高级检索

Z型异质结Ag2S/AgVO3可见光催化转化低浓度瓦斯制甲醇性能研究

杨娟, 单启月, 戴俊, 张鸽, 丰之翔

杨 娟,单启月,戴 俊,等. Z型异质结Ag2S/AgVO3可见光催化转化低浓度瓦斯制甲醇性能研究[J]. 煤炭科学技术,2024,52(4):275−287

. DOI: 10.12438/cst.2023-1998
引用本文:

杨 娟,单启月,戴 俊,等. Z型异质结Ag2S/AgVO3可见光催化转化低浓度瓦斯制甲醇性能研究[J]. 煤炭科学技术,2024,52(4):275−287

. DOI: 10.12438/cst.2023-1998

YANG Juan,SHAN Qiyue,DAI Jun,et al. Performance study on visible-light catalytic conversion of low concentration coalmine gas to methanol with Z-type heterojunction Ag2S/AgVO3[J]. Coal Science and Technology,2024,52(4):275−287

. DOI: 10.12438/cst.2023-1998
Citation:

YANG Juan,SHAN Qiyue,DAI Jun,et al. Performance study on visible-light catalytic conversion of low concentration coalmine gas to methanol with Z-type heterojunction Ag2S/AgVO3[J]. Coal Science and Technology,2024,52(4):275−287

. DOI: 10.12438/cst.2023-1998

Z型异质结Ag2S/AgVO3可见光催化转化低浓度瓦斯制甲醇性能研究

基金项目: 

国家自然科学基金资助项目(52074103,U2004194);河南省科技攻关重点资助项目(222102320095)

详细信息
    通讯作者:

    杨娟: (1981—),女,河南新乡人,教授,博士。E-mail:yangjuan@hpu.edu.cn

  • 中图分类号: TD712;TQ223

Performance study on visible-light catalytic conversion of low concentration coalmine gas to methanol with Z-type heterojunction Ag2S/AgVO3

Funds: 

National Natural Science Foundation of China Funding Projects (52074103, U2004194); Key Funding Project of Henan Provincial Science and Technology Research (222102320095)

  • 摘要:

    因缺乏合理有效的利用途径,大量低浓度瓦斯(${C_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}} $< 30%)被直接排放,研究开发低浓度瓦斯高值转化利用方法和技术对保障煤矿安全生产与减缓温室效应具有重要意义,也是实现我国“双碳”战略目标必不可缺少的部分。以低浓度瓦斯为碳源制取液体燃料甲醇被认为是其理想的利用途径之一,以清洁太阳能为驱动力的光催化技术可在室温常压下活化转化甲烷,为低浓度瓦斯低碳利用提供新途径。首先采用水热法制备AgVO3,以硫代乙酰胺为硫源,通过阴离子交换策略在AgVO3表面原位复合Ag2S,构筑出Ag2S/AgVO3异质结,改变硫代乙酰胺的用量可调控Ag2S复合比例。利用XRD、SEM、TEM和紫外可见漫反射光谱等对复合催化剂的微观结构进行表征分析,以体积比为1∶12的甲烷/空气混合物模拟低浓度瓦斯,系统研究了Ag2S复合比例、氧化剂用量、光照强度等对甲烷转化、甲醇产生及其选择性的影响规律,借助瞬态光电流响应谱和电子顺磁共振谱(EPR)探究了Z型异质结构Ag2S/AgVO3对增强模拟瓦斯转化性能的内在机理。研究结果表明:所制AgVO3呈纤维状形貌,其晶相结构为单斜相,原位复合的Ag2S呈纳米颗粒形态,其平均粒径为60 nm,且Ag2S颗粒均匀分布于AgVO3纤维表面。与单一AgVO3和Ag2S相比,复合材料Ag2S/AgVO3具有更强的光吸收性能,AgVO3的带隙能、价带与导带电势分别为2.08 eV、2.21 V和0.13 V,Ag2S的带隙能、价带与导带电势分别为0.91 eV、0.34 V和−0.57 V。与AgVO3相比,复合催化剂Ag2S/AgVO3具有显著增强的瓦斯转化性能,可见光照射1 h最优催化剂20% Ag2S/AgVO3的甲烷转化和甲醇产生量为3.10 mmol/g和2.45 mmol/g,分别为单一AgVO3的1.72倍与2.63倍,且其甲醇选择性高达78.9%;6次循环试验结果表明:Ag2S/AgVO3具有优异的催化稳定性。能带结构分析与EPR测试结果表明:Ag2S/AgVO3异质结遵循Z型电荷迁移机制,这不仅增强了光生电荷的空间分离,同时使其具有较强的氧化/还原能力,显著提升低浓度瓦斯定向转化制取甲醇的催化性能,为低浓度瓦斯低碳高效利用提供新思路。

