高级检索

固体废弃物制备矿用防灭火复合凝胶研究进展

李倓, 赵恒泽, 李晔, 赵艺

李 倓,赵恒泽,李 晔,等. 固体废弃物制备矿用防灭火复合凝胶研究进展[J]. 煤炭科学技术,2024,52(8):96−105

. DOI: 10.12438/cst.2023-1364
引用本文:

李 倓,赵恒泽,李 晔,等. 固体废弃物制备矿用防灭火复合凝胶研究进展[J]. 煤炭科学技术,2024,52(8):96−105

. DOI: 10.12438/cst.2023-1364

LI Tan,ZHAO Hengze,LI Ye,et al. Research progress in preparation of mine fire prevention composite gel from solid waste[J]. Coal Science and Technology,2024,52(8):96−105

. DOI: 10.12438/cst.2023-1364
Citation:

LI Tan,ZHAO Hengze,LI Ye,et al. Research progress in preparation of mine fire prevention composite gel from solid waste[J]. Coal Science and Technology,2024,52(8):96−105

. DOI: 10.12438/cst.2023-1364

固体废弃物制备矿用防灭火复合凝胶研究进展

基金项目: 

中央引导地方科技发展专项资助项目(236Z7603G);河北省自然科学基金资助项目(E2022209101,E2020209038)

详细信息
    作者简介:

    李倓: (2000—),女,河北石家庄人,硕士研究生。E-mail:2314359208@qq.com

    通讯作者:

    李晔: (1987—),男,河北唐山人,副教授,博士。E-mail:liye@ncst.edu.cn

  • 中图分类号: T0752;x705

Research progress in preparation of mine fire prevention composite gel from solid waste

Funds: 

Central government guides local funds for scientific and technological development (236Z7603G);Natural Science Foundation of Hebei -rovince (E2022209101, E2020209038)

  • 摘要:

    我国工业固体废弃物排放量大,容易对生态环境造成破坏并威胁人类健康,工业固体废弃物的资源化再利用已引起社会的广泛关注。根据固体废弃物的潜在防灭火特性,其可以作为原材料用于制备矿用防灭火复合凝胶,在实现废弃资源循环再利用的同时还能达到防治煤矿自燃火灾的目的。为了进一步推动工业固体废弃物在矿用防灭火复合凝胶材料中的资源化利用,完善和发展其在煤矿火灾防治中的应用,总结了矿用防灭火复合凝胶的防灭火机理,归纳了固体废弃物的防灭火特性,讨论了固体废弃物制备矿用防灭火复合凝胶的成胶机理和影响因素,阐述了矿用防灭火复合凝胶的注胶工艺及应用现状。基于当前的研究,发现固体废弃物复合凝胶的成胶机理不明确、固体废弃物胶凝活性未有效激发、固体废弃物复合凝胶的运输过程存在沉淀管堵以及固体废弃物应用时的安全性等问题,针对性提出了解决方向,如微尺度模拟、复合激活、新型激活材料、智能化注胶及离子固化等。并在以上解决方向基础上展望了今后固体废弃物制备矿用防灭火复合凝胶的研究重点,未来将围绕固体废弃物在制备防灭火复合凝胶的高效利用、固体废弃物复合凝胶的长效防灭火、智能凝胶防灭火监控一体化系统等展开研究。这些研究方向有助于工业固体废弃物在矿用防灭火复合凝胶材料方面的高附加值利用,并规模化用于煤矿自燃火灾的防治,保障国家财产及工人生命安全。

    Abstract:

