高级检索

大倾角近距离煤层综采运输巷断面形状与支护参数优化

潘坤, 鞠文君, 王俊超, 贾后省, 侯彪, 王银伟, 张志明

潘 坤,鞠文君,王俊超,等. 大倾角近距离煤层综采运输巷断面形状与支护参数优化[J]. 煤炭科学技术,2024,52(12):12−22. DOI: 10.12438/cst.2023-1801
引用本文: 潘 坤,鞠文君,王俊超,等. 大倾角近距离煤层综采运输巷断面形状与支护参数优化[J]. 煤炭科学技术,2024,52(12):12−22. DOI: 10.12438/cst.2023-1801
PAN Kun,JU Wenjun,WANG Junchao,et al. Optimization of cross-sectional shape and support parameters of headgate in fully mechanized coal seam with large dip angle and close distance[J]. Coal Science and Technology,2024,52(12):12−22. DOI: 10.12438/cst.2023-1801
Citation: PAN Kun,JU Wenjun,WANG Junchao,et al. Optimization of cross-sectional shape and support parameters of headgate in fully mechanized coal seam with large dip angle and close distance[J]. Coal Science and Technology,2024,52(12):12−22. DOI: 10.12438/cst.2023-1801

大倾角近距离煤层综采运输巷断面形状与支护参数优化

基金项目: 天地科技股份有限公司科技创新创业资金专项资助项目(2022-2-TD-MS013);河南省高校科技创新人才资助项目(22HASTIT010);中原英才计划—中原青年拔尖人才资助项目(豫组通[2021]44号)
详细信息
    作者简介:

    潘坤: (1993— ),男,河南信阳人,博士研究生。E-mail:pankun2018@126.com

  • 中图分类号: TD353

Optimization of cross-sectional shape and support parameters of headgate in fully mechanized coal seam with large dip angle and close distance

  • 摘要:

    针对大倾角近距离煤层巷道在多次剧烈采动作用下,巷道围岩频繁出现非对称变形破坏致使围岩控制困难的问题,以代池坝煤矿31233运输巷为工程背景,通过理论分析、数值模拟、现场监测等综合研究方法,研究了大倾角近距离煤层开采下3种断面形状巷道围岩变形破坏机理,进一步确定并优化了最佳非对称屋顶形巷道断面形状。研究结果表明:在大倾角近距离煤层剧烈采动情况下,无论巷道断面形状如何变化,其围岩破坏形态均呈现为最大破坏深度位置朝向顶板,且由于靠近上层工作面区域内塑性区扩展应力敏感性较强,导致该区域塑性区范围和深度达到最大,但3种断面形状巷道整体围岩破坏规律和塑性区分布范围有着明显差别;与拱形巷道、斜顶直角梯形巷道不同的是,非对称屋顶形巷道可根据巷道围岩条件变化来改变左帮、右帮高度以及左坡顶、右坡顶角度,使得巷道围岩整体应力分布趋于合理化,提升围岩破坏可控性的同时提高了巷道断面利用率。据此,提出了基于巷道围岩塑性区分布的非均匀控制方法,并进行了现场工程应用,优化断面形状前后技术经济指标对比结果表明非均匀支护方式对控制围岩变形效果明显,研究结果可为同类型大倾角近距离煤层巷道断面形状选择与支护设计优化提供有效科学依据。

    Abstract:

    Aiming at the problem that the asymmetric deformation and failure of surrounding rock frequently occur, making it difficult to control the surrounding rock under the conditions of multiple intense mining actions in thecoal seam with large dip angle and close distance. Taking the headgate 31233 in Daichiba Coal Mine as the engineering background, the mechanism of surrounding rock deformation and failure in roadways with three cross-sectional shapes under thecoal seam with large dip angle and close distance was studied through theoretical analysis, numerical simulation, and on-site monitoring. The optimal asymmetric roof shaped roadway cross-sectional shape was further determined and optimized. The research results indicate that under the conditions of intense mining of steeply inclined coal seams, regardless of how the roadway cross-section changes, the form of surrounding rock failure always exhibits the maximum depth of failure towards the roof, and due to the strong stress sensitivity of the plastic zone near the upper working face area, the range and depth of the plastic zone reach a maximum, However, there are significant differences in the overall failure patterns and distribution ranges of the plastic zone among the three cross-sectional shapes. In contrast to arch roadway and inclined roof right trapezoidal roadway, the asymmetric roof shaped roadway can adjust the height of the left and right sides as well as the angles of the left and right slope tops in response to changes in surrounding rock conditions. This adjustment leads to a more rational overall stress distribution within the surrounding rock of the roadway, enhances the controllability of rock failure, and improves the utilization rate of the roadway cross-section. Based on the distribution of the plastic zone in the surrounding rock, an uneven control method is proposed, and engineering applications are conducted. The comparison of technical and economic indicators before and after optimizing the cross-section shape indicates that the uneven support method significantly improves the control over surrounding rock deformation. The research results provide an effective scientific basis for the selection of cross-sectional shapes and the optimization of support designs for similar roadways inthecoal seam with large dip angle and close distance.