    Abstract:

    Large number of low-concentration gas (${C_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}} $< 30%) is discharged directly due to the lack of reasonable and effective utilization pathways. Research and development of high-value conversion and utilization methods and technologies for low-concentration gas is of great significance to ensure the safe production in coal seams and mitigate the greenhouse effect, and it is also an indispensable part of realizing China’s “double carbon” strategic goal. The production of liquid fuel methanol from low-concentration gas as a carbon source is considered to be one of the ideal utilization pathways. Photocatalytic technology driven by clean solar energy can activate and convert methane at room temperature and atmospheric pressure, providing a novel approach for low-carbon utilization of low-concentration gas. AgVO3 was firstly prepared by hydrothermal method. Ag2S/AgVO3 heterojunction was constructed by in-situ decoration of Ag2S on the surface of AgVO3 via ion exchange strategy using thioacetamide as a sulfur source. Molar ratio of Ag2S could be regulated by varying the amount of thioacetamide. The microstructure of composite catalysts was characterized using XRD, SEM, TEM and UV-Vis diffuse reflectance spectroscopy. A methane-air mixture with a volume ratio of 1∶12 was used as the simulated low-concentration gas, and the effects of Ag2S compound ratio, oxidant concentration and light intensity on methane conversion, methanol productivity and selectivity were systematically investigated. The intrinsic mechanism of Z-type heterojunction Ag2S/AgVO3 for enhancing the conversion performance of simulated gas was explored by means of transient photocurrent response spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. The results indicated that, the prepared AgVO3 shown a fibrous morphology with monoclinic crystalline phase structure. The in-situ composite Ag2S was in the form of nanoparticles with an average particle size of 60 nm, and the Ag2S particles were uniformly distributed on the surface of AgVO3 fibers. Composite Ag2S/AgVO3 exhibited enhanced light absorption compared to single AgVO3 and Ag2S. The bandgap energy, valence band and conduction band potentials of AgVO3 were 2.08 eV, 2.21 V and 0.13 V, and those of Ag2S were 0.91 eV, 0.34 V and −0.57 V, respectively. The composite catalyst Ag2S/AgVO3 shown significantly enhanced gas conversion performance compared to AgVO3. The methane conversion and methanol production of the optimal catalyst 20% Ag2S/AgVO3 irradiated with visible light for 1 h was 3.10 mmol/g and 2.45 mmol/g, which was 1.72 times and 2.63 times higher than that of the single AgVO3, respectively, and the methanol selectivity was up to 78.9%. The result of 6 cyclic tests shown the excellent catalytic stability of Ag2S/AgVO3. The results of energy band structure analysis and EPR test shown that, the Ag2S/AgVO3 heterojunction followed the Z-type charge transfer mechanism, which not only enhanced the spatial separation of photogenerated charges, but also maintained strong oxidation-reduction ability, which significantly improved the catalytic performance in the directional conversion of low concentration gas to methanol, and provided a novel idea for the high-efficiency utilization of low-concentration gas in a low-carbon way.

