated by the working face causes the stress increase of the surrounding rock of the floor roadway through the transmission of the floor rock strata. It exacerbates the deformation of the surrounding rock of the floor roadway, which is easy to cause permanent support failure, roof sinking, dropsy at the bottom of the roadway, convergence of the two gangs, and other damages. In response to this, a control technology is proposed to implement hydraulic fracturing in the stress transfer path, creating a network of hydraulic fractures with a certain spatial pattern in the designated area, forming a fractured weak structural body, realizing stress transfer within the area, thus reducing the stress within the area of the roadway, and controlling the stability of the perimeter rock of the roadway, and through theoretical analysis and field engineering verification, the mechanical mechanism of stress transfer of weak structures in floor dynamic pressure roadway fracturing is revealed, the corresponding mechanical model is established, and the influence factors such as reasonable location and range of weak structures are solved. The results show that: ① Fracturing weak structure causes obvious changes in local stress field, and there are stress increasing zone and stress decreasing zone, and the stress decreasing zone is mainly distributed in the direction of the connection between weak structure and mining stress, mainly concentrated in an arch range; Due to the expansion effect, the stress concentration occurs in the vertical direction of the stress source, and the stress rise area appears. ② The magnitude of maximum principal stress change is related to the long axis L, short axis H, distance P to the roadway, horizontal angle β to the roadway line, strength C and internal friction angle α of the fractured layer, and damage variable D of the fracture in the weak structural body of the fracture. ③ The proposed method is used to design the pressure relief scheme of 103 belt concentrated roadway in Yuandian No. 1 Mine of Huaibei Mining Group. The engineering application results show that the deformation rate of roadway under dynamic pressure of floor is significantly reduced, and the rationality of the stress transfer model of fractured weak structure in roadway under strong dynamic pressure of floor is verified.
-
-
-
[1] 袁 亮. 深部采动响应与灾害防控研究进展[J]. 煤炭学报,2021,46(3):716−725. doi: 10.13225/j.cnki.jccs.YT21.0158 YUAN Liang. Research progress of mining response and disaster prevention and control in deep coal mines[J]. Journal of China Coal Society,2021,46(3):716−725. doi: 10.13225/j.cnki.jccs.YT21.0158
[2] 陈绍杰,张鑫源,石瑞明,等. 煤系逆断层形成过程及其对采动灾害的影响规律[J]. 煤炭学报,2023,48(8):2995−3008. CHEN Shaojie,ZHANG Xinyuan,SHI Ruiming et al. Formation process of coal-bearing series reverse fault and its influence on mining disaster[J]. Journal of China Coal Society,2023,48(8):2995−3008.
[3] LI H,GUO K,GUO G. Strata and surface influence range of deep coal mining for mine land reuse[J]. Environmental Earth Sciences,2022,81(3):68. doi: 10.1007/s12665-022-10174-6
[4] 康红普,王国法,姜鹏飞,等. 煤矿千米深井围岩控制及智能开采技术构想[J]. 煤炭学报,2018,43(7):1789−1800. KANG Hongpu,WANG Guofa,JIANG Pengfei,et al. Conception for strata control and intelligent mining technology in deep coal mines with depth more than 1 000 m[J]. Journal of China Coal Society,2018,43(7):1789−1800.
[5] 康红普,姜鹏飞,黄炳香,等. 煤矿千米深井巷道围岩支护-改性-卸压协同控制技术[J]. 煤炭学报,2020,45(3):845−864. KANG Hongpu,JIANG Pengfei,HUANG Bingxiang,et al. Roadway strata control technology by means of bolting-modi-fication-destressing in synergy in 1 000 m deep coal mines[J]. Journal of China Coal Society,2020,45(3):845−864.
[6] ZHANG L,HUANG P,LIU S,et al. Relief mechanism of segmented hole reaming and stress distribution characteristics of drilling holes in deep coal mine[J]. Processes,2022,10(8):1566. doi: 10.3390/pr10081566
[7] 张星宇. 高应力巷道聚能切缝卸压技术与原理[D]. 北京:中国矿业大学(北京),2021. ZHANG Xinyu. Pressure relief technique and its principle based on cutting seam by energy-focusing blast for high-stress roadway[D]. Beijing :China University of Mining & Technology-Beijing,2021.
[8] 杨敬轩,于 斌,匡铁军,等. 基于煤岩深孔爆破问题的液体炸药研发与技术[J]. 煤炭学报,2021,46(6):1874−1887. YANG Jingxuan,YU Bin,KUANG Tiejun,et al. Development and technical practice of liquid explosive based on deep-hole blasting problem[J]. Journal of China Coal Society,2021,46(6):1874−1887.
