高级检索

不同高径比煤样巴西劈裂声发射特征及能量演化机制研究

雷瑞德, 粟罗, 贺培, 胡超, 李俊, 周林森

雷瑞德,粟 罗,贺 培,等. 不同高径比煤样巴西劈裂声发射特征及能量演化机制研究[J]. 煤炭科学技术,2024,52(10):63−77. DOI: 10.12438/cst.2023-1288
引用本文: 雷瑞德,粟 罗,贺 培,等. 不同高径比煤样巴西劈裂声发射特征及能量演化机制研究[J]. 煤炭科学技术,2024,52(10):63−77. DOI: 10.12438/cst.2023-1288
LEI Ruide,SU Luo,HE Pei,et al. Study on acoustic emission characteristics and energy evolution of Brazilian splitting tests of coal samples with different height-diameter ratio[J]. Coal Science and Technology,2024,52(10):63−77. DOI: 10.12438/cst.2023-1288
Citation: LEI Ruide,SU Luo,HE Pei,et al. Study on acoustic emission characteristics and energy evolution of Brazilian splitting tests of coal samples with different height-diameter ratio[J]. Coal Science and Technology,2024,52(10):63−77. DOI: 10.12438/cst.2023-1288

不同高径比煤样巴西劈裂声发射特征及能量演化机制研究

基金项目: 国家自然科学基金资助项目(52004047);重庆市博士后研究项目特别资助项目(2022CQBSHTB3109);煤矿安全高效开采省部共建教育部重点实验室开放课题资助项目(JYBSYS202306)
详细信息
    作者简介:

    雷瑞德: (1988—),男,河南新乡人,讲师,博士。E-mail:rdlei@suse.edu.cn

    通讯作者:

    贺培: (1987—),男,四川内江人,正高级工程师,博士。E-mail:hepei131180@163.com

  • 中图分类号: TU45; TD313

Study on acoustic emission characteristics and energy evolution of Brazilian splitting tests of coal samples with different height-diameter ratio

  • 摘要:

    为探究不同高径比对圆盘煤样抗拉强度及能量演化机制的影响,对5组直径相同、高度不同的煤样进行巴西劈裂试验,并同步声发射监测系统及三维形貌扫描技术探究不同高径比煤样的抗拉特性、声发射特征、破断模式及断面形貌特征。结果表明:随着煤样高径比的增加,煤样抗拉强度呈现逐渐减小的趋势,当高径比在0.4∶1至1∶1范围内时,高径比为0.4∶1的煤样抗拉强度最大。圆盘煤样宏观破坏模式逐渐由拉−剪混合裂纹主导的多裂纹复杂破断模式转变为单一断面拉伸裂纹破坏。累积声发射能量逐渐增大,且累积能量曲线的聚丛现象较为显著,呈阶梯式上升趋势。较低应力水平阶段的耗散能占比逐渐增大;当荷载增至弹性极限时,耗散能及其占比逐渐减小;当煤样趋近破裂阶段时,弹性应变能与耗散能占比趋于平稳;当煤样进入峰后破裂阶段时,积聚在煤样内的弹性应变能迅速释放,耗散能占比急剧增加,煤样内部宏观裂纹迅速扩展并贯通。多重分形谱宽度(Δα)逐渐增大,频谱测度子集(Δf)小于零,表明煤样拉伸破裂过程中小破裂尺度信号占主导优势。另外,不同高径比工况下煤样破断面高程的相对频率呈现出拟合度较高的高斯型函数分布,分形维数呈逐渐增大趋势,表明高径比越小,其破裂后断面的复杂程度越低,反之高径比越大的煤样破裂后断面粗糙程度越复杂。

    Abstract:

    In order to explore the influence of different ratios of height-diameter on the tensile strength and energy evolution of disc coal samples, Brazilian splitting tests were carried out on five groups of coal samples with the same diameter and different heights. The tensile behavior, acoustic emission (AE) characteristics, fracture modes and section morphology characteristics of coal samples with different height-diameter ratio are investigated using a synchronous AE monitoring system and three-dimensional morphology scanning technology. The results show that the tensile strength of coal gradually decreases with the increase of the ratio of height to diameter, and the peak strength of coal reaches the maximum when the height-diameter ratio is 0.4∶1. The failure mode of coal samples gradually changed from the complex fracture mode of multiple cracks dominated by tensile-shear mixed cracks to the tension cracks of single section. The cumulative AE energy increases gradually, and the clustering phenomenon is more significant, showing a stepwise upward trend. The proportion of dissipated energy increases gradually at the lower stress level. When the load increases to the elastic limit, the dissipated energy and its proportion decrease gradually. The ratios of elastic strain energy and dissipated energy tend to be stable when the coal sample approaches the failure stage. When the coal sample enters the post-peak stage, the accumulated elastic strain energy releases rapidly, the proportion of dissipated energy increases sharply, and the macroscopic cracks in the coal sample rapidly expand and coalesce. The width (Δα) of the multifractal spectrum gradually increases, and the spectral measure subset (Δf) is less than zero with the increase in height-diameter ratio, which indicates that the small fracture scale signal dominates in the splitting tests. In addition, the relative frequency of broken section elevation of coal samples under different height-diameter ratios presents a good Gaussian function distribution, and the fractal dimension shows a gradually increasing trend. The smaller the height-diameter ratio, the less complex the fractured section will be, whereas the larger the height-diameter ratio, the more complex the roughness of the broken section will be.

