Research progress and development trends in adaptive cutting technology for shearers
-
摘要:
自适应截割技术是实现采煤机智能化的核心技术,对提升煤矿开采效率、提高安全性和资源利用率具有重要作用。因此,开展了自适应截割技术的综述研究,重点探讨了其技术原理及应用现状。根据核心功能和技术目标,将采煤机自适应截割技术划分为记忆截割、透明地质、煤岩识别和自适应控制4个研究内容。记忆截割通过记录历史数据来优化采煤路径,透明地质利用综合探测技术获取实时地质信息,煤岩识别技术根据不同的识别原理,可以分为基于物理参数的间接法、基于视觉的直接法、以及探地雷达和超声波等基于波动特性的探测法,以实现煤岩界面或煤岩性质的精确识别,自适应控制则通过自动化调节采煤机的运行参数。这些技术从多个角度提升了采煤机的智能化水平。然而,由于煤层地质条件及恶劣开采环境的影响,现有技术在适应性和经济性方面存在一些局限性。因此,针对未来采煤机自适应截割技术的发展趋势,提出了以下建议:促进记忆截割、透明地质与煤岩识别技术的融合,以实现更高效的煤层信息获取;采用多传感器融合技术,以提高煤岩识别的准确度和可靠性;发展基于大数据分析的智能决策支持系统,优化采煤机的运行策略,同时研究多领域协同仿真控制策略,以应对技术瓶颈并增强系统性能。
Abstract:Adaptive cutting technology is crucial for enabling intelligent shearers, significantly improving mining efficiency, safety, and resource utilization. Therefore, a comprehensive review of adaptive cutting technology has been conducted, focusing on its technical principles and current applications. Based on core functions and technical objectives, adaptive cutting technology is categorized into four primary research areas: memory cutting, transparent geology, coal-rock identification, and adaptive control. Memory cutting enhance cutting paths by recording historical data, while transparent geology leverages integrated detection technologies to acquire real-time geological information. Coal-rock identification techniques are classified according to recognition principles: indirect methods based on physical parameters, direct methods relying on visual information, and wave-based detection methods such as ground-penetrating radar and ultrasound. Adaptive control automates the adjustment of shearer operating parameters. Collectively, these technologies advance the intelligence of coal mining machines from various perspectives. Nevertheless, due to geological complexities and challenging mining environments, existing technologies face limitations in adaptability and cost-effectiveness. Therefore, future development of adaptive cutting technology should focus on integrating memory cutting, transparent geology, and coal-rock identification technologies to enhance coal seam data acquisition. Implementing multi-sensor fusion technology to improve the accuracy and reliability of coal-rock identification. Developing intelligent decision-support systems based on big data analytics to optimize mining operations and researching multi-domain collaborative simulation control strategies to address technical challenges and improve system performance.