  • 图  1   Ag2S/AgVO3异质结光催化剂的制备流程

    Figure  1.   Preparation of Ag2S/AgVO3 heterojunction photocatalysts

    图  2   低浓度瓦斯光催化转化制甲醇试验系统示意

    Figure  2.   Experimental system for photocatalytic conversion of low-concentration coal mine gas to methanol

    图  3   单一AgVO3和复合材料Ag2S/AgVO3的XRD图

    Figure  3.   XRD patterns of AgVO3 and Ag2S/AgVO3 composites

    图  4   单一AgVO3、Ag2S和复合材料Ag2S/AgVO3的SEM图

    Figure  4.   SEM images of single AgVO3, Ag2S and composites Ag2S/AgVO3

    图  5   复合材料20% Ag2S/AgVO3的TEM图、HRTEM图和EDS元素mapping图

    Figure  5.   TEM, HRTEM and EDS elemental mapping images of 20% Ag2S/AgVO3 composite

    图  6   催化材料的紫外−可见漫反射光谱、Tauc曲线和莫特−肖特基曲线

    Figure  6.   UV-Vis DRS, Tauc plots and Mott-Schottky curves of catalyst materials

    图  7   复合光催化剂Ag2S/AgVO3的低浓度瓦斯转化性能

    Figure  7.   Conversion performance of low-concentration coalmine gas over Ag2S/AgVO3 photocatalyst

    图  8   H2O2浓度和光照强度对20% Ag2S/AgVO3瓦斯转化性能的影响

    Figure  8.   Effects of H2O2 concentration and light intensity on conversion performance of simulated gas over 20% Ag2S/AgVO3 catalyst

    图  9   复合催化剂20% Ag2S/AgVO3的循环稳定性试验

    Figure  9.   Cyclic stability test of 20% Ag2S/AgVO3 photocatalyst

    图  10   不同波长光源照射下20% Ag2S/AgVO3的表观量子效率和甲醇产生速率

    Figure  10.   Apparent quantum efficiency and CH3OH production rate of 20% Ag2S/AgVO3 under irradiation of different wavelength incident light

    图  11   AgVO3、Ag2S和20% Ag2S/AgVO3的瞬态光电流响应谱

    Figure  11.   Transient photocurrent response spectra of AgVO3、Ag2S和20% Ag2S/AgVO3

    图  12   AgVO3、Ag2S和20% Ag2S/AgVO3悬浮液光照3 min的EPR谱图

    Figure  12.   EPR spectra of AgVO3、Ag2S和20% Ag2S/AgVO3 suspension with irradiation for 3 min

    图  13   Ag2S/AgVO3异质结的能带结构和性能增强机理

    Figure  13.   Band structure and performance enhancement mechanism of Ag2S/AgVO3 heterojunction

    表  1   用于光催化转化甲烷制甲醇的各种催化剂性能比较

    Table  1   Performance comparison of various catalysts for photocatalytic conversion of methane to methanol

    催化剂 光源照射
    条件
    甲醇产率/
    (mmol·g−1)
    甲醇选
    择性/%
    文献
    ZnO 紫外光 1.25 51 [14]
    TiO2 紫外光 0.95 42 [43]
    Au/WO3 可见光 0.59 75 [44]
    Pd/ZnO 紫外光 3.03 26 [45]
    FeOx/TiO2 紫外光 1.06 90 [26]
    BiOCl 紫外光 0.18 80.1 [46]
    BiVO4 可见光 2.30 59.7 [34]
    Def-WO3 可见光 1.48 76 [9]
    20% Ag2S /AgVO3 可见光 2.45 78.9 本文
    下载: 导出CSV

    表  2   复合催化剂Ag2S/AgVO3的反应活性中心物质的量

    Table  2   Molar number of reaction active center of the composite catalysts Ag2S/AgVO3

    复合催化剂 Ag2S还原活性中心
    物质的量/μmol
    AgVO3氧化活性中心
    物质的量/μmol
    5% Ag2S/AgVO3 2.49 45.36
    10% Ag2S/AgVO3 5.01 42.29
    20% Ag2S/AgVO3 10.05 36.27
    30% Ag2S/AgVO3 14.50 30.95
    下载: 导出CSV
  • [1]

    NISBET E G,DLUGOKENCKY E J,BOUSQUET P. Methane on the rise-again[J]. Science,2014,343(6170):493−495. doi: 10.1126/science.1247828

    [2] 王恩元,李忠辉,李保林,等. 煤矿瓦斯灾害风险隐患大数据监测预警云平台与应用[J]. 煤炭科学技术,2022,50(1):142−150.