  • 图  1   不同高径比圆盘煤样

    Figure  1.   Disk coal samples with different height-diameter ratio

    图  2   试验设备及试验系统示意

    Figure  2.   Experimental equipment and schematic diagram

    图  3   不同高径比圆盘煤样应力峰值

    Figure  3.   Peak stress of disk coal samples with different height-diameter ratio

    图  4   不同高径比圆盘煤样应力−时间曲线

    Figure  4.   Stress-time curves of disk coal samples with different height-diameter ratio

    图  5   不同高径比典型煤样最终破裂模式

    Figure  5.   Fracture modes of typical disk coal samples with different height-diameter ratio

    图  6   不同高径比煤样应力及声发射能量随时间演化曲线

    Figure  6.   Evolution of tensile strength and AE energy of disk coal samples with different height-diameter ratio

    图  7   煤岩耗散能与弹性应变能关系

    Figure  7.   Relationship between dissipated energy and elastic strain energy of coal rock

    图  8   不同高径比煤样能量演化曲线

    Figure  8.   Evolution of energy for coal samples under different height-diameter ratio

    图  9   不同高径比煤样弹性应变能与耗散能占比曲线

    Figure  9.   Curves of elastic strain energy and dissipated energy of coal samples under different height-diameter ratio

    图  10   不同高径比煤样微裂纹分布特征

    Figure  10.   Distribution of microcrack in coal samples with different height-diameter ratio

    图  11   不同高径比圆盘煤样全应力段多重频谱特征曲线

    Figure  11.   Multifractal spectrum curves of coal samples with different height-diameter ratio

    图  12   不同高径比煤样破断面形貌特征

    Figure  12.   Fracture surface morphology of coal samples with different height-diameter ratio

    图  13   不同高径比煤样破断面粗糙度高程分布拟合

    Figure  13.   Fitting of elevation distribution on fracture surface of coal sample with different height-diameter ratio

    图  14   不同高径比煤样破裂面粗糙度分形特征

    Figure  14.   Fractal characteristics of fracture surface roughness of coal sample with different height-diameter ratio

  • [1]

    HU Shanchao,TAN Yunliang,ZHOU Hui,et al. Impact of bedding planes on mechanical properties of sandstone[J]. Rock Mechanics and Rock Engineering,2017,50(8):2243−2251. doi: 10.1007/s00603-017-1239-6

    [2] 何明明,陈蕴生,李宁,等. 单轴循环荷载作用下砂岩变形特性与能量特征[J]. 煤炭学报,2015,40(8):1805−1812.

    HE Mingming,CHEN Yunsheng,LI Ning,et al. Deformation characteristics and energy characteristics of sandstone under uniaxial cyclic loading[J]. Journal of China Coal Society,2015,40(8):1805−1812.

    [3] 刘保县,黄敬林,王泽云,等. 单轴压缩煤岩损伤演化及声发射特性研究[J]. 岩石力学与工程学报,2009,28(S1):3234−3238.

    LIU Baoxian,HUANG Jinglin,WANG Zeyun,et al. Research on damage evolution and acoustic emission characteristics of coal and rock under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(S1):3234−3238.

    [4] 刘斌,赵毅鑫,张汉,等. 单轴压缩及劈裂试验下煤的声发射特征研究[J]. 采矿与安全工程学报,2020,37(3):613−621.

    LIU Bin,ZHAO Yixin,ZHANG Han,et al. Study on acoustic emission characteristics of coal under uniaxial compression and splitting tests[J]. Journal of Mining & Safety Engineering,2020,37(3):613−621.

    [5] 张庆贺,袁亮,杨科,等. 深井煤岩动力灾害的连续卸压开采防治机理[J]. 采矿与安全工程学报,2019,36(1):80−86.

    ZHANG Qinghe,YUAN Liang,YANG Ke,et al. Mechanism analysis on continuous stress-relief mining for preventing coal and rock dynamic disasters in deep coal mines[J]. Journal of Mining & Safety Engineering,2019,36(1):80−86.