[9] 程敬义,魏泽捷,白纪成,等. 基于爆破卸压的深部构造应力富水软岩巷道底鼓控制技术研究[J]. 煤炭科学技术,2022,50(7):117−126. CHENG Jingyi,WEI Zejie,BAI Jicheng,et al. Study floor heave control technology of deep tectonic stress water-rich soft rock roadway based on blasting pressure relief[J]. Coal Science and Technology,2022,50(7):117−126.
[10] 刘志刚,曹安业,井广成. 煤体卸压爆破参数正交试验优化设计研究[J]. 采矿与安全工程学报,2018,35(5):931−939. LIU Zhigang,CAO Anye,JING Guangcheng. Research on parameters optimization of stress relief blasting in coal roadway using orthogonal experiment[J]. Journal of Mining & Safety Engineering,2018,35(5):931−939.
[11] 林 健,郭 凯,孙志勇,等. 强烈动压巷道水力压裂切顶卸压压裂时机研究[J]. 煤炭学报,2021,46(S1):140−148. LIN Jian,GUO Kai,SUN Zhiyong,et al. Study on fracturing timing of hydraulic fracturing top-cutting and pressure relief in roadway with strong dynamic pressure[J]. Journal of China Coal Society,2021,46(S1):140−148.
[12] 康红普,张 晓,王东攀,等. 无煤柱开采围岩控制技术及应用[J]. 煤炭学报,2022,47(1):16−44. KANG Hongpu,ZHANG Xiao,WANG Dongpan,et al. Strata control technology and applications of non-pillar coal mining[J]. Journal of China Coal Society,2022,47(1):16−44.
[13] CHANG Q,YAO X,WANG X,et al. Investigation on hydraulic fracturing and cutting roof pressure relief technology for underground mines:a case study[J]. Lithosphere,2021,2021:4277645. doi: 10.2113/2021/4277645
[14] XIAO Z,HONGPU K. Pressure relief mechanism of directional hydraulic fracturing for gob-side entry retaining and its application[J]. Shock and Vibration,2021,2021:6690654. doi: 10.1155/2021/6690654
[15] CHEN D,WANG X,ZHANG F,et al. Research on directional controllability of cracking in hydraulic fracturing of hard overburden based on local stress field intervention[J]. Energies,2022,15(12):4252. doi: 10.3390/en15124252
[16] 杨 欢,郑凯歌,李彬刚,等. 工作面过上覆遗留煤柱致灾机理及超前区域防治技术研究[J]. 煤炭科学技术,2023,51(9):46−54. YANG Huan,ZHENG Kaige,LI Bingang,et al. Disaster mechanism of overlying coal pillar in working face and advanced regional prevention technology [J]. Coal Science and Technology,2023,51(9):46−54.
[17] 程利兴. 千米深井巷道围岩水力压裂应力转移机理研究及应用[D]. 北京:中国矿业大学(北京),2021. CHENG Lixing. Research and application of hydraulic fracturing stresstransfer mechanism in surrounding rock of kilometer deep mine roadway[D]. Beijing:China University of Mining & Technology-Beijing,2021.
[18] LIU J,LIU C,YAO Q,et al. The position of hydraulic fracturing to initiate vertical fractures in hard hanging roof for stress relief[J]. International Journal of Rock Mechanics and Mining Sciences,2020,132:104328. doi: 10.1016/j.ijrmms.2020.104328
[19] LIU J,LIU C,LI X. Determination of fracture location of double-sided directional fracturing pressure relief for hard roof of large upper goaf-side coal pillars[J]. Energy Exploration & Exploitation,2020,38(1):111−136. doi: 10.1177/0144598719884701
[20] 吴拥政. 回采工作面双巷布置留巷定向水力压裂卸压机理研究及应用[D]. 北京:煤炭科学研究总院,2018. WU Yongzheng. Study on de-stressing mechanism of directional hydraulic fracturing to control deformation of reused roadway in longwall mining with two gateroad layout and its onsite practices[D]. Beijing:China Coal Research Institute,2018.
[21] 刘长友,刘江伟. 煤岩体裂化的弱结构体应力转移原理及应用[J]. 采矿与安全工程学报,2022,39(2):359−369. LIU Changyou,LIU Jiangwei. principle and applicaition of stress transfer of weak structure body in coal-rock mass cracking[J]. Journal of Mining & Safety Engineering,2022,39(2):359−369.
[22] 杜贝举,刘长友,吴锋锋,等. 深井高应力软弱围岩巷道变形机理及控制研究[J]. 采矿与安全工程学报,2020,37(6):1123−1132. DU Beiju,LIU Changyou,WU Fengfeng et al. Deformation mechanism and control technology of roadway in deep mine with high stress and weak surrounding rock[J]. Journal of Mining & Safety Engineering,2020,37(6):1123−1132.