-
0. 引 言
稀土元素蕴含了丰富的地质信息,其分布模式、地球化学参数等可恢复物质来源和沉积环境等众多地质信息,是可靠的地球化学示踪剂[1-2]。众多学者先后从煤中稀土元素的分布规律、赋存状态及富集成因等方面进行了大量卓有成效的研究,如王运泉等[3]研究认为我国华北石炭二叠纪聚煤区聚煤期物源区相对较简单,沉积物风化、搬运历史较长,REE分布模式得到了较充分的均化;孙蓓蕾等[4]研究认为稀土元素含量与灰分呈相关性,与Si、Al等元素关系密切,表明稀土元素主要赋存于高岭石等黏土矿物中;刘蔚阳等[5]研究认为煤中稀土元素含量与灰分、Al、Si、Fe、Mn 等元素呈正相关,且赋存状态以硅铝酸盐结合态和有机结合态为主。近年来煤系稀土矿床的陆续发现,使其已经成为矿产资源勘探的重要领域和方向,也成为煤地质学领域的研究热点和前沿[6-8]。
宁东煤田是宁夏最重要的煤炭资源赋存基地,行政区划上隶属于银川市及吴忠市。区内含煤地层主要为上石炭统太原组、下二叠统山西组和中侏罗统延安组,含煤面积约
10710 km2,占宁夏查明煤炭资源储量的82%,是宁夏煤炭资源开发利用和煤化工产业建设的核心区域,现已建成我国重要的千万千瓦级火电基地、煤化工基地和煤炭基地[9],该区域也是未来宁夏煤炭资源开发及深加工利用的主战场。近年来,已有部分研究人员对宁东煤田煤中战略性金属的赋存和富集特征进行了相关研究,如秦国红等[10]研究认为鄂尔多斯盆地西缘石炭—二叠系煤中稀土元素含量明显高于中国和世界煤中的均值,且铕(Eu)和铈(Ce)呈现出负异常,推断其与石炭—二叠系海陆交互相的强还原环境有关;吴蒙等[11]研究认为宁东煤田晚古生代煤中的黄铁矿是微量元素 Cl,F,V,Pb 和 As 的重要载体,而有机硫决定了煤层中 Ga 的富集;秦国红[12]研究认为宁东煤田5号煤中Li和Th富集;刘亢等[13]研究认为鄂尔多斯盆地西缘煤中Li和Ga较为富集。前人研究一方面集中体现在分布于面上讨论和量上的表述,另一方面更多的是聚焦于有害元素和微量元素的研究,针对稀土元素赋存状态及地质意义方面的研究相对较少。本文从宁东6个生产矿井中采集石炭−二叠纪太原组煤样6件,开展煤的稀土元素地球化学特征研究,以期深化研究区煤的成煤环境、稀土元素赋存特征及煤炭资源清洁高效利用方面的认识。
1. 研究区概况
宁东煤田在大地构造上位于鄂尔多斯盆地西缘褶皱逆冲带中部(图1),恰好处于相对稳定的阿拉善微地块、鄂尔多斯地块与多期活动的秦祁褶皱带和六盘山弧形构造带的复合交汇部位[14],其形成和演化明显受贺兰山—六盘山构造带与鄂尔多斯盆地之间的耦合效应控制[15]。
宁东煤田含煤岩系包括晚古生代石炭—二叠纪(C-P)和中生代侏罗纪(J)2套煤系,其中石炭—二叠系是在奥陶系古风化壳之上发育的一套海陆过渡相含煤沉积建造,侏罗系为内陆湖盆形成的一套陆相含煤沉积建造。石炭二叠纪含煤地层包括太原组和山西组,侏罗纪含煤地层为延安组,其中,太原组发育滨海碳酸盐陆棚沉积体系,山西组发育河流和三角洲沉积体系[11]。宁东煤田太原组和山西组共发育煤层5~27层,煤层平均厚度介于8.98~21.21 m,煤层变质程度中等,煤类包含气煤、肥煤、焦煤、瘦煤及贫煤多个类别,煤质具有低灰−中灰、中低硫、低磷、中低氯等特征。
2. 样品采集与测试
本次研究样品采自宁东煤田红墩子二矿(HDZ)、任家庄煤矿(RJZ)、刘家沟湾煤矿(LJG)、湾岔沟煤矿(WCG)、韦州二矿(WEK)、四股泉煤矿(SGQ),每个生产煤矿各采样一件,共采集6件样品,采集煤层为晚古生代石炭—二叠纪太原组煤层。测试工作全部在中国地质大学(武汉)构造与油气资源教育部重点实验室完成,测试工作根据国家相关标准,利用(Agilent 7700e)进行了稀土元素测试;利用波长色散(ZSX PrimusⅡ)分析了常量元素的氧化物,包括SiO2、TiO2、Al2O3、Fe2O3、MnO、MgO、CaO、Na2O、K2O、P2O5;利用2021101503AXS D8 ADVANCE 进行了煤中矿物质分析,主要包括高岭石、方解石、石英、白云石、地开石、黄铁矿、白云母等。
