Cooperative exploration methods of coal and uranium deposits in coal-bearing strata
-
摘要:
煤与煤系铀矿产协同勘查已成为矿产资源勘查的重要方向,为提高找矿效率和节约勘查成本,基于煤与煤系铀矿产的基本特征、勘查技术方法的有效性和勘查工程布置的经济性,分析了煤与煤系铀矿产赋存的基本特征。研究表明:① 分析了煤系铀矿产的基本特征,煤系中煤层和铀矿产表现为下煤上铀(煤系砂岩型铀矿)或铀煤同层产出(煤型铀矿)的空间分布关系,煤中铀主要的赋存方式为有机质螯合或束缚,砂岩中的铀主要的赋存方式为铀矿物、吸附铀和含铀矿物。② 基于煤系铀矿产勘查技术手段的有效性,提出了煤炭勘查工作已完成区和煤与煤系铀矿产勘查新区2种情况下的煤与煤系铀矿产协同勘查技术手段:在煤炭勘查工作已完成区,充分利用煤炭勘查资料,筛选自然伽马测井曲线高异常层段和区域,利用γ能谱测井验证煤系铀矿化信息,圈定煤系铀矿的普查区,按照煤系铀矿勘查技术手段分阶段选择相应的技术手段;在煤与煤系铀矿产勘查新区,煤与煤系铀矿产协同勘查技术手段在煤炭勘查技术手段的基础上,增加对煤系铀矿有效响应的放射性技术手段(γ能谱测井、氡及其子体测量)、岩心编录、穿透性地球化学等技术手段。③ 探讨了煤与煤系铀矿产协同勘查工程布置,按照煤、铀矿勘查规范,遵循“协同设计、协同部署、协同施工”的原则,分2种情况开展煤与煤系铀矿产的协同勘查布置:在煤炭勘查工作已完成区,筛选自然伽马测井曲线高异常层段和区域部署施工验证孔,圈定煤系铀矿的普查区,按照煤系铀矿勘查规范分阶段进行勘查工程布置;在煤与煤系铀矿产勘查新区,开展煤与煤系铀矿协同勘查,首先在整个勘查区内寻找煤炭资源,布置煤炭勘查工程,在自然伽马测井曲线高异常层段和区域圈出煤系铀矿靶区,在煤系铀矿靶区以寻找煤系铀矿为主,开展煤系铀矿勘查工程实施。④ 基于协同勘查技术手段的有效性和协同勘查成本的经济性,从煤与煤系铀矿产的协同勘查技术手段和协同勘查工程布置方面构建了煤与煤系铀矿产协同勘查模型,为煤与煤系铀矿产协同勘查工作提供理论基础和方法依据。
Abstract:The cooperative exploration of coal and uranium deposits in coal-bearing strata has become a significant direction in the research for mineral resources, in order to improve the exploration efficiency,and save the exploration cost, the basic characteristics of coal and uranium deposits in coal-bearing strata production and occurrence are analyzed, the selection of technical means and the layout of cooperative exploration are discussed, and the cooperative exploration model of coal and uranium deposits in coal-bearing strata is constructed. The research indicates that: ① The basic characteristics of uranium deposits in coal-bearing strata are analyzed, in coal-bearing strata, the spatial distribution of coal seams and uranium deposits is characterized by uranium deposits overlying coal seams (sandstone-type uranium deposits in coal-bearing strata) or alternating coal and uranium deposits (coal-rock type uranium deposits). The primary form of uranium occurrence in coal is through organic chelation or binding, whereas in sandstone, uranium mainly exists as uranium minerals, adsorbed uranium, or uranium-containing minerals. ② According to the effectiveness of coal-bearing strata uranium deposits exploration technology means, coal and uranium deposits in coal-bearing strata exploration technology means can be divided into two situations. In the completed coal exploration area, utilize the coal exploration data effectively to identify high-anomaly strata and regions based on the natural gamma logging curve, verify the uranium mineralization information of the coal measures using γ energy spectrum logging, delineate the survey area for coal measures uranium deposits, and select appropriate technical methods in phases in accordance with the technical requirements for coal measures uranium exploration. In the new area of coal and uranium deposits in coal-bearing strata exploration, the cooperative exploration technology of coal and uranium deposits in coal-bearing strata has added the effective response of radioactive technology (γ-energy spectrum logging, radon and its daughter measurement), core cataloging, penetrating geochemistry and other technical methods. ③ The layout of cooperative exploration of coal and uranium deposits in coal-bearing strata is discussed, in accordance with the standards of coal and uranium deposits in coal-bearing strata exploration and the principle of “cooperative design, cooperative deployment and cooperative construction”, the cooperative exploration of coal and uranium deposits is carried out in two situations. In the area where the coal exploration work has been completed, the high abnormal strata of natural gamma logging curves and the regional deployment of construction verification holes are selected, the survey areas of coal measure uranium