    WANG Enyuan,LI Zhonghui,LI Baolin,et al. Big data monitoring and early warning cloud platform for coal mine gas disaster risk and potential danger and its application[J]. Coal Science and Technology,2022,50(1):142−150.

    [3] 李树刚,张静非,林海飞,等. 双碳战略中煤气共采技术发展路径的思考[J]. 煤炭科学技术,2024,52(1):138−153. doi: 10.12438/cst.2023-1689

    LI Shugang,ZHANG Jingfei,LIN Haifei,et al. Thoughts on the development path of coal and gas co-mining technology in dual carbon strategy[J]. Coal Science and Technology,2024,52(1):138−153. doi: 10.12438/cst.2023-1689

    [4] 秦 勇,申 建,史 锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报,2022,47(1):371−387.

    QIN Yong,SHEN Jian,SHI Rui. Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society,2022,47(1):371−387.

    [5] 王鑫鑫. 基于固体氧化物燃料电池的煤矿低浓度瓦斯高效清洁利用研究[D]. 徐州:中国矿业大学,2020:36−66.

    WANG Xinxin. Study on the efficient and clean utilization of low concentration coal mine methane by solid oxide fuel cell[D]. Xuzhou:China University of Mining and Technology,2020:36−66.

    [6]

    WANG Xinxin,ZHOU Fubao,LING Yihan,et al. Overview and outlook on utilization technologies of low-concentration coal mine methane[J]. Energy & Fuels,2021,35(19):15398−15423.

    [7] 王 刚,杨曙光,张寿平,等. 新疆煤矿区瓦斯抽采利用技术现状及展望[J]. 煤炭科学技术,2020,48(3):154−161.

    WANG Gang,YANG Shuguang,ZHANG Shouping,et al. Status and prospect of coal mine gas drainage and utilization technology in Xinjiang Coal Mining Area[J]. Coal Science and Technology,2020,48(3):154−161.

    [8] 张进华,曲思建,王 鹏. 变压吸附法提纯煤层气中甲烷研究进展[J]. 洁净煤技术,2019,25(6):78−87.

    ZHANG Jinhua,QU Sijian,WANG Peng. Research progress on the recovery of methane from coalbed methane by pressure swing adsorption[J]. Clean Coal Technology,2019,25(6):78−87.

    [9]

    YANG Juan,CHEN Pengyu,DAI Jun,et al. Solar-energy-driven conversion of oxygen-bearing low-concentration coal mine methane into methanol on full-spectrum-responsive WO3- x catalysts[J]. Energy Conversion and Management,2021,247:114767. doi: 10.1016/j.enconman.2021.114767

    [10]

    RAVI M,RANOCCHIARI M,VAN BOKHOVEN J A. The direct catalytic oxidation of methane to methanol:A critical assessment[J]. Angewandte Chemie International Edition,2017,56(52):16464−16483. doi: 10.1002/anie.201702550

    [11]

    AGARWAL N,FREAKLEY S J,MCVICKER R U,et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions[J]. Science,2017,358(6360):223−227. doi: 10.1126/science.aan6515

    [12]

    HUANG Weixin,ZHANG Shiran,TANG Yu,et al. Low-temperature transformation of methane to methanol on Pd1O4 single sites anchored on the internal surface of microporous silicate[J]. Angewandte Chemie International Edition,2016,55(43):13441−13445. doi: 10.1002/anie.201604708

    [13]

    SONG Hui,MENG Xianguang,WANG Zhoujun,et al. Solar-energy-mediated methane conversion[J]. Joule,2019,3(7):1606−1636. doi: 10.1016/j.joule.2019.06.023

    [14]

    ZHU Shan,LI Xiaodong,PAN Zhikang,et al. Efficient photooxidation of methane to liquid oxygenates over ZnO nanosheets at atmospheric pressure and near room temperature[J]. Nano Letters,2021,21(9):4122−4128. doi: 10.1021/acs.nanolett.1c01204

    [15] 杨 娟,郝静怡,戴 俊,等. 介孔WO3/H2O2光催化氧化低浓度瓦斯制甲醇性能与机理[J]. 煤炭学报,2019,44(10):3107−3116.