    The discharge of industrial solid waste in China is large, which is easy to cause damage to the ecological environment and threaten human health, so the resource reuse of industrial solid waste has aroused widespread concern in society. According to the potential fire prevention and extinguishing characteristics of the solid waste, the solid waste can be used as a raw material for preparing the mine fire prevention and extinguishing composite gel, so that the recycling of the waste resource can be realized, and the purpose of preventing and controlling the spontaneous combustion fire of the coal mine can also be achieved. In order to further promote the resource utilization of industrial solid waste in mine fire prevention and extinguishing composite gel materials, and improve and develop its application in mine fire prevention and control, the fire prevention and extinguishing mechanism of mine fire prevention and extinguishing composite gel was summarized, the fire prevention and extinguishing characteristics of solid waste were summarized, and the gelling mechanism and influencing factors of mine fire prevention and extinguishing composite gel prepared by solid waste were discussed. This paper expounds the glue-injecting technology and the present application situation of the compound gel for mine fire prevention and extinguishing. In view of the current research, it is found that the gelling mechanism of solid waste composite gel is not clear, the gelling activity of solid waste is not effectively stimulated, the sedimentation tube is blocked in the transportation process of solid waste composite gel, and the safety of solid waste application, and the solution direction and future research focus are put forward. Uch as micro-scale simulation, composite activation, novel activation materials, intelligent glue injection, ionic curing and the like. On the basis of the above solutions, the future research focus of the preparation of mine fire prevention and extinguishing composite gel from solid waste is prospected, and the future research will focus on the efficient utilization of solid waste in the preparation of fire prevention and extinguishing composite gel, the long-term fire prevention and extinguishment of solid waste composite gel, and the integrated monitoring system of intelligent gel fire prevention. These research directions are conducive to the high value-added utilization of industrial solid waste in mine fire prevention and extinguishing composite gel materials, and large-scale use in the prevention and control of coal mine spontaneous combustion fires, to ensure the safety of national property and worker’lives.

  • 图  1   凝胶保水降温示意

    Figure  1.   Schematic diagram of gel water retention and temperature reduction

    图  2   凝胶堵漏隔氧示意

    Figure  2.   Schematic diagram of gel plugging and oxygen isolation

    图  3   凝胶化学阻化示意[16]

    Figure  3.   Chemical inhibition diagram of gel[16]

    图  4   防灭火复合凝胶成胶机理

    Figure  4.   Mechanism of gel formation in fire-prevention composite gels

    图  5   防灭火复合凝胶注胶工艺[49]

    Figure  5.   Glue injection process[49]

  • [1] 顾晓薇,张延年,张伟峰,等. 大宗工业固废高值建材化利用研究现状与展望[J]. 金属矿山,2022,51(1):2−13.

    GU Xiaowei,ZHANG Yannian,ZHANG Weifeng,et al. Bulk of industrial solid waste building materials,high value using the research status and prospect[J]. Journal of Metal Mine,2022,51(1):2−13.

    [2] 唐刚,杨亚东,刘秀玉,等. 工业固体废弃物在阻燃材料领域的应用进展[J]. 化工矿物与加工,2022,51(11):13−18.

    TANG Gang,YANG Yadong,LIU Xiuyu,et al. Application of industrial solid waste in the field of flame retardant materials[J]. Chemical Minerals and Processing,2022,51(11):13−18.

    [3] 王涛,董哲,盛禹淮,等. 卤代烷气体灭火剂促进−抑制瓦斯燃爆特性试验[J]. 煤炭科学技术,2024,52(4):265−274. doi: 10.12438/cst.2023-1793

    WANG Tao,DONG Zhe,SHENG Yuhuai,et al. Experiment on the promoting-inhibiting effects on methane explosion by using haloalkanes[J]. Coal Science and Technology,2024,52(4):265−274 doi: 10.12438/cst.2023-1793

    [4]

    NIU Huiyong,SUN Qingqing,BU Yunchuan,et al. Review and prospects of research on materials to prevent and extinguish mine fires[J]. Fire and Materials,2023,47(6):739−757. doi: 10.1002/fam.3127

    [5]

    SHI Quanlin,QIN Bobtao,HAO Yinhao,et al. Experimental investigation of the flow and extinguishment characteristics of gel-stabilized foam used to control coal fire[J]. Energy,2022,247:123484. doi: 10.1016/j.energy.2022.123484

    [6]

    ONIFADE,MOSHOOD,BEKIR Genc. A review of research on spontaneous combustion of coal[J]. International Journal of Mining Science and Technology,2020,30(3):303−311. doi: 10.1016/j.ijmst.2020.03.001

    [7] 王毅泽,董凯丽,张玉龙,等. CMC/ZrCit/GDL防灭火凝胶泡沫的制备及特性研究[J]. 煤炭科学技术,2023,51(6):122−129. doi: 10.13199/j.cnki.cst.2021-1132.

    WANG Yize,DONG Kaili,ZHANG Yulong,et al. Study on preparation and characteristics of CMC/ZrCit/GDL fire-fighting gel foam[J]. Coal Science and Technology,2023,51(6):122−129. doi: 10.13199/j.cnki.cst.2021-1132.