deposits are delineated, and the exploration engineering is arranged in stages according to the coal measure uranium exploration standard. In the new exploration area of coal and uranium deposits in coal-bearing strata, cooperative exploration of coal and coal-bearing uranium deposits should be carried out. First, coal resources should be sought in the whole exploration area, coal exploration engineering should be arranged, and coal bearing uranium targets should be delineated in the high abnormal intervals and regions of natural gamma logging curves. Secondly, in the target area of uranium deposits in coal-bearing strata, the exploration project of uranium deposits in coal-bearing strata is mainly carried out to find uranium deposits in coal-bearing strata. ④ Based on the effectiveness of cooperative exploration technical means and the economy of cooperative exploration cost, a cooperative exploration model of coal and uranium deposits in coal-bearing strata is constructed from the aspects of cooperative exploration technical means and cooperative exploration engineering layout, which provides theoretical and methodological basis for cooperative exploration of coal and coal-measure uranium ore production.
-
-
表 1 煤和煤系铀矿床勘查工程间距(控制资源量线距)
Table 1 Spacing of exploration projects for coal and coal-bearing uranium deposits (Indicated resources line spacing)
m 煤 煤系铀矿床 勘查类型 Ⅰ Ⅱ Ⅲ 勘查类型 煤系砂岩型铀矿床 煤型铀矿床 全区及大部分可采煤层 局部可采煤层 走向 倾向 走向 倾向 一 1 000~2 000 500~1 000 375 250 Ⅰ 800~400 200~100 100~200 100~200 二 500~1 000 500~ 1000 Ⅱ 200 100~50 100 100 三 250~500 250~500 Ⅲ 200 50~25 50~100 50~100 -
[1] 王大钊,冷成彪,秦朝建,等. 铀的地球化学性质与成矿作用[J]. 大地构造与成矿学,2022,46(2):282−302. WANG Dazhao,LENG Chengbiao,QIN Chaojian,et al. Geochemical characteristics and mineralization of uranium[J]. Geotectonica et Metallogenia,2022,46(2):282−302.
[2] SEREDIN V V,DAI S F,SUN Y Z,et al. Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies[J]. Applied Geochemistry,2013,31:1−11. doi: 10.1016/j.apgeochem.2013.01.009
[3] 代世峰,赵蕾,王宁,等. 煤系中关键金属元素的成矿作用研究进展与展望[J]. 矿物岩石地球化学通报,2024,43(1):49−63,5. DAI Shifeng,ZHAO Lei,WANG Ning,et al. Advance and prospect of researches on the mineralization of critical elements in coal-bearing sequences[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2024,43(1):49−63,5.
[4] CHENG Y H,WANG S Y,JIN R S,et al. Global Miocene tectonics and regional sandstone-style uranium mineralization[J]. Ore Geology Reviews,2019,106:238−250. doi: 10.1016/j.oregeorev.2019.02.003
[5] 吴兆剑,韩效忠,李紫楠,等. 准噶尔盆地中生代“下煤上铀” 地层结构的沉积机理[J]. 煤炭科学技术,2023,51(12):52−64. doi: 10.12438/cst.2023-0786 WU Zhaojian,HAN Xiaozhong,LI Zinan,et al. Sedimentary mechanism analysis of “Lower Coal and Upper Uranium” strata structure in Junggar Basin,Northern China[J]. Coal Science and Technology,2023,51(12):52−64. doi: 10.12438/cst.2023-0786
[6] 金若时,程银行,李建国,等. 中国北方晚中生代陆相盆地红-黑岩系耦合产出对砂岩型铀矿成矿环境的制约[J]. 中国地质,2017,44(2):205−223. doi: 10.12029/gc20170201 JIN Ruoshi,CHENG Yinhang,LI Jianguo,et al. Late Mesozoic continental basin “Red and Black beds” coupling formation constraints on the sandstone uranium mineralization in Northern China[J]. Geology in China,2017,44(2):205−223. doi: 10.12029/gc20170201
[7] 王佟,刘峰,赵欣,等. “双碳” 背景下我国煤炭资源保障能力与勘查方向的思考[J]. 煤炭科学技术,2023,51(12):1−8. doi: 10.12438/cst.2023-0095 WANG Tong,LIU Feng,ZHAO Xin,et al. Reflection on China’s coal resource guarantee capacity and exploration work under the background of “double carbon”[J]. Coal Science and Technology,2023,51(12):1−8. doi: 10.12438/cst.2023-0095
[8] 杨伟利,王毅,王传刚,等. 鄂尔多斯盆地多种能源矿产分布特征与协同勘探[J]. 地质学报,2010,84(4):579−586. YANG Weili,WANG Yi,WANG Chuangang,et al. Distribution and co-exploration of multiple energy minerals in Ordos Basin[J]. Acta Geologica Sinica,2010,84(4):579−586.