    YANG Juan,HAO Jingyi,DAI Jun,et al. Performance and mechanism of photocatalytic oxidation of low concentration coal-mine gas into methanol in mesoporous WO3/H2O2 system[J]. Journal of China Coal Society,2019,44(10):3107−3116.

    [16]

    LUO Peipei,ZHOU Xinke,LI Yu,et al. Simultaneously accelerating carrier transfer and enhancing O2/CH4 activation via tailoring the oxygen-vacancy-rich surface layer for cocatalyst-free selective photocatalytic CH4 conversion[J]. ACS Applied Materials & Interfaces,2022,14(18):21069−21078.

    [17]

    RAN Jingrun,JARONIEC M,QIAO Shizhang. Cocatalysts in semiconductor-based photocatalytic CO2 reduction:achievements,challenges,and opportunities[J]. Advanced Materials,2018,30(7):1704649. doi: 10.1002/adma.201704649

    [18]

    YU Linhui,SHAO Yu,LI Danzhen. Direct combination of hydrogen evolution from water and methane conversion in a photocatalytic system over Pt/TiO2[J]. Applied Catalysis B:Environmental,2017,204:216−223. doi: 10.1016/j.apcatb.2016.11.039

    [19] 郝静怡. 介孔氧化钨基催化剂光氧化低浓度瓦斯制甲醇的性能研究[D]. 焦作:河南理工大学,2020:21−33.

    HAO Jingyi. The study on the photo-oxidation performance for the conversion of low concentration coalbed methane to methanol over mesoporous tungsten oxide-based catalysts[D]. Jiaozuo:Henan Polytechnic University,2020:21−33.

    [20]

    XIAO Zhen,SHEN Jinni,ZHANG Jiangjie,et al. Intermediate stabilization for tuning photocatalytic selective oxidation of CH4 to CH3OH over Co3O4/ZnO[J]. Journal of Catalysis,2022,413:20−30. doi: 10.1016/j.jcat.2022.06.017

    [21]

    XU Quanlong,ZHANG Liuyang,YU Jiaguo,et al. Direct Z-scheme photocatalysts:Principles,synthesis,and applications[J]. Materials Today,2018,21(10):1042−1063. doi: 10.1016/j.mattod.2018.04.008

    [22]

    YU Weilai,CHEN Junxiang,SHANG Tongtong,et al. Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production[J]. Applied Catalysis B:Environmental,2017,219:693−704. doi: 10.1016/j.apcatb.2017.08.018

    [23] 邢慧娟,樊玉萍,马晓敏,等. Pb掺杂尾煤基纳米TiO2的制备及光催化降解PAM废水的研究[J]. 煤炭科学技术,2023,51(6):257−264.

    XING Huijuan,FAN Yuping,MA Xiaomin,et al. Preparation of Pb-doped tailings-based nano-TiO2 and study on photocatalytic degradation of PAM wastewater[J]. Coal Science and Technology,2023,51(6):257−264.

    [24]

    ZHAO Wei,WEI Zhongbo,HE Huan,et al. Supporting 1-D AgVO3 nanoribbons on single layer 2-D graphitic carbon nitride ultrathin nanosheets and their excellent photocatalytic activities[J]. Applied Catalysis A:General,2015,501:74−82. doi: 10.1016/j.apcata.2015.05.020

    [25] 杜智华,杨 娟,戴 俊,等. Ni2+取代对ZnTi-LDH选择性光氧化去除NO的性能增强[J]. 化工学报,2022,73(11):4998−5010.

    DU Zhihua,YANG Juan,DAI Jun,et al. Performance enhancment of selective photo-oxidation for NO removal on ZnTi-LDH by Ni2+ substitution[J]. CIESC Journal,2022,73(11):4998−5010.