3. 结果与讨论
此次研究采用Taylor and Mclennan[16]提出的上地壳丰度值对稀土元素进行标准化计算,并对原始数据进行了稀土元素参数计算。LREE包含$\mathrm{La、Ce、Pr、Nd、Sm、Eu} $等元素;HREE包含$\mathrm{Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y} $等元素;$\mathrm{\Sigma REE=LREE+HREE} $。其中,LREE为轻稀土元素;HREE为重稀土元素,ΣREE为总稀土元素。
LaN/YbN、LaN/SmN、GdN/YbN、LaN/LuN均为元素经上地壳标准化的比值;δEu、δCe、Ceanom为以上地壳为标准的异常,其中δEu=EuN/(SmN×GdN)1/2,δCe=CeN/(LaN×PrN)1/2,Ceanom(铈异常指数)=lg[3CeN/(2LaN+NdN)]。
3.1 稀土元素特征
研究样品中的稀土元素含量见表1,计算的稀土元素地球化学参数见表2。
表 1 宁东煤田石炭—二叠纪太原组煤中稀土元素含量Table 1. Content of REE ofPermo-Carboniferous Taiyuan Fm coals in Ningdong Coalfield样品及参数 含量/(μg·g−1) La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y SGQ 1.88 4.74 0.57 2.42 0.78 0.18 1.16 0.22 1.56 0.37 1.09 0.16 1.11 0.18 10.7 WEK 35.1 68.8 7.3 28.3 5.87 0.96 5.21 0.83 5.12 1.1 3 0.42 2.78 0.43 30.4 RJZ 24.8 49.1 5.43 18.9 3.16 0.5 2.47 0.39 2.38 0.48 1.29 0.19 1.28 0.2 12.2 WCG 17.2 34.6 3.94 15.7 3.34 0.6 3.45 0.54 3.57 0.84 2.49 0.36 2.5 0.42 27.7 LJG 19.4 40.3 4.8 21.4 5.49 1.11 5.84 0.94 5.24 1.12 2.99 0.4 2.56 0.41 31.6 HDZ 8.95 19.6 2.25 9.28 2.52 0.55 2.75 0.46 2.83 0.59 1.6 0.23 1.54 0.24 17.1 样品均值 17.89 36.19 4.05 16.00 3.53 0.65 3.48 0.56 3.45 0.75 2.08 0.29 1.96 0.31 21.62 富集系数 0.80 0.77 0.63 0.72 0.87 0.77 0.75 0.91 0.92 0.78 1.16 0.46 0.94 0.82 1.19 中国煤 22.5 46.7 6.42 22.3 4.07 0.84 4.65 0.62 3.74 0.96 1.79 0.64 2.08 0.38 18.2 世界煤 11 23 3.5 12 2 0.47 2.7 0.32 2.1 0.54 0.93 0.31 1 0.2 8.4 上地壳 30 64 7.1 26 4.5 0.88 3.8 0.64 3.5 0.8 2.3 0.33 2.2 0.32 / 表 2 宁东煤田石炭—二叠纪太原组煤的稀土元素地球化学参数Table 2. REE parameters of Permo-Carboniferous Taiyuan Fm coals in Ningdong Coalfield样品 ΣREE LREE HREE LREE/HREE LaN/YbN LaN/SmN LaN/LuN GdN/LuN δEu δCe Ceanom SGQ 16.42 10.57 5.85 