    [8]

    LI Q W,XIAO Y,ZHONG K Q,et al. Overview of commonly used materials for coal spontaneous combustion prevention[J]. Fuel,2020,275:117981. doi: 10.1016/j.fuel.2020.117981

    [9] 徐精彩,邓军. 凝胶防灭火技术在南屯矿综放面的应用[J]. 焦作矿业学院学报,1995,14(4):43−48.

    XU Jingcai,DENG Jun. Application of gel fire prevention technology in Nantun Mine caving face[J]. Journal of Jiaozuo Mining Institute,1995,14(4):43−48.

    [10] 黄白泉,黄翰文,陈尚华,等. 凝胶防灭火技术在刘家桥煤矿的应用[J]. 煤矿安全,1993(5):9−10,16.

    HUANG Baiquan,HUANG Hanwen,CHEN Shanghua,et al. Application of gel fire prevention technology in Liujiaqiao Coal Mine[J]. Safety in Coal Mines,1993(5):9−10,16.

    [11] 秦波涛,仲晓星,王德明,等. 煤自燃过程特性及防治技术研究进展[J]. 煤炭科学技术,2021,49(1):66−99.

    QIN Botao,ZHONG Xiaoxing,WANG Deming,et al. Research progress of coal spontaneous combustion process characteristics and prevention technology[J]. Coal Science and Technology,2021,49(1):66−99.

    [12]

    WANG Liang,LIU Zhongyong ,YANG Hongyu ,et al. A novel biomass thermoresponsive konjac glucomannan composite geldeveloped to control the coal spontaneous combustion:fire prevention and extinguishing properties[J]. Fuel,2021,306:121757.

    [13] 李旭东,蒋曙光,刘松,等. 煤自燃反应微观机理过程论[J]. 煤矿安全,2011,42(2):117−121.

    LI Xudong,JIANG Shuguang,LIU Song,et al. History of microscopic mechanism of spontaneous combustion of coal[J]. Safety in Coal Mines,2011,42(2):117−121.

    [14]

    CAI Jiawen,YANG Shengqiang,HU Xincheng,et al. Forecast of coal spontaneous combustion based on the variations of functional groups and microcrystalline structure during low-temperature oxidation[J]. Fuel,2019,253:339−348. doi: 10.1016/j.fuel.2019.05.040

    [15]

    LI Zenghua,KONG Biao,WEI Aizhu,et al. Free radical reaction characteristics of coallow-temperature oxidation and its inhibition method.[J]. Environmental Science and Pollution Research,2016,23(23):23593−23605.

    [16] 秦波涛,冯乐乐,蒋文婕,等. 矿井泡沫防灭火技术研究进展[J]. 煤炭科技,2022,43(5):1−12,26.

    QIN Botao,FENG Lele,JIANG Wenjie,et al. Research progress of mine foam fire prevention and extinguishing technology[J]. Coal Science and Technology Magazine,2022,43(5):1−12,26.

    [17] 秦波涛,蒋文婕,史全林,等. 矿井粉煤灰基防灭火技术研究进展[J]. 煤炭科学技术,2023,51(1):329−342.

    QIN Botao,JIANG Wenjie,SHI Quanlin,et al. Research progress of fire prevention and extinguishing technology of fly ash foundation in mine[J]. Coal Science and Technology,2023,51(1):329−342.

    [18] 孟晓静,陈华. 粉煤灰改性方法及机理的研究进展[J]. 广州化工,2022,50(9):20−22. doi: 10.3969/j.issn.1001-9677.2022.09.007

    MENG Xiaojing,CHEN Hua. Research progress on modification method and mechanism of fly ash[J]. Guangzhou Chemical Industry,2022,50(9):20−22. doi: 10.3969/j.issn.1001-9677.2022.09.007

    [19] 康华,李新甜. 粉煤灰改性及其应用研究现状[J]. 炭素,2022(1):42−45. doi: 10.3969/j.issn1001-8948.2022-01-009

    KANG Hua,LI Xintian. Research status of fly ash modification and its application[J]. Carbon,2022(1):42−45. doi: 10.3969/j.issn1001-8948.2022-01-009

    [20] 樊富强. 粉煤灰复合胶体注浆防灭火技术在矿井的应用[J]. 山西化工,2023,43(3):127−128,131.