    [6] 付军辉,黄炳香,刘长友,等. 煤试样巴西劈裂的声发射特征研究[J]. 煤炭科学技术,2011,39(4):25−28.

    FU Junhui,HUANG Bingxiang,LIU Changyou,et al. Study on acoustic emission characteristics of Brazilian splitting of coal samples[J]. Coal Science and Technology,2011,39(4):25−28.

    [7] 余伟健,潘豹,李可,等. 岩-煤-岩组合体力学特性及裂隙演化规律[J]. 煤炭学报,2022,47(03):1155−1167.

    YU Weijian,PAN Bao,LI Ke,et al. Mechanical properties and fracture evolution law of rock coal rock combination[J]. Journal of China Coal Society,2022,47(03):1155−1167.

    [8]

    POULSEN B A,ADHIKARY D P. A numerical study of the scale effect in coal strength[J]. International Journal of Rock Mechanics and Mining Sciences,2013,63:62−71. doi: 10.1016/j.ijrmms.2013.06.006

    [9]

    MOHAMMAD H,BAHMAN B,Alireza N,et al. Size effect in strength assessment by indentation testing on rock fragments[J]. International Journal of Rock Mechanics and Mining Sciences,2014,65(1):141−148.

    [10] 赵光明,周俊,孟祥瑞,等. 高径比差异条件下花岗岩岩石动态冲击压缩特性[J]. 岩石力学与工程学报,2021,40(7):1392−1401.

    ZHAO Guangming,ZHOU Jun,MENG Xiangrui,et al. Dynamic impact compression characteristics of granite rocks with different length-diameter ratios[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(7):1392−1401.

    [11]

    LI Kaihui,CHENG Yungming,YIN Zhenyu,et al. Size effects in a transversely isotropic rock under Brazilian tests:laboratory testing[J]. Rock Mechanics and Rock Engineering,2020,53(6):2623−2642. doi: 10.1007/s00603-020-02058-7

    [12]

    MA Dan,WANG Jiajun,CAI Xin,et al. Effects of height/diameter ratio on failure and damage properties of granite under coupled bending and splitting deformation[J]. Engineering Fracture Mechanics,2019,220:106640. doi: 10.1016/j.engfracmech.2019.106640

    [13] 陈瑜,黄永恒,曹平,等. 不同高径比时软岩强度与变形尺寸效应试验研究[J]. 中南大学学报(自然科学版),2010,41(3):1073−1078.

    CHEN Yu,HUANG Yongheng,CAO Ping,et al. Experimental study on the strength and deformation size effect of soft rock under different aspect ratios[J]. Journal of Central South University (Science and Technology),2010,41(3):1073−1078.

    [14] 朱其志,闵中泽,王岩岩,等. 粉砂岩三轴压缩试验中的试样尺寸效应研究[J]. 岩石力学与工程学报,2019,38(S2):3296−3303.

    ZHU Qizhi,MIN Zhongze,WANG Yanyan,et al. Study on sample size effect in siltstone triaxial compression test[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(S2):3296−3303.

    [15] 肖晓春,刘海燕,丁鑫,等. 单向卸载条件下组合煤岩力学特性及声发射演化规律[J]. 煤炭科学技术,2023,51(11):71−83.

    XIAO Xiaochun,LIU Haiyan,DING Xin,et al. Mechanical properties and acoustic emission evolution law of combined coal and rock under unidirectional unloading conditions [J]. Coal Science and Technology,2023,51(11):71−83.

    [16]

    YIN Dawei,CHEN Shaojie,GE Yao,et al. Mechanical properties of rock–coal bi-material samples with different lithologies under uniaxial loading[J]. Journal of Materials Research and Technology,2021,10:322−338. doi: 10.1016/j.jmrt.2020.12.010

    [17] 王磊,袁秋鹏,谢广祥,等. 冲击载荷下煤样能量耗散与破碎分形的长径比效应[J]. 煤炭学报,2022,47(4):1534−1546.

    WANG Lei,YUAN Qiupeng,XIE Guangxiang,et al. The aspect ratio effect of energy dissipation and fractal fragmentation of coal samples under impact load[J]. Journal of China Coal Society,2022,47(4):1534−1546.

    [18]

    KONG Xiaoxuan,LIU Quansheng,LU Haifeng,et al. Effects of rock specimen size on mechanical properties in laboratory testing[J]. Journal of Geotechnical and Geoenvironmental Engineering,2021,147(5):66−74.

    [19] 刘刚,肖福坤,秦涛. 小尺寸效应下岩石力学特性及声发射规律[J]. 岩石力学与工程学报,2018,37(S2):3905−3917.