[9] 王毅,杨伟利,邓军,等. 多种能源矿产同盆共存富集成矿(藏)体系与协同勘探——以鄂尔多斯盆地为例[J]. 地质学报,2014,88(5):815−824. WANG Yi,YANG Weili,DENG Jun,et al. Accumulation system of cohabitating multi-energy minerals and their comprehensive exploration in sedimentary basin— a case study of Ordos Basin,NW China[J]. Acta Geologica Sinica,2014,88(5):815−824.
[10] WANG T,SUN J,LIN Z Y,et al. Coordinated exploration model and its application to coal and coal-associated deposits in coal basins of China[J]. Acta Geologica Sinica - English Edition,2021,95(4):1346−1356. doi: 10.1111/1755-6724.14495
[11] 曹代勇,魏迎春,李新,等. 煤与煤系战略性金属矿产协同勘查理论与技术体系框架探讨[J]. 煤炭学报,2024,49(1):479−494. CAO Daiyong,WEI Yingchun,LI Xin,et al. Discussion on the theory and technical system framework of cooperative exploration of coal and strategic metal resources in coal-bearing strata[J]. Journal of China Coal Society,2024,49(1):479−494.
[12] 魏迎春,李新,曹代勇,等. 煤与煤系战略性金属矿产协同勘查技术方法[J]. 煤炭科学技术,2023,51(12):27−41. doi: 10.12438/cst.2023-1115 WEI Yingchun,LI Xin,CAO Daiyong,et al. Cooperative exploration methods of coal and strategic metal resources in coal-bearing strata[J]. Coal Science and Technology,2023,51(12):27−41. doi: 10.12438/cst.2023-1115
[13] 魏迎春,李新,曹代勇,等. 煤与煤系战略性金属矿产协同勘查模型[J]. 地质学报,2024,98(8):2517−2530. WEI Yingchun,LI Xin,CAO Daiyong,et al. Cooperative exploration model of coal and strategic metal resourcesin coal-bearing strata[J]. Acta Geologica Sinica,2024,98(8):2517−2530.
[14] ZHANG Y,WEI Y C,CAO D Y,et al. Cooperative exploration model of coal–gallium deposit:A case study of the Heidaigou coal–gallium deposit in the jungar coalfield,Inner Mongolia,China[J]. Minerals,2024,14(2):156. doi: 10.3390/min14020156
[15] LI X,WEI Y C,CAO D Y,et al. Cooperative exploration model of coal–Ge deposit:A case study of the wulantuga coal–Ge deposit in Shengli Coalfield,Inner Mongolia,China[J]. Energy Exploration & Exploitation,2024,42(5):1666−1683.
