高级检索

古建筑压煤开采对斜坡上覆堆积层变形扰动影响研究

安成纪, 龙建辉, 胡海峰, 李旭鹏, 李美平, 李娟

安成纪,龙建辉,胡海峰,等. 古建筑压煤开采对斜坡上覆堆积层变形扰动影响研究[J]. 煤炭科学技术,2024,52(10):169−180. DOI: 10.12438/cst.2023-1395
引用本文: 安成纪,龙建辉,胡海峰,等. 古建筑压煤开采对斜坡上覆堆积层变形扰动影响研究[J]. 煤炭科学技术,2024,52(10):169−180. DOI: 10.12438/cst.2023-1395
AN Chengji,LONG Jianhui,HU Haifeng,et al. Study on influence of coal mining under ancient building on deformation disturbance of overlying accumulation layer on slope[J]. Coal Science and Technology,2024,52(10):169−180. DOI: 10.12438/cst.2023-1395
Citation: AN Chengji,LONG Jianhui,HU Haifeng,et al. Study on influence of coal mining under ancient building on deformation disturbance of overlying accumulation layer on slope[J]. Coal Science and Technology,2024,52(10):169−180. DOI: 10.12438/cst.2023-1395

古建筑压煤开采对斜坡上覆堆积层变形扰动影响研究

基金项目: 山西省自然科学基金资助项目(202103021224112)
详细信息
    作者简介:

    安成纪: (1999—),男,甘肃陇南人,硕士研究生。E-mail:acjflame@163.com

    通讯作者:

    龙建辉: (1972—),男,湖南益阳人,副教授,博士。E-mail:longjianhei@163.com

  • 中图分类号: TD325

Study on influence of coal mining under ancient building on deformation disturbance of overlying accumulation layer on slope

  • 摘要:

    针对缓倾顺层斜坡上覆堆积层的采动稳定性与变形机理的研究,特别是从协调地下资源开采与地上文物古建筑安全防护视角出发的研究处在探索阶段。以山西省宝应寺斜坡堆积层为研究对象,基于地表动态监测与地质过程机制分析,结合数值模拟研究了堆积层稳定性与地表裂缝成因机制,并探讨优化了开采方式。研究表明:①长壁式地下开采是引起堆积层变形的诱因,堆积层软弱特性与斜坡软硬互层结构是其变形内因。堆积层下伏基岩变形模式为垂向挤压水平拉张,对堆积层变形具有放大效果,牵动其产生地裂缝。堆积层变形破坏机制为:坡下采空—覆岩弯曲—侧岩倾倒变形—下伏岩层应力集中—牵动拉裂;②堆积层裂缝分布在上坡方向采空区工作面端部附近,平面上近似平行,呈“之”字或锯齿状。地物裂缝较之地表裂缝数量更多、但规模更小,寺院建筑群受隐伏张性地裂缝影响致地基形变造成地面以上结构开裂;停采后监测期内,堆积体变形速率趋于收敛,残余变形消减,由变形移动转为基本稳定;③完全采空后,堆积层表现为以下错为主的拉张变形,剪应变显现,持续开采条件下堆积层变形程度将加剧。下伏基岩最大主应力增量达1080.75%,拉应力集中;④短壁房式开采留设区段煤柱利于减小堆积层变形。研究为认识地下资源开采扰动斜坡上覆堆积层变形破坏与寻求古建筑压煤开采文物保护解决方案提供了参考。

    Abstract:

    The research on the mining stability and deformation mechanism of the overlying accumulation layer on the gently inclined bedding slope, especially from the perspective of coordinating the exploitation of underground resources and the safety protection of ancient buildings on the ground is in the exploratory stage. Taking the accumulation layer of Baoyingsi slope in Shanxi Province as the research object, based on the analysis of surface dynamic monitoring and geological process mechanism, combined with numerical simulation, the stability of accumulation layer and the formation mechanism of surface cracks were studied, and the mining method was discussed and optimized. The research shows that: ① Long-wall underground mining is the cause of the deformation of the accumulation layer, and the weak characteristics of the accumulation layer and the soft and hard interbedded structure of the slope are the internal causes of its deformation. The deformation mode of the bedrock under the accumulation layer is vertical extrusion and horizontal tension, which has an amplification effect on the deformation of the accumulation layer and affects the generation of ground cracks. The deformation and failure mechanism of the accumulation layer is as follows: mining under the slope-bending of overburden rock-toppling deformation of side rock-stress concentration of underlying rock-pulling and cracking; ② The cracks in the accumulation layer are distributed near the end of the working face of the goaf in the uphill direction, and are approximately parallel on the plane, showing a zigzagging motion or serrated shape. The number of ground fissures is more than that of surface fissures, but the scale is smaller. The temple buildings are affected by the hidden tensile ground fissures, which cause the deformation of the foundation and cause the cracking of the above-ground structure. During the monitoring period after stopping mining, the deformation rate of the accumulation body tends to converge, the residual deformation is reduced, and the deformation movement is basically stable. ③ After complete mining, the accumulation layer shows tensile deformation dominated by the following dislocations, and shear strain appears. The deformation degree of the accumulation layer will be aggravated under continuous mining conditions. The maximum principal stress increment of the underlying bedrock is 1080.75 %, and the tensile stress is concentrated. ④ Short-wall room mining leaving section coal pillar is beneficial to reduce the deformation of accumulation layer.The research conclusions provide a reference for understanding the deformation and failure of the overlying accumulation layer on the slope disturbed by underground resource mining and seeking solutions for the protection of cultural relics in coal mining under ancient buildings.

  • 图  1   山西省陵川县宝应寺斜坡

    Figure  1.   Slope of Baoying Temple, Lingchuan County, Shanxi Province, China

    图  2   宝应寺斜坡典型工程地质剖面

    Figure  2.   Typical engineering geological section of Baoyingsi slope

    图  3   采空区及采煤工作面相对位置

    Figure  3.   Relative position of air-sea zone and the coal mining face

    图  4   裂缝产状玫瑰图与等密度图

    Figure  4.   Rose diagram of crack production with isodensity map

    图  5   变形监测工程平面布置

    Figure  5.   Layout plan of deformation monitoring project

    图  6   变形监测成果

    Figure  6.   Deformation monitoring results

    图  7   覆岩变形分区与堆积层变形拉裂

    A—垂向拉张水平拉张区; B—垂向拉张水平挤压区; C—垂向挤压水平拉张区(据“三下采煤规程”以下沉10 mm位置为地表移动边界); D—变形微弱区

    Figure  7.   Overburden rock deformation zoning and accumulation layer deformation tensile crack generalization

    图  8   不同开采阶段坡体位移云图

    Figure  8.   Slope displacement cloud diagram in different mining stages

    图  9   不同开采阶段坡体应力云图

    Figure  9.   Slope stress cloud diagram in different mining stages

    图  10   最大剪应变云图

    Figure  10.   Maximum shear strain cloud

    图  11   采煤方式优化

    Figure  11.   Coal mining method optimization

    表  1   岩层物理力学参数

    Table  1   Physical and mechanical parameters of the rock formation

    岩类 容重γ/
    (kN·m−3
    弹性模量
    E/MPa
    泊松比μ 黏聚力C/
    kPa
    内摩擦角
    φ/(°)
    抗拉强度
    Rm/MPa
    堆积层 17.2 7 0.44 32 25 0.28
    强风化带 16.3 993 0.18 950 31 1.98
    细砂岩 25.9 32 910 0.24 7 200 42 2.41
    中砂岩 28.3 36 100 0.27 12 110 39 2.68
    粗砂岩 29.8 33 850 0.21 11 590 41 2.96
    泥岩 25.3 35 200 0.36 1 200 40 2.02
    煤层 17.2 5 300 0.32 800 30 1.03
    石灰岩 28.7 23 500 0.20 15 000 36 4.27
    下载: 导出CSV

    表  2   完全采空前后堆积层及下伏基岩最大主应力值对比

    Table  2   Comparison of maximum principal stress values in accumulation layer and underlying bedrock before and after complete emptying