    FAN Fuqiang. Application of fly ash composite colloidal grouting technology for fire prevention in mine[J]. Shanxi Chemical Industry,2023,43(3):127−128,131.

    [21] 张振乾. 矿用防灭火活化粉煤灰胶体的制备及特性研究[D]. 太原:太原理工大学,2020.

    ZHANG Zhenqian. Study on preparation and properties of fire-fighting activated fly ash colloid for mining [D]. Taiyuan:Taiyuan University of Technology,2020.

    [22] 刘杰,窦国兰,赵云锋,等. 矿用复合防灭火凝胶的制备与特性研究[J]. 煤矿安全,2022,53(9):177−185.

    LIU Jie,DOU Guolan,ZHAO Yunfeng,et al. Study on the preparation and characteristics of compound anti-fire gel used in mines[J]. Safety in Coal Mines,2022,53(9):177−185.

    [23] 曹巍,宗兰,张士萍,等. 钢渣活性激发及评价研究综述[J]. 江苏建材,2015(5):26−29. doi: 10.3969/j.issn.1004-5538.2015.05.008

    CAO Wei,ZONG Lan,ZHANG Shiping,et al. Review on activation and Evaluation of Steel slag[J]. Jiangsu Building Materials,2015(5):26−29. doi: 10.3969/j.issn.1004-5538.2015.05.008

    [24] 徐宁. 钢渣胶凝性激发的研究进展[J]. 河南科技,2021,40(35):67−70. doi: 10.3969/j.issn.1003-5168.2021.35.027

    XU Ning. Research progress of gelling excitation of steel slag[J]. Henan Science and Technology,2021,40(35):67−70. doi: 10.3969/j.issn.1003-5168.2021.35.027

    [25] 刘扬,陈湘,王柏文,等. 碱激发粉煤灰−矿渣−电石渣基地聚物的制备及强度机理[J]. 硅酸盐通报,2023,42(4):1353−1362.

    LIU Yang,CHEN Xiang,WANG Bowen,et al. Preparation and strength mechanism of alkali-activated fly ash-slag-calcium carbide slag based polymers[J]. Bulletin of the Chinese Ceramic Society,2023,42(4):1353−1362.

    [26] 刘奎生,段劲松,孙建伟. 不同碱性环境对转炉钢渣水化和微观结构的影响[J]. 电子显微学报,2021,40(6):687−694. doi: 10.3969/j.issn.1000-6281.2021.06.008

    LIU Kuisheng,DUAN Jinsong,SUN Jianwei. Effects of different alkaline environments on hydration and microstructure of converter steel slag[J]. Journal of Electron Microscopy,2021,40(6):687−694. doi: 10.3969/j.issn.1000-6281.2021.06.008

    [27] 刘淑贤,苏严,杨敏,等. 钢渣:矿渣复合胶凝材料的制备及胶凝活性激发试验研究[J]. 金属矿山,2022(11):252−258.

    LIU Shuxian,SU Yan,YANG Min,et al. Study on preparation and activation of cementing activity of steel slag and slag composite cementing materials[J]. Metal Mines,2022(11):252−258.

    [28] 施惠生,郭晓潞,张迪. 钢渣−粉煤灰复合胶凝材料的试验研究[J]. 水泥,2010,402(12):1−4. doi: 10.3969/j.issn.1002-9877.2010.12.001

    SHI Huisheng,GUO Xiaolu,ZHANG Di. Experimental study on composite cementing materials of Steel slag and fly ash[J]. Cement,2010,402(12):1−4. doi: 10.3969/j.issn.1002-9877.2010.12.001

    [29]

    BAKHAREV T,SANJAYAN J G,CHENG Y. Alkail activation of Australian slag cements[J]. Cement and Concrete Research,1999,29(1):113−120. doi: 10.1016/S0008-8846(98)00170-7

    [30] 刘仍光,阎培渝. 水泥–矿渣复合胶凝材料中矿渣的水化特性[J]. 硅酸盐学报,2012,40(8):1112−1118.

    LIU Rengguang,YAN Peiyu. Hydration characteristics of slag in cement-slag composite cementitious materials[J]. Journal of Silicate,2012,40(8):1112−1118.