[16] LI X,WEI Y C,CAO D Y,et al. Cooperative exploration model of coal–lithium deposit:A case study of the haerwusu coal–lithium deposit in the jungar coalfield,Inner Mongolia,Northern China[J]. Minerals,2024,14(2):179. doi: 10.3390/min14020179
[17] 段中会,徐高中,贺晓浪. 论煤铀兼探中综合勘查与评价技术的基本原则[J]. 中国煤炭地质,2015,27(9):1−4,17. doi: 10.3969/j.issn.1674-1803.2015.09.01 DUAN Zhonghui,XU Gaozhong,HE Xiaolang. On basic principles in integrated coal exploration in company with uranium and evaluation technology[J]. Coal Geology of China,2015,27(9):1−4,17. doi: 10.3969/j.issn.1674-1803.2015.09.01
[18] 伍皓,周恳恳,陈小炜,等. “煤铀兼探” 验证孔部署优化建议[J]. 四川地质学报,2017,37(3):525−528. doi: 10.3969/j.issn.1006-0995.2017.03.039 WU Hao,ZHOU Kenken,CHEN Xiaowei,et al. Some suggestions on optimization of deployment of verifying holes for coal-uranium exploration[J]. Acta Geologica Sichuan,2017,37(3):525−528. doi: 10.3969/j.issn.1006-0995.2017.03.039
[19] 伍皓,江新胜,余谦,等. “煤铀兼探” 找矿新思路在云南的初次应用——以滇西户撒盆地铀矿勘探为例[J]. 沉积与特提斯地质,2016,36(4):106−110. doi: 10.3969/j.issn.1009-3850.2016.04.015 WU Hao,JIANG Xinsheng,YU Qian,et al. Coal-uranium exploration in the Husa basin,Western Yunnan:A new approach[J]. Sedimentary Geology and Tethyan Geology,2016,36(4):106−110. doi: 10.3969/j.issn.1009-3850.2016.04.015
[20] 胡航. 煤田资料在松辽盆地绍根地区铀矿勘查中的二次应用及找矿远景预测[J]. 中国煤炭地质,2024,36(7):18−24. doi: 10.3969/j.issn.1674-1803.2024.07.03 HU Hang. Secondary development of coalfield data for uranium exploration and exploration prospect in Shaogen area of Songliao Basin[J]. Coal Geology of China,2024,36(7):18−24. doi: 10.3969/j.issn.1674-1803.2024.07.03
[21] 宋焕霞,赵世煌,赵桂军,等. 大营铀矿勘查中实物地质资料的开发利用——找矿思维的转变与创新[J]. 地质通报,2016,35(11):1895−1899. doi: 10.3969/j.issn.1671-2552.2016.11.011 SONG Huanxia,ZHAO Shihuang,ZHAO Guijun,et al. Second-round development and utilization of the geological samples in the prospecting for Daying uranium deposit:Change and innovation of prospecting thinking[J]. Geological Bulletin of China,2016,35(11):1895−1899. doi: 10.3969/j.issn.1671-2552.2016.11.011
[22] 王文峰,王文龙,刘双双,等. 煤中铀的赋存分布及其在利用过程中的迁移特征[J]. 煤田地质与勘探,2021,49(1):65−80. doi: 10.3969/j.issn.1001-1986.2021.01.007 WANG Wenfeng,WANG Wenlong,LIU Shuangshuang,et al. Distribution and occurrence of uranium in coal and its migration behavior during the coal utilization[J]. Coal Geology & Exploration,2021,49(1):65−80. doi: 10.3969/j.issn.1001-1986.2021.01.007
[23] 周贤青,秦勇,陆鹿. 中国煤型铀地质–地球化学研究进展[J]. 煤田地质与勘探,2019,47(4):45−53. doi: 10.3969/j.issn.1001-1986.2019.04.008 ZHOU Xianqing,QIN Yong,LU Lu. Advances on geological-geochemical research of coal-type uranium in China[J]. Coal Geology & Exploration,2019,47(4):45−53. doi: 10.3969/j.issn.1001-1986.2019.04.008
[24] 贾智勇,张虎军,陈文正,等. 新疆伊犁盆地南缘洪海沟煤岩型铀矿控矿因素研究[J]. 矿产勘查,2020,11(11):2417−2423. doi: 10.3969/j.issn.1674-7801.2020.11.013 JIA Zhiyong,ZHANG Hujun,CHEN Wenzheng,et al. Ore-control factors of Honghaigou coal type uranium deposit in the Southern margin of Yili Basin,Xinjiang[J]. Mineral Exploration,2020,11(11):2417−2423. doi: 10.3969/j.issn.1674-7801.2020.11.013
[25] 刘武生,贾立城. 达拉地含铀煤型矿床成矿作用[J]. 矿物学报,2011,31(S1):271−272. LIU Wusheng,JIA Licheng. Mineralization of Daladi coal-type uranium deposit[J]. Acta Mineralogica Sinica,2011,31(S1):271−272.