    位置 最大主应力/kPa 增长率/%
    采空前 采空后
    一级平台 −18.08 92.14 609.62
    二级平台 −14.95 204.78 1 469.77
    两级平台间坡面 −47.29 186.34 494.04
    下伏基岩 −374.27 3670.67 1 080.75
    下载: 导出CSV
  • [1] 徐秀丽. 牢记嘱托浓墨重彩书写山西文物事业发展新篇章[N]. 中国文物报,2022−03−25(001).
    [2] 周永昌,杨义军. 山西地质灾害(1)[M]. 太原:山西科学技术出版社,2010:228−236.
    [3] 李滨,王国章,冯振,等. 地下采空诱发陡倾层状岩质斜坡失稳机制研究[J]. 岩石力学与工程学报,2015,34(6):1148−1161.

    LI Bin,WANG Guozhang,FENG Zhen,et al. Failure mechanism of steeply inclined rock slopes induced by underground mining[J]. Journal of Rock Mechanics and Engineering,2015,34(6):1148−1161.

    [4]

    MA S,QIU H,YANG D,et al. Surface multi-hazard effect of underground coal mining[J]. Landslides,2023,20(1):39−52. doi: 10.1007/s10346-022-01961-0

    [5] 崔杰,王兰生,王卫,等. 采空区边坡变形破裂演化机制研究[J]. 采矿与安全工程学报,2008,25(4):409−414. doi: 10.3969/j.issn.1673-3363.2008.04.007

    CUI Jie,WANG Lansheng,WANG Wei,et al. Deformation and fracturing mechanism of goaf slope[J]. Journal of Mining and Safety Engineering,2008,25(4):409−414. doi: 10.3969/j.issn.1673-3363.2008.04.007

    [6] 赵建军,王子贤,严浩元,等. 缓倾层状结构高陡采动斜坡变形特征研究[J]. 水文地质工程地质,2022,49(2):174−183.

    ZHAO Jianjun,WANG Zixian,YAN Haoyuan,et al. Deformation characteristics of a high and steep mining slope with gently-inclined layered structure[J]. Hydrogeology Engineering Geology,2022,49(2):174−183.

    [7] 赵建军,肖建国,向喜琼,等. 缓倾煤层采空区滑坡形成机制数值模拟研究[J]. 煤炭学报,2014,39(3):424−429.

    ZHAO Jianjun,XIAO Jianguo,XIANG Xiqiong,et al. Failure mechanism numerical simulation of mining landslide with gentle bedding coal strata[J]. Journal of China Coal Society,2014,39(3):424−429.

    [8]

    ZHAO J J,XIAO J G,LEE M L,et al. Discrete element modeling of a mining-induced rock slide[J]. SpringerPlus,2016,5(1):1−19. doi: 10.1186/s40064-015-1659-2

    [9]

    TANG J,DAI Z,WANG Y,et al. Fracture failure of consequent bedding rock slopes after underground mining in mountainous area[J]. Rock Mechanics and Rock Engineering,2019,52:2853−2870. doi: 10.1007/s00603-019-01876-8

    [10] 代张音,唐建新,舒国钧,等. 地下采空诱发顺层岩质斜坡变形破坏特征研究[J]. 安全与环境学报,2017,17(4):1294−1298.

    DAI Zhangyin,TANG Jianxin,SHU Guojun,et al. Deformation and fracture response characteristics of the bedding rock slope under the impact of the goaf[J]. Journal of Safety and Env-ironment,2017,17(4):1294−1298.

    [11] 代张音,刘庆,王育林,等. 基于离散元法的采动顺层岩质斜坡变形破坏响应特征研究[J]. 安全与环境学报,2021,21(3):1089−1098.

    DAI Zhangyin,LIU Qing,WANG Yulin,et al. Deformation and failure response of the bedding rock slope induced by the underground mining activities based on the distinctive element method[J]. Journal of Safety and Environment,2021,21(3):1089−1098.

    [12] 代张音,唐建新,江君,等. 地下采空诱发含软弱夹层顺层岩质斜坡变形破裂的相似模拟[J]. 煤炭学报,2016,41(11):2714−2720.