    LIU Gang,XIAO Fukun,QIN Tao. Rock mechanics characteristics and acoustic emission law under small size effect[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(S2):3905−3917.

    [20]

    LEI Ruide,TAN Yunlinag,BERTO Filippo,et al. Temporal-frequency distribution and multi-fractal characterization of acoustic emission of rock materials containing two parallel pre-existing flaws[J]. Fatigue & Fracture of Engineering Materials & Structures,2023,46(6):2139−2155.

    [21] 赵光明,刘之喜,孟祥瑞,等. 高径比对砂岩能量积聚与耗散试验及分析方法[J]. 煤炭学报,2022,47(3):1110−1121.

    ZHAO Guangming,LIU Zhixi,MENG Xiangrui,et al. Test and analysis method of energy accumulation and dissipation in sandstone by height-diameter ratio[J]. Journal of China Coal Society,2022,47(3):1110−1121.

    [22] 张亮,王桂林,雷瑞德,等. 单轴压缩下不同长度单裂隙岩体能量损伤演化机制[J]. 中国公路学报,2021,34(1):24−34. doi: 10.3969/j.issn.1001-7372.2021.01.003

    ZHANG Liang,WANG Guilin,LEI Ruide,et al. Evolution mechanism of energy damage of different length single fracture rock mass under uniaxial compression[J]. China Journal of Highway and Transport,2021,34(1):24−34. doi: 10.3969/j.issn.1001-7372.2021.01.003

    [23]

    AGGELIS D. G. Classification of cracking mode in concrete by acoustic emission parameters[J]. Mechanics Research Communications,2011,38(3):153−157. doi: 10.1016/j.mechrescom.2011.03.007

    [24]

    ALDAHDOOH M. ,MUHAMAMD B. N. Crack classification in reinforced concrete beams with varying thicknesses by mean of acoustic emission signal features[J]. Geotechnical Test Journal,2016,39(4):673−687. doi: 10.1520/GTJ20150231

    [25]

    LIAN Shuailong,ZHENG Kun,ZHAO Yu,et al. Investigation the effect of freeze–thaw cycle on fracture mode classification in concrete based on acoustic emission parameter analysis[J]. Construction and Building Materials,2023,362:129789. doi: 10.1016/j.conbuildmat.2022.129789

    [26]

    HU Shaobin,WANG Enyuan,LI Zhonghui,et al. Time-varying multifractal characteristics and formation mechanism of loaded coal electromagnetic radiation[J]. Rock Mechanics and Rock Engineering,2014,47(5):1821−1838. doi: 10.1007/s00603-013-0501-9

    [27]

    TAN Jingqiang,HU Chenger,LYU Qiao,et al. Multi-fractal analysis for the AE energy dissipation of CO2 and CO2+ brine/water treated low-clay shales under uniaxial compressive tests[J]. Fuel,2019,246:330−339. doi: 10.1016/j.fuel.2019.03.008

    [28]

    HOU Xiaowei,ZHU Yanming,CHEN Shangbin,et al. Investigation on pore structure and multifractal of tight sandstone reservoirs in coal bearing strata using LF-NMR measurements[J]. Journal of Petroleum Science and Engineering,2020,187:106757. doi: 10.1016/j.petrol.2019.106757

    [29]

    LIU Jie,LI Qiuping,WANG Xiaoran,et al. Dynamic multifractal characteristics of acoustic emission about composite coal-rock samples with different strength rock[J]. Chaos,Solitons and Fractals:the interdisciplinary journal of Nonlinear Science,and Nonequilibrium and Complex Phenomena,2022,164:112725.

    [30] 陈世江,朱万成,于庆磊,等. 基于多重分形特征的岩体结构面剪切强度研究[J]. 岩土力学,2015,36(3):703-710.

    CHEN Shijiang,ZHU Wancheng,YU Qinglei,et al Research on shear strength of rock mass discontinuity based on multifractal characteristics [J] Rock and Soil Mechanics,2015,36(3):703-710.

    [31]

    ZHANG Xin,LI Zhonghui,WANG Xiaoran,et al. Thermal effect on the fracture behavior of granite using acoustic emission and digital image correlation:An experimental investigation[J]. Theoretical and Applied Fracture Mechanics,2022,121:103540. doi: 10.1016/j.tafmec.2022.103540

    [32]

    YANG Pengjin,MIAO Shengjun,MA Yuting,et al. Multi-dimensional non-uniform deformation and failure of siltstone determined using acoustic,3D-digital image correlation,and computed tomography[J]. Theoretical and Applied Fracture Mechanics,2023,125:103800. doi: 10.1016/j.tafmec.2023.103800

图(14)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  20
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-17
  • 网络出版日期:  2024-06-23
  • 刊出日期:  2024-10-24

目录

    /

    返回文章
    返回