[26] 刘章月,董文明,刘红旭. 新疆萨瓦布其地区含铀煤成因分析[J]. 铀矿地质,2011,27(6):345−351. doi: 10.3969/j.issn.1000-0658.2011.06.005 LIU Zhangyue,DONG Wenming,LIU Hongxu. Analysis on genesis of uranium-bearing coal in Sawabuqi area,Xinjiang[J]. Uranium Geology,2011,27(6):345−351. doi: 10.3969/j.issn.1000-0658.2011.06.005
[27] 王飞飞,刘池洋,邱欣卫,等. 世界砂岩型铀矿探明资源的分布及特征[J]. 地质学报,2017,91(9):2021−2046. doi: 10.3969/j.issn.0001-5717.2017.09.008 WANG Feifei,LIU Chiyang,QIU Xinwei,et al. Characteristics and distribution of world’s identified sandstone-type uranium resources[J]. Acta Geologica Sinica,2017,91(9):2021−2046. doi: 10.3969/j.issn.0001-5717.2017.09.008
[28] 程银行,金若时,Michel CUNEY,等. 中国北方盆地大规模铀成矿作用:地层篇[J]. 地质学报,2024,98(7):1953−1976. CHENG Yinhang,JIN Ruoshi,CUNEY M,et al. The strata constraint on large scale sandstone-type uranium mineralization in Meso-Cenozoic basins,Northern China[J]. Acta Geologica Sinica,2024,98(7):1953−1976.
[29] 李胜祥,张字龙,刘红旭,等. 中国含铀沉积盆地类型与铀成矿特征[J]. 铀矿地质,2023,39(5):727−742. LI Shengxiang,ZHANG Zilong,LIU Hongxu,et al. Uraniferous sedimentary basin type and metallogenic characteristics in China[J]. Uranium Geology,2023,39(5):727−742.
[30] 焦养泉,吴立群,荣辉. 砂岩型铀矿的双重还原介质模型及其联合控矿机理:兼论大营和钱家店铀矿床[J]. 地球科学,2018,43(2):459−474. JIAO Yangquan,WU Liqun,RONG Hui. Model of inner and outer reductive media within uranium reservoir sandstone of sandstone-type uranium deposits and its ore-controlling mechanism:Case studies in Daying and Qianjiadian uranium deposits[J]. Earth Science,2018,43(2):459−474.
[31] 刘鑫扬,贺锋,剡鹏兵,等. 鄂尔多斯盆地东北部铀成矿地质特征与区域成矿规律[J]. 铀矿地质,2022,38(3):373−393. doi: 10.3969/j.issn.1000-0658.2022.38.034 LIU Xinyang,HE Feng,YAN Pengbing,et al. Geological characteristics and regional metallogenic pattern of uranium mineralization in Northeastern Ordos Basin[J]. Uranium Geology,2022,38(3):373−393. doi: 10.3969/j.issn.1000-0658.2022.38.034
[32] DAI S F,FINKELMAN R B,FRENCH D,et al. Modes of occurrence of elements in coal:A critical evaluation[J]. Earth-Science Reviews,2021,222:103815. doi: 10.1016/j.earscirev.2021.103815
[33] 秦明宽,何中波,刘章月,等. 准噶尔盆地砂岩型铀矿成矿环境与找矿方向研究[J]. 地质论评,2017,63(5):1255−1269. QIN Mingkuan,HE Zhongbo,LIU Zhangyue,et al. Study on metallogenic environments and prospective direction of sandstone type uranium deposits in Junggar Basin[J]. Geological Review,2017,63(5):1255−1269.
[34] 王志罡,谢宏,杨旭,等. 贵州铜仁坝黄磷矿中铀赋存状态的逐级化学提取研究[J]. 岩矿测试,2018,37(3):256−265. WANG Zhigang,XIE Hong,YANG Xu,et al. Stepwise extraction study on the occurrence of uranium in Tongren bahuang phosphorite,Guizhou[J]. Rock and Mineral Analysis,2018,37(3):256−265.