    [26]

    XIE Jijia,JIN Renxi,LI Ang,et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species[J]. Nature Catalysis,2018,1(8):889−896.

    [27] 赵子涵. 基于双金属氧化物的光热催化合成氨研究[D]. 长春:吉林大学,2023:47−48.

    ZHAO Zihan. Research on photothermal catalytic ammonia synthesis based on bimetallic oxides[D]. Changchun:Jilin University,2023:47−48.

    [28]

    ZHANG Xin,ZHANG Jie,YU Jianqiang,et al. Fabrication of InVO4/AgVO3 heterojunctions with enhanced photocatalytic antifouling efficiency under visible-light[J]. Applied Catalysis B:Environmental,2018,220:57−66. doi: 10.1016/j.apcatb.2017.07.074

    [29]

    ZHANG Zhen,XING Zipeng,WANG Ke,et al. Bi2S3@Ag2S nano-heterojunction decorated self-floating carbon fiber cloth and enhanced solar-driven photothermal-photocatalytic performance[J]. Chemosphere,2020,271:129500.

    [30]

    LI Xiaoguang,LI Yinle,SHEN Jianfeng,et al. A controlled anion exchange strategy to synthesize Bi2S3 nanoparticles/plate-like Bi2WO6 heterostructures with enhanced visible light photocatalytic activities for Rhodamine B[J]. Ceramics International,2016,42(2):3154−3162. doi: 10.1016/j.ceramint.2015.10.105

    [31]

    MA Dekun,GUAN Meili,LIU Sensen,et al. Controlled synthesis of olive-shaped Bi2S3/BiVO4 microspheres through a limited chemical conversion route and enhanced visible-light-responding photocatalytic activity[J]. Dalton Transactions,2012,41(18):5581−5586. doi: 10.1039/c2dt30099k

    [32]

    TIAN Jun,YAN Tingjiang,QIAO Zheng,et al. Anion-exchange synthesis of Ag2S/Ag3PO4 core/shell composites with enhanced visible and NIR light photocatalytic performance and the photocatalytic mechanisms[J]. Applied Catalysis B:Environmental,2017,209:566−578. doi: 10.1016/j.apcatb.2017.03.022

    [33]

    LU Huidan,WANG Jixiang,DU Zhenyu,et al. In-situ anion-exchange synthesis AgCl/AgVO3 hybrid nanoribbons with highly photocatalytic activity[J]. Materials Letters,2015,157:231−234. doi: 10.1016/j.matlet.2015.05.135

    [34]

    FAN Yingying,ZHOU Wencai,QIU Xueying,et al. Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate[J]. Nature Sustainability,2021,4(6):509−515. doi: 10.1038/s41893-021-00682-x

    [35]

    YANG Juan,HAO Jingyi,XU Siyu,et al. InVO4/β-AgVO3 nanocomposite as a direct Z-Scheme photocatalyst toward efficient and selective visible-light-driven CO2 reduction[J]. ACS Applied Materials & Interfaces,2019,11(35):32025−32037.

    [36] 张亚婷,郑莉思,李可可,等. 煤基氧化石墨烯/钒酸铋复合物的构建及光还原CO2应用[J]. 煤炭学报,2022,47(12):4290−4299.

    ZHANG Yating,ZHENG Lisi,LI Keke,et al. Coal-based graphene oxide/bismuth vanadate composite for photoreduction of CO2[J]. Journal of China Coal Society,2022,47(12):4290−4299.

    [37]

    LONG Zeqing,ZHANG Guangming,DU Hongbiao,et al. Preparation and application of BiOBr-Bi2S3 heterojunctions for efficient photocatalytic removal of Cr(VI)[J]. Journal of Hazardous Materials,2021,407:124394. doi: 10.1016/j.jhazmat.2020.124394

    [38] 杨 娟,冷冲冲,张 鸽,等. 铜改性TiO2/碳纤维膜光热协同催化H2O2脱除燃煤烟气中NO性能研究[J]. 煤炭学报: 1−18[2023−12−20]. DOI: 10.1322/j.cnki.jccs.2023.1005.