[23] 康红普,姜鹏飞,冯彦军,等. 煤矿巷道围岩卸压技术及应用[J]. 煤炭科学技术,2022,50(6):1−15. KANG Hongpu, JIANG Pengfei, FENG Yanjun et al. Destressing techlogy for rock around coal mine raodways and its applications[J]. Coal Science and Technology,2022,50(6):1−15.
[24] 康红普. 我国煤矿巷道围岩控制技术发展70年及展望[J]. 岩石力学与工程学报,2021,40(1):1−30. KANG Hongpu. Seventy years development and prospects of strata control technologies for coal mine roadways in China[J]. Chinese Journal of Rock Mechanies and Engineerings,2021,40(1):1−30.
[25] ZHAI W,GUO Y,MA X,et al. Research on hydraulic fracturing pressure relief technology in the deep high-stress roadway for surrounding rock control[J]. Advances in Civil Engineering,2021,2021:1217895. doi: 10.1155/2021/1217895
[26] LU Y,YANG Z,LI X,et al. Problems and methods for optimization of hydraulic fracturing of deep coal beds in China[J]. Chemistry and Technology of Fuels and Oils,2015,51(1):41−48. doi: 10.1007/s10553-015-0573-1
[27] HE Q,SUORINENI F T,MA T,et al. Parametric study and dimensional analysis on prescribed hydraulic fractures in cave mining[J]. Tunnelling and Underground Space Technology,2018,78:47−63. doi: 10.1016/j.tust.2018.04.012
[28] 康红普,冯彦军. 定向水力压裂工作面煤体应力监测及其演化规律[J]. 煤炭学报,2012,37(12):1953−1959. KANG Hongpu,FENG Yanjun. Monitoring of stress change in coal seam caused by directional hydraulicfracturing in working face with strong roof and its evolution[J]. Journal of China Coal Society,2012,37(12):1953−1959.
[29] 刘江伟. 人工裂化煤岩体的应力场改变机制及控制研究[D]. 徐州:中国矿业大学,2020. LIU Jiangwei. Research on mechanism and control of stress field change of artificial cracking coal and rock mass[D],Xuzhou:China University of Mining & Technology,2020.
[30] LIU J,WU N,SI G,et al. Experimental study on mechanical properties and failure behaviour of the pre-cracked coal-rock combination[J]. Bulletin of Engineering Geology and the Environment,2021,80(3):2307−2321. doi: 10.1007/s10064-020-02049-6
[31] 李 杨. 煤层群开采围岩应力壳时空演化特征研究[D]. 北京:中国矿业大学(北京),2017. LI Yang. The study on temporal and spatial evolution characteristics ofsurrounding rock stress shell for coal seam group mining[D]. Beijing:China University of Mining & Technology-Beijing,2017.
[32] 李家卓. 采场底板围岩应力壳力学特征研究[D]. 淮南:安徽理工大学,2015. LI Jiazhuo. Study on mechanical characteristics on surrounding rock of stope floor stresss shell[D]. Huainan:Anhui University of Science & Technology,2015.
[33] 张 旋. 采动应力场对坚硬顶板水力裂缝形态的影响规律研究[D]. 重庆:重庆大学,2018. ZHANG Xuan. Study on the law of hydraulic fracture morphology in hard roof under the influence of mining activities[D]. Chongqing:Chongqing University,2018.
-
期刊类型引用(8)
1. 陈泽民,李振雷,钟涛平,宋大钊,刘旭东,胡旭聪. 急倾斜特厚煤层防冲开采方法数值模拟研究. 煤矿安全. 2025(01): 117-127 . 百度学术
2. 侯挺,聂谦,薛兴伟. 弱化转移高水平应力技术在巷道修护中的研究与应用. 山东煤炭科技. 2025(01): 12-16 . 百度学术
3. 陈学亚,张宁波,刘立明,陈宝宝,付世雄. 遗留煤柱扰动下薄间距动压巷道压裂卸压护巷技术研究. 煤炭工程. 2025(01): 42-51 . 百度学术
4. 郭争利,杨真. 水力压裂防治强矿压机理及卸压护巷技术研究. 山西冶金. 2025(01): 204-206 . 百度学术
5. 龚惠春,夏广宁,杨生龙,刘鹏,杨龙. 深埋工作面回采巷道复合顶板水压致裂技术应用. 陕西煤炭. 2024(08): 90-94+140 . 百度学术
6. 赵会波. 水力压裂裂缝开裂压力影响因素分析及应用. 煤炭工程. 2024(09): 127-135 . 百度学术
7. 聂嘉汾,张海东. 不同切顶角度下临空巷道围岩力学响应特征及控制效果. 山西煤炭. 2024(04): 120-127 . 百度学术
8. 曹沛沛. 水力切顶卸压在动压巷道围岩控制中应用. 内蒙古煤炭经济. 2024(24): 160-162 . 百度学术
其他类型引用(1)