  • 图  1   代池坝矿31233运输巷岩层结构钻孔柱状

    Figure  1.   Borehole column diagram of rock structure of headgate31233 in Daichiba Coal Mine

    图  2   31233工作面与31133工作面、31135工作面空间分布

    Figure  2.   Space distribution between 31233 working face, 31133 working face, and 31135 working face

    图  3   31233运输巷非对称变形

    注:图中1、2、3分别指代31233运输巷不同的变形位置。

    Figure  3.   Asymmetric deformation of the haulage roadway 31233

    图  4   拱形巷道受力状态

    Figure  4.   Stress state of arch roadway

    图  5   斜顶直角梯形巷道受力状态

    Figure  5.   Stress state of inclined roof right trapezoidal roadway

    图  6   斜顶直角梯形巷道与拱形巷道围岩受力对比

    注:F2'为顶板左角位置处受到的垂直压力。

    Figure  6.   Comparison of surrounding rock forces in inclined roof right trapezoidal roadway and arch roadway

    图  7   非对称屋顶形巷道受力状态分析

    Figure  7.   Analysis of stress state of asymmetric roof shaped roadway

    图  8   数值模型

    Figure  8.   Numerical model

    图  9   不同应力条件下3种巷道断面形状围岩塑性区分布

    Figure  9.   Distribution of plastic zones in surrounding rock of three different roadway cross-section shapes under different stress conditions

    图  10   优化后非对称屋顶形巷道围岩塑性区分布

    Figure  10.   Optimizing distribution of plastic zone in surrounding rock of asymmetric roof shaped roadway with optimized

    图  11   优化断面形状后非均匀支护参数设计

    Figure  11.   Design of non-uniform support parameters after optimizing cross-sectional shape

    表  1   煤岩物理力学参数

    Table  1   Physical and mechanical parameters of coal and rock

    岩性 密度/
    (kg·m−3
    体积模量/
    GPa
    剪切模量/
    GPa
    黏聚力/
    MPa
    内摩擦角/
    (°)
    11号煤 1 880 2.51 3.34 3.9 28
    炭质泥岩 1 940 2.65 3.40 4.2 30
    11号煤 1 880 2.51 3.34 3.9 28
    泥质粉砂岩 2 140 2.88 3.41 5.2 33
    细粒砂岩 2 900 3.34 4.52 8.0 41
    泥质粉砂岩 2 140 2.88 3.41 5.2 33
    炭质泥岩 1 940 2.65 3.40 4.2 30
    12−1号煤 1 880 2.51 3.34 3.9 28
    夹矸 2 330 3.05 4.39 6.2 35
    12−2号煤 1 880 2.51 3.34 3.9 28
    泥质粉砂岩 2 140 2.88 3.41 5.2 33
    炭质泥岩 1 940 2.65 3.40 4.2 30
    下载: 导出CSV

    表  2   优化断面形状前后技术经济指标对比

    Table  2   Comparison of technical and economic indicators before and after optimizing cross-sectional shape

    阶段 左帮变形量/
    mm
    左坡顶变形量/
    mm
    右坡顶变形量/
    mm
    巷道日掘进量/
    m
    每百米锚杆用量/根 每百米锚索用量/根 200 m
    巷道维
    修量/m
    优化前 164 202 139 5.2 1 100 325 114
    优化后 121 120 112 6.0 570 260 75
    下载: 导出CSV

    表  3   优化断面形状前后技术经济指标变化率

    Table  3   Change rate of technical and economic indicators before and after optimizing cross-sectional shape

    指标 左帮
    变形量
    左坡
    顶变
    形量
    右坡
    顶变
    形量
    巷道
    日掘
    进量
    每百米
    锚杆
    用量
    每百米
    锚索
    用量
    200 m
    巷道
    维修量
    变化率/% 26 41 19 15 48 20 34
    下载: 导出CSV
  • [1] 何富连,吕凯,许旭辉,等. 近距离煤层综放末采关键块体回转机制及其应用[J]. 岩石力学与工程学报,2023,42(8):1832−1846.

    HE Fulian,LYU Kai,XU Xuhui,et al. Rotation mechanism of key blocks during end-mining period of fully mechanized caving in close distance coal seams and its application[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(8):1832−1846.