    YANG Juan,LENG Chongchong,ZHANG Ge,et al. Performance study on removal of NO in coal-fired flue gas via photothermal synergistic catalysis of H2O2 over copper-modified TiO2/carbon fiber film[J]. Journal of China Coal Society: 1−18[2023−12−20]. DOI:10.1322/ j.cnki.jccs.2023.1005.

    [39]

    YANG Juan,HAO Jingyi,WEI Jianping,et al. Visible-light-driven selective oxidation of methane to methanol on amorphous FeOOH coupled m-WO3[J]. Fuel,2020,266:117104. doi: 10.1016/j.fuel.2020.117104

    [40]

    WEI Shilei,ZHU Xianglian,ZHANG Peiyun,et al. Aerobic oxidation of methane to formaldehyde mediated by crystal-O over gold modified tungsten trioxide via photocatalysis[J]. Applied Catalysis B:Environmental,2021,283:119661. doi: 10.1016/j.apcatb.2020.119661

    [41]

    JIANG Yuheng,ZHAO Wenshi,LI Siyang,et al. Elevating photooxidation of methane to formaldehyde via TiO2 crystal phase engineering[J]. Journal of the American Chemical Society,2022,144(35):15977−15987. doi: 10.1021/jacs.2c04884

    [42] 孙 晨,赵昆峰,易志国. 甲烷完全催化氧化研究进展[J]. 无机材料学报,2023,38(11):1245−1256. doi: 10.15541/jim20230117

    SUN Chen,ZHAO Kunfeng,YI Zhiguo. Research progress in catalytic total oxidation of methane[J]. Journal of Inorganic Materials,2023,38(11):1245−1256. doi: 10.15541/jim20230117

    [43]

    FENG Ningdong,LIN Huiwen,SONG Hui,et al. Efficient and selective photocatalytic CH4 conversion to CH3OH with O2 by controlling overoxidation on TiO2[J]. Nature Communications,2021,12(1):4652. doi: 10.1038/s41467-021-24912-0

    [44]

    ZENG Yi,TANG Zhiyuan,WU Xingyang,et al. Photocatalytic oxidation of methane to methanol by tungsten trioxide-supported atomic gold at room temperature[J]. Applied Catalysis B:Environmental,2022,306:120919. doi: 10.1016/j.apcatb.2021.120919

    [45]

    SONG Hui,MENG Xianguang,WANG Shengyao,et al. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water[J]. Journal of the American Chemical Society,2019,141(51):20507−20515. doi: 10.1021/jacs.9b11440

    [46]

    WANG Juxue,LI Ruofan,ZENG Di,et al. Photocatalytic conversion of methane selectively into oxygenated products in the presence of chloride ions[J]. Chemical Engineering Journal,2023,452:139505. doi: 10.1016/j.cej.2022.139505

    [47] 夏鹏飞. 石墨相氮化碳(g-C3N4)及其复合材料的光催化性能研究[D]. 武汉:武汉理工大学,2019:96−119.

    XIA Pengfei. Photocatalytic activity of graphitic carbon nitride (g-C3N4) and its composites[D]. Wuhan:Wuhan University of Technology,2019:96−119.

    [48] 荣丽青,杨 娟,戴 俊,等. WO3- x/CFs三相催化剂的制备及其可见光催化转化甲烷制甲醇[J]. 复合材料学报,2023,40(5):2709−2721.

    RONG Liqing,YANG Juan,DAI Jun,et al. Preparation of WO3- x/CFs triphase catalyst and visible-light photocatalytic conversion of methane to methanol[J]. Acta Materiae Compositae Sinica,2023,40(5):2709−2721.

    [49]

    JIANG Yuheng,LI Siyang,FAN Xiaoyu,et al. Recent advances on aerobic photocatalytic methane conversion under mild conditions[J]. Nano Research,2023,16(11):12558−12571. doi: 10.1007/s12274-023-6244-3

图(13)  /  表(2)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  13
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-25
  • 网络出版日期:  2024-04-01
  • 刊出日期:  2024-04-24

目录

    /

    返回文章
    返回