    [31] 刘树龙,李公成,刘国磊,等. 石膏−矿渣−石灰复合胶凝体系早期水化作用机理[J]. 有色金属工程,2021,11(4):102−109. doi: 10.3969/j.issn.2095-1744.2021.04.015

    LIU Shulong,LI Gongcheng,LIU Guolei,et al. Early hydration mechanism of gypsum,slag and lime composite gelling system[J]. Nonferrous Metals Engineering,2021,11(4):102−109. doi: 10.3969/j.issn.2095-1744.2021.04.015

    [32] 马其华,马尉翔. 矿用污泥基防灭火复合凝胶特性研究[J]. 科学技术创新,2022(15):127−130. doi: 10.3969/j.issn.1673-1328.2022.15.033

    MA Qihua,MA Weixiang. Research on properties of mine sludge based composite gel for fire prevention[J]. Science and Technology Innovation,2022(15):127−130. doi: 10.3969/j.issn.1673-1328.2022.15.033

    [33] 卢前明,王雪晴,付少莙,等. 脱硫石膏对污泥灰胶凝体系强度及微观结构的影响[J]. 郑州大学学报(工学版),2021,42(3):99−104.

    LU Qianming,WANG Xueqing,FU Shaojun,et al. Effect of desulfurized gypsum on the strength and microstructure of sludge ash gelling system[J]. Journal of Zhengzhou University (Engineering Edition),2021,42(3):99−104.

    [34]

    REN Xiaofeng ,HUA Xiangming ,CHENG Weimin ,et al. Study of resource utilization and fire prevention characteristics of a novel gel formulated from coal mine sludge (MS)[J]. Fuel,2020,267:117261.

    [35] 李兴维. 丙烯酸/丙烯酰胺/蒙脱石三元共聚高吸水凝胶泡沫在煤矿防灭火的应用研究[D]. 青岛:山东科技大学,2011.

    LI Xingwei. Research on application of acrylic / acrylamide / montmorillonite terpolymer superabsorbent gel foam in coal mine fire prevention [D]. Qingdao:Shandong University of Science and Technology,2011.

    [36]

    PURDON A O. The action of alkalis on blast-furnace slag[J]. Journal of the Society of Chemical Industry,1940,59:191−202. doi: 10.1002/jctb.5000591202

    [37]

    DAVIDOVITS J. Recent progresses in concretes for nuclear waste and uranium waste containment[J]. Acta Physiologiae Plantarum,1994,19(3):285−293.

    [38] 康健. 煤气化渣掺量对其复合胶凝材料的性能影响分析[J]. 西部交通科技,2020 (8):61−64.

    KANG Jian. Analysis of influence of coal gasification slag content on properties of composite cementing materials[J]. Western Transportation Science and Technology,2020 (8):61−64.

    [39] 佘俊辉,詹镇峰,李兆恒,等. 水灰比对无机聚合物胶凝材料浆体流变性能的影响[J]. 混凝土,2017,334(8):37−41,51. doi: 10.3969/j.issn.1002-3550.2017.08.009

    SHE Junhui,ZHAN Zhenfeng,LI Zhaoheng,et al. Effect of water-cement ratio on rheological properties of inorganic polymer cementing materials[J]. Concrete,2017,334(8):37−41,51. doi: 10.3969/j.issn.1002-3550.2017.08.009

    [40] 覃丽芳,曲波,史才军,等. 钙硅比对铝硅酸盐凝胶形成与特性的影响[J]. 材料导报,2020,34(12):12057−12063. doi: 10.11896/cldb.19070122

    QIN Lifang,QU Bo,SHI Caijun,et al. Effect of calcium-silicon ratio on the formation and properties of aluminosilicate gel[J]. Materials Review,2020,34(12):12057−12063. doi: 10.11896/cldb.19070122

    [41] 杨敬斌,方媛,李东旭. 碱胶凝材料水化产物C−A−S−H与N−A−S−H的研究进展[J]. 硅酸盐通报,2017,36(10):3292−3297,3310.

    YANG Jingbin,FANG Yuan,LI Dongxu. Research progress of hydration products C−A−S−H and N−A−S−H of alkali gelling materials[J]. Silicate Bulletin,2017,36(10):3292−3297,3310.