    [2] 杨科,孔祥勇,陆伟,等. 近距离采空区下大倾角厚煤层开采矿压显现规律研究[J]. 岩石力学与工程学报,2015,34(S2):4278−4285.

    YANG Ke,KONG Xiangyong,LU Wei,et al. Study of strata pressure behaviors with longwall mining in large inclination and thick coal seam under closed distance mined gob[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(S2):4278−4285.

    [3] 张炜,张东升,陈建本,等. 极近距离煤层回采巷道合理位置确定[J]. 中国矿业大学学报,2012,41(2):182−188.

    ZHANG Wei,ZHANG Dongsheng,CHEN Jianben,et al. Determining the optimum gateway location for extremely close coal seams[J]. Journal of China University of Mining & Technology,2012,41(2):182−188.

    [4] 池小楼,杨科,付强,等. 大倾角厚煤层走向长壁分层开采再生顶板力学行为与稳定控制[J]. 煤炭科学技术,2023,51(6):1−10.

    CHI Xiaolou,YANG Ke,FU Qiang,et al. Mechanical behavior and stability control of regenerated roof in long wall stratified mining of thick steeply dipping coal seam[J]. Coal Science and Technology,2023,51(6):1−10.

    [5] 王智民,梁运培,邹全乐,等. 多重采动下大倾角上覆煤岩移动及地面井变形规律[J]. 煤炭科学技术,2023,51(4):47−55.

    WANG Zhimin,LIANG Yunpei,ZOU Quanle,et al. Movement of overlying rock and deformation law of surface well under multiple mining with large dip angle[J]. Coal Science and Technology,2023,51(4):47−55.

    [6] 伍永平,郎丁,贠东风,等. 我国大倾角煤层开采技术变革与展望[J]. 煤炭科学技术,2024,52(1):25−51.

    WU Yongping,LANG Ding,YUN Dongfeng,et al. Reform and prospects of mining technology for large inclined coal seam in China[J]. Coal Science and Technology,2024,52(1):25−51.

    [7] 张忠温,吴吉南,范明建,等. 近距离煤层采空区下巷道支护技术研究与应用[J]. 煤炭工程,2015,47(2):37−40. doi: 10.11799/ce201502012

    ZHANG Zhongwen,WU Jinan,FAN Mingjian,et al. Research on roadway support technology under goaf of close coal seam[J]. Coal Engineering,2015,47(2):37−40. doi: 10.11799/ce201502012

    [8] 李桂臣,杨森,孙元田,等. 复杂条件下巷道围岩控制技术研究进展[J]. 煤炭科学技术,2022,50(6):29−45.

    LI Guichen,YANG Sen,SUN Yuantian,et al. Research progress of roadway surrounding strata rock control technologies under complex conditions[J]. Coal Science and Technology,2022,50(6):29−45.

    [9] 于洋,神文龙,高杰. 极近距离煤层下位巷道变形机理及控制[J]. 采矿与安全工程学报,2016,33(1):49−55.

    YU Yang,SHEN Wenlong,GAO Jie. Deformation mechanism and control of lower seam roadway of contiguous seams[J]. Journal of Mining & Safety Engineering,2016,33(1):49−55.

    [10] 王龙飞,常泽超,杨战标,等. 深井近距离煤层群采空区下回采巷道联合支护技术[J]. 采矿与安全工程学报,2018,35(4):686−692.

    WANG Longfei,CHANG Zechao,YANG Zhanbiao,et al. Combined support technology of roadway under mined gob of ultra-distance seams in deep mine[J]. Journal of Mining & Safety Engineering,2018,35(4):686−692.

    [11] 张春雷,李占平,康强. 近距煤层群不同层间岩层结构下围岩裂隙演化规律[J]. 煤矿安全,2018,49(9):91−95.

    ZHANG Chunlei,LI Zhanping,KANG Qiang. Fracture evolution laws of surrounding rock under different strata rock structures in short distance coal seam group[J]. Safety in Coal Mines,2018,49(9):91−95.

    [12]

    LI X F,CHENG G H,LI X Q,et al. A study of soft rock roadway coupling support in xiajing coal mine[J]. Procedia Engineering,2014,84:812−817. doi: 10.1016/j.proeng.2014.10.500

    [13]

    XIAO T Q,WANG X Y,ZHANG Z G. Stability control of surrounding rocks for a coal roadway in a deep tectonic region[J]. International Journal of Mining Science and Technology,2014,24(2):171−176. doi: 10.1016/j.ijmst.2014.01.005

    [14]

    GAO F Q,STEAD D,KANG H P. Simulation of roof shear failure in coal mine roadways using an innovative UDEC Trigon approach[J]. Computers and Geotechnics,2014,61:33−41. doi: 10.1016/j.compgeo.2014.04.009

    [15] 王红伟,宋远洋,焦建强,等. 大倾角煤层断层带回采巷道动载失稳机理[J]. 采矿与安全工程学报,2022,39(5):971−980,991.