    DAI Zhangyin,TANG Jianxin,JIANG Jun,et al. Similarity modeling on instability and failure of rock bedding slope with weak interlayer caused by underground mining[J]. Journal of China Coal Society,2016,41(11):2714−2720.

    [13]

    DAI Z,ZHANG L,WANG Y,et al. Deformation and failure res-ponse characteristics and stability analysis of bedding rock slope after underground adverse slope mining[J]. Bulletin of Engineering Geology and the Environment,2021,80(6):4405−4422. doi: 10.1007/s10064-021-02258-7

    [14] 王玉川,巨能攀,赵建军,等. 缓倾煤层采空区上覆山体滑坡形成机制分析[J]. 工程地质学报,2013,21(1):61−68. doi: 10.3969/j.issn.1004-9665.2013.01.007

    WANG Yuchuan,JU Nengpan,ZHAO Jianjun,et al. Formation mechanism of landslide above the mined out area in gently inclined coal beds[J]. Journal of Engineering Geology,2013,21(1):61−68. doi: 10.3969/j.issn.1004-9665.2013.01.007

    [15]

    SALMI E F,NAZEM M,KARAKUS M. Numerical analysis of a large landslide induced by coal mining subsidence[J]. Engineering Geology,2017,217:141−152. doi: 10.1016/j.enggeo.2016.12.021

    [16]

    Do T N,Wu J H. Simulating a mining-triggered rock avalanche using DDA:A case study in Nattai North,Australia[J]. Engineering Geology,2020,264:105386. doi: 10.1016/j.enggeo.2019.105386

    [17]

    ŚCIGAŁA R,SZAFULERA K. Linear discontinuous deformations created on the surface as an effect of underground mining and local geological conditions-case study[J]. Bulletin of Engineering Geology and the Environment,2020,79(4):2059−2068. doi: 10.1007/s10064-019-01681-1

    [18] 崔芳鹏,武强,李滨等. 多层浅埋煤层开采触发岩溶坡体动力崩滑机制研究[J]. 煤炭科学技术,2023,51(2):317−333.

    CUI Fangpeng,WU Qiang,LI Bin,et al. Dynamic formation mechanism of a karst landslide triggered by mining of multiple-layer & shallow-seated coal seams[J]. Coal Science and Technology,2023,51(2):317−333.

    [19] 龙建辉,朱清华,倪向龙. 地下资源开采诱发的一种滑坡模式研究:以采空触发滑坡为例[J]. 煤炭科学技术,2021,49(8):181−187.

    LONG Jianhui,ZHU Qinghua,NI Xianglong. Study on landslide model induced by underground resource exploitation: -taking mining-triggered landslide as an example[J]. Coal Science a-nd Technology,2021,49(8):181−187.

    [20] 龙建辉,张吉宁. 煤矿井巷上方大型老滑坡复活机理与致灾过程[J]. 采矿与安全工程学报,2015,32(3):511−517.

    LONG Jianhui,ZHANG Jining. Revival mechanism and disaster-causing process of old-large landslide on coal mine tunnel[J]. Journal of Mining and Safety Engineering,2015,32(3):511−517.

    [21] 张吉宁,龙建辉,卫红学,等. 采动影响区外缘上覆黄土滑坡形成力学机制[J]. 煤矿安全,2015,46(1):37−39.

    ZHANG Jining,LONG Jianhui,WEI Hongxue,et al. Mechanical mechanism of overlying loess landslide formation at outer edge of mining impact zone[J]. Safety in Coal Mines,2015,46(1):37−39.

    [22] 煤炭科学研究总院. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[S]. 北京:煤炭工业出版社,2018:1−59.
    [23] 杨撷民,霍俊杰,李彦荣. 基于MIDAS软件对受采空区影响坡体的稳定性研究[J]. 煤炭科学技术,2019,47(8):89−95.

    YANG Xiemin,HUO Junjie,LI Yanrong. Study on stability of slope affected by goaf based on MIDAS software[J]. Coal Science and Technology,2019,47(8):89−95.

图(11)  /  表(2)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  3
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-01
  • 网络出版日期:  2024-10-10
  • 刊出日期:  2024-10-24

目录

    /

    返回文章
    返回