    [42]

    I G Richardson. The nature of C−S−H in hardened cements[J]. Cement and Concrete Research,1999,29:1131−1147. doi: 10.1016/S0008-8846(99)00168-4

    [43] 杨军,张高展,丁庆军,等. 铝掺杂水化硅酸钙的分子结构和力学性能[J]. 建筑材料学报,2022,25(6):565−571,584. doi: 10.3969/j.issn.1007-9629.2022.06.003

    YANG Jun,ZHANG Gaozhan,DING Qingjun,et al. Molecular structure and mechanical properties of aluminum-doped calcium silicate hydrate[J]. Journal of Building Materials,2022,25(6):565−571,584. doi: 10.3969/j.issn.1007-9629.2022.06.003

    [44] 李响,阎培渝. 高温养护对复合胶凝材料水化程度及微观形貌的影响[J]. 中南大学学报(自然科学版),2010,41(6):2321−2326.

    LI Xiang,YAN Peiyu. Effect of high temperature curing on hydration degree and micromorphology of composite cementified materials[J]. Journal of Central South University (Natural Science Edition),2010,41(6):2321−2326.

    [45]

    ESCALANTE J I,GOMEZLY,JOHAL K K. Reactivity of blast furnace slagin Portland cement blendshydratedunder different conditions[J]. Cement and Concrete Research,2001,31(10):403−409.

    [46] 阎培渝,韩建国. 复合胶凝材料的初期水化产物和浆体结构[J]. 建筑材料学报,2004,7(2):202−206. doi: 10.3969/j.issn.1007-9629.2004.02.014

    YAN Peiyu,HAN Jianguo. Initial hydration products and slurry structure of composite cementitious materials[J]. Journal of Building Materials,2004,7(2):202−206. doi: 10.3969/j.issn.1007-9629.2004.02.014

    [47] 阎培渝,王强. 高温下矿渣复合胶凝材料早期的水化性能[J]. 建筑材料学报,2009,12(1):1−5. doi: 10.3969/j.issn.1007-9629.2009.01.001

    YAN Peiyu,WANG Qiang. Early hydration properties of slag composite cementing materials at high temperature[J]. Journal of Building Materials,2009,12(1):1−5. doi: 10.3969/j.issn.1007-9629.2009.01.001

    [48] 冯良兵,徐超,高星星,等. 胶体防灭火技术在深井综放工作面的应用[J]. 煤矿安全,2016,47(9):79−81.

    FENG Liangbing,XU Chao,GAO Xingxing,et al. Application of colloid fire prevention technology in deep mine caving face[J]. Safety in Coal Mines,2016,47(9):79−81.

    [49] 师文杰,马磊. 移动式注胶工艺和管网式注胶工艺在千秋煤矿的应用及对比分析[J]. 内蒙古煤炭经济,2015(2):97,138.

    SHI Wenjie,MA Lei. Application and comparative analysis of mobile cementing Process and pipe network cementing process in Qianqiu Coal Mine [J]. Inner Mongolia Coal Economy,2015(2):97,138.

    [50] 姜青峰. 浅谈煤矿采空区防灭火技术研究现状与发展趋势[J]. 中国设备工程,2021(22):195−196.

    JIANG Qingfeng. Discussion on the research status and development trend of fire prevention and extinguishing technology in coal mine goaf [J]. China Equipment Engineering,2022(22):195−196.

    [51] 陈晓晶. 基于“云−边−端”协同的煤矿火灾智能化防控体系建设[J]. 煤炭科学技术,2022,50(12):136−143.

    CHEN Xiaojing. Construction of coal mine fire intelligent prevention and control system based on “cloud-edge-end” collaboration[J]. Coal Science and Technology,2022,50(12):136−143.

    [52] 邓军,李鑫,王凯,等. 矿井火灾智能监测预警技术近20年研究进展及展望[J]. 煤炭科学技术,2024,52(1):154−177. doi: 10.12438/cst.2023-2016

    DENG Jun,LI Xin,WANG Kai,et al. Research progress and prospect of mine fire intelligent monitoring and early warning technology in recent 20 years[J]. Coal Science and Technology,2024,52(1):154−177. doi: 10.12438/cst.2023-2016

图(5)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  10
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-21
  • 网络出版日期:  2024-07-23
  • 刊出日期:  2024-08-24

目录

    /

    返回文章
    返回