    WANG Hongwei,SONG Yuanyang,JIAO Jianqiang,et al. Failure mechanism of roadway under dynamic load in fault zone of steeply inclined coal seam[J]. Journal of Mining & Safety Engineering,2022,39(5):971−980,991.

    [16]

    ARGÜELLES-FRAGA R,ORDÓÑEZ C,GARCÍA-CORTÉS S,et al. Measurement planning for circular cross-section tunnels using terrestrial laser scanning[J]. Automation in Construction,2013,31:1−9. doi: 10.1016/j.autcon.2012.11.023

    [17]

    GHOTBI RAVANDI E,RAHMANNEJAD R. Wall displacement prediction of circular,D shaped and modified horseshoe tunnels in non-hydrostatic stress fields[J]. Tunnelling and Underground Space Technology,2013,34:54−60. doi: 10.1016/j.tust.2012.11.001

    [18]

    LU A Z,CHEN H Y,QIN Y,et al. Shape optimisation of the support section of a tunnel at great depths[J]. Computers and Geotechnics,2014,61:190−197. doi: 10.1016/j.compgeo.2014.05.011

    [19] 曹树刚,王帅,王寿全,等. 大倾角煤层回采巷道断面适应性[J]. 东北大学学报(自然科学版),2017,38(3):436−441.

    CAO Shugang,WANG Shuai,WANG Shouquan,et al. Adaptability of roadway section shape in deep inclined seam[J]. Journal of Northeastern University (Natural Science),2017,38(3):436−441.

    [20]

    WANG M,GUO G L,WANG X Y,et al. Floor heave characteristics and control technology of the roadway driven in deep inclined-strata[J]. International Journal of Mining Science and Technology,2015,25(2):267−273. doi: 10.1016/j.ijmst.2015.02.016

    [21]

    TAO Z G,ZHU C,ZHENG X H,et al. Failure mechanisms of soft rock roadways in steeply inclined layered rock formations[J]. Geomatics,Natural Hazards and Risk,2018,9(1):1186−1206. doi: 10.1080/19475705.2018.1497712

    [22]

    LIANG Z Z,SONG W C,LIU W T. Theoretical models for simulating the failure range and stability of inclined floor strata induced by mining and hydraulic pressure[J]. International Journal of Rock Mechanics and Mining Sciences,2020,132:104382. doi: 10.1016/j.ijrmms.2020.104382

    [23] 张进鹏,刘立民,刘传孝,等. 深部大倾角煤岩层巷道断面形状与耦合支护[J]. 中南大学学报(自然科学版),2021,52(11):4074−4087.

    ZHANG Jinpeng,LIU Limin,LIU Chuanxiao,et al. Cross-section shape and coupling support of deep and large-inclined coal and rock roadway[J]. Journal of Central South University (Science and Technology),2021,52(11):4074−4087.

    [24] 钱鸣高,石平五. 矿山压力与岩层控制[M]. 徐州:中国矿业大学出版社,2003.
    [25] 贾后省,李国盛,王路瑶,等. 采动巷道应力场环境特征与冒顶机理研究[J]. 采矿与安全工程学报,2017,34(4):707−714.

    JIA Housheng,LI Guosheng,WANG Luyao,et al. Characteristics of stress-field environment and roof falling mechanism of mining influenced roadway[J]. Journal of Mining & Safety Engineering,2017,34(4):707−714.

    [26] 赵洪宝,程辉,吉东亮,等. 近距离煤层回采巷道非对称性破坏机理与演化规律研究[J]. 中国矿业大学学报,2021,50(6):1029−1040,1050.

    ZHAO Hongbao,CHENG Hui,JI Dongliang,et al. Study of the mechanism and evolution law of unsymmetrical failure of the mining roadway in close distance coal seam[J]. Journal of China University of Mining & Technology,2021,50(6):1029−1040,1050.

    [27] 贾后省,王璐瑶,刘少伟,等. 综放工作面煤柱巷道软岩底板非对称底臌机理与控制[J]. 煤炭学报,2019,44(4):1030−1040.

    JIA Housheng,WANG Luyao,LIU Shaowei,et al. Mechanism and control strategy of asymmetrical floor heave of coal pillar roadway in fully mechanized caving face[J]. Journal of China Coal Society,2019,44(4):1030−1040.

图(11)  /  表(3)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  11
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-28
  • 网络出版日期:  2024-12-13
  • 刊出日期:  2024-12-24

目录

    /

    返回文章
    返回