[35] GUO Z W,XUE G Q,LIU J X,et al. Electromagnetic methods for mineral exploration in China:A review[J]. Ore Geology Reviews,2020,118:103357. doi: 10.1016/j.oregeorev.2020.103357
[36] DI Q Y,XUE G Q,YIN C C,et al. New methods of controlled-source electromagnetic detection in China[J]. Science China Earth Sciences,2020,63(9):1268−1277. doi: 10.1007/s11430-019-9583-9
[37] 陈聪,程纪星,周俊杰,等. 特拉敖包矿产地氧化还原过渡带磁异常特征及产生机理探讨[J]. 铀矿地质,2024,40(2):301−308. doi: 10.3969/j.issn.1000-0658.2024.40.026 CHEN Cong,CHENG Jixing,ZHOU Junjie,et al. Discussion on magnetic anomaly characteristics and generation mechanism of redox transition zone in telaaobao occurrence[J]. Uranium Geology,2024,40(2):301−308. doi: 10.3969/j.issn.1000-0658.2024.40.026
[38] EPPELBAUM L V. Review of processing and interpretation of self-potential anomalies:transfer of methodologies developed in magnetic prospecting[J]. Geosciences,2021,11(5):194. doi: 10.3390/geosciences11050194
[39] HAJNAL Z,TAKÁCS E,ANNESLEY I R,et al. Effective utilization of seismic reflection technique with moderate cost in uranium exploration[J]. Geophysical Prospecting,2020,68(1):129−144. doi: 10.1111/1365-2478.12904
[40] 程纪星,王德利,李子伟. 地震勘探技术在地浸砂岩型铀矿勘探开发中的应用前景分析[J]. 铀矿地质,2022,38(2):317−326. doi: 10.3969/j.issn.1000-0658.2022.38.028 CHENG Jixing,WANG Deli,LI Ziwei. Application prospect of seismic exploration technology in the exploration and development of in situ leachable sandstone uranium deposit[J]. Uranium Geology,2022,38(2):317−326. doi: 10.3969/j.issn.1000-0658.2022.38.028
[41] LI Z C,QU Y M. Research progress on seismic imaging technology[J]. Petroleum Science,2022,19(1):128−146. doi: 10.1016/j.petsci.2022.01.015
[42] 王殿学,余水泉,黄笑. 我国γ测井技术发展的回顾与展望[J]. 铀矿地质,2023,39(1):124−132. doi: 10.3969/j.issn.1000-0658.2023.39.011 WANG Dianxue,YU Shuiquan,HUANG Xiao. Review and prospect of gamma logging technology in China[J]. Uranium Geology,2023,39(1):124−132. doi: 10.3969/j.issn.1000-0658.2023.39.011
[43] 王海军,郑三龙,王相业,等. 地质构造隐蔽致灾因素透明化勘查技术——以新疆屯宝煤矿为例[J]. 煤炭科学技术,2024,52(9):173−188. doi: 10.12438/cst.2024-0559 WANG Haijun,ZHENG Sanlong,WANG Xiangye,et al. Transparent exploration technology for hidden disaster-causing factors of geological structure:taking tunbao coal mine in Xinjiang as an example[J]. Coal Science and Technology,2024,52(9):173−188. doi: 10.12438/cst.2024-0559
[44] RASOULI F S,MASOUDI S F. Effect of modeling porous media on the response of gamma-gamma well-logging tool[J]. Scientific Reports,2020,10:6823. doi: 10.1038/s41598-020-63323-x
[45] TIAN Y,XU J,LIU Y H,et al. Application of different logging techniques in uranium exploration[J]. International Journal of Energy,2023,3(3):86−89. doi: 10.54097/3e2l1bok
[46] 李必红,刘庆成,邓居智,等. 砂岩型铀矿床上氡及其子体异常分析[J]. 铀矿地质,2007,23(1):49−54. doi: 10.3969/j.issn.1000-0658.2007.01.008 LI Bihong,LIU Qingcheng,DENG Juzhi,et al. Analyses on anomaly of radon and its daughters above sandstone type uranium deposit[J]. Uranium Geology,2007,23(1):49−54. doi: 10.3969/j.issn.1000-0658.2007.01.008
[47] SUKANYA S,NOBLE J,JOSEPH S. Application of radon (222Rn) as an environmental tracer in hydrogeological and geological investigations:an overview[J]. Chemosphere,2022,303:135141. doi: 10.1016/j.chemosphere.2022.135141
[48] 张必敏,王学求,徐善法,等. 穿透性地球化学勘查技术在隐伏砂岩型铀矿调查中的应用研究[J]. 地球学报,2020,41(6):770−784. doi: 10.3975/cagsb.2020.090102 ZHANG Bimin,WANG Xueqiu,XU Shanfa,et al. The research and application of deep-penetrating geochemical exploration technology in the survey of concealed sandstone-type uranium deposits[J]. Acta Geoscientica Sinica,2020,41(6):770−784. doi: 10.3975/cagsb.2020.090102
[49] ZHANG B M,WANG X Q,ZHOU J,et al. Regional geochemical survey of concealed sandstone-type uranium deposits using fine-grained soil and groundwater in the Erlian basin,North-East China[J]. Journal of Geochemical Exploration,2020,216:106573. doi: 10.1016/j.gexplo.2020.106573