1.81 0.12 0.36 0.11 0.61 0.89 1.04 0.89 WEK 165.22 146.33 18.89 7.75 0.93 0.90 0.87 1.09 0.82 0.98 0.82 RJZ 110.57 101.89 8.68 11.74 1.42 1.18 1.32 1.12 0.84 0.96 0.84 WCG 89.55 75.38 14.17 5.32 0.50 0.77 0.44 0.80 0.83 0.96 0.83 LJG 112 92.5 19.5 4.74 0.56 0.53 0.50 1.32 0.92 0.95 0.92 HDZ 53.39 43.15 10.24 4.21 0.43 0.53 0.40 1.03 0.98 1.00 0.98 均值 91.19 78.30 12.89 5.93 0.66 0.71 0.61 1.00 0.88 0.98 0.88 由表2可知,宁东煤田石炭−二叠纪太原组煤中稀土元素含量变化范围较大,介于16.42~165.22 μg/g,均值91.19 μg/g,低于中国煤中稀土元素含量平均值(135.89 μg/g)[17],但高于世界煤中稀土元素含量平均值(60.7 μg/g)[18]。
研究样品中,LREE含量介于10.57~146.33 μg/g,均值78.30 μg/g;HREE含量介于5.85~18.89 μg/g,均值12.89 μg/g;LREE/HREE比值介于1.81~11.74,均值为5.93;LaN/YbN比值介于为0.12~1.42,均值0.66;LaN/LuN比值介于0.11~1.32,均值为0.61,表明轻重稀土元素分馏不明显;LaN/SmN变化范围为0.36~1.18,均值0.71,表明轻稀土元素分馏程度较低;GdN/LuN变化范围为0.61~1.32,均值为1.0,表明重稀土元素分馏程度低。
3.2 稀土元素分布类型
上地壳(UCC)标准化的稀土元素配分模式表明(图2),四股泉、红墩子、湾岔沟和刘家沟煤中稀土元素呈现出重稀土元素富集型(分布曲线呈左倾),表明稀土元素的分布受到海水的影响。韦二矿和任家庄煤中稀土元素呈现出轻稀土元素富集型(分布曲线呈右倾),表明其主要受到物源碎屑输入的影响,但较低的轻重稀土元素分馏也说明其也受到海水的影响。研究区煤中稀土元素总体表现出Eu的负异常,表明长英质碎屑物质的输入;Ce无明显异常,表明成煤时期,泥炭沼泽具有相对稳定的成煤环境。
3.3 煤中稀土元素的赋存状态
煤中稀土元素具有较强的无机亲和性,也可以与有机质形成络合物[19]。代世峰等[20]通过逐级化学提取方法研究认为稀土元素在煤层中以铝硅酸盐结合态存在,吴艳艳等[21]等认为煤中稀土元素与黄铁矿有较好的亲和性,而与黏土矿物呈负相关性,曹泊等[22]研究表明,煤中稀土元素在黏土矿物中存在物理吸附(阳离子交换反应)和化学吸附(水解反应),其中物理吸附与pH和温度无关,而化学吸附是吸热反应,优先在高pH条件下发生。
本次研究样品中稀土元素含量与灰分呈正相关性(图3),说明煤中稀土元素主要赋存于矿物中。此外,稀土元素含量与镜质组含量呈较为显著的正相关性,表明部分稀土元素可能与有机质结合,但也有可能是镜质组中的胞腔、孔隙等被吸附有稀土元素的黏土矿物充填所致。煤中稀土元素含量与SiO2及Al2O3含量均呈正相关性,相关系数分别为0.40、0.53,表明稀土元素可能主要赋存于黏土矿物。稀土元素与K2O(R2=0.82)及Na2O(R2=0.57)含量亦呈正相关性,亦表明稀土元素与含K和Na的黏土矿物有关,推测在沉积与成岩作用过程中,在酸性还原沼泽条件下,黏土矿物中K+、Na+离子的析出为稀土元素的吸附提供空间。
总体上来说,煤中稀土元素含量与灰分、Si、Al、Fe、Na、K等元素呈正相关性,表明陆源碎屑是稀土元素的主要来源。在长英质陆源碎屑供给的背景下,研究区煤中稀土元素继承了源岩区稀土元素的特征,在沉积、成煤作用阶段,伴随着温度、压力、pH值及氧化还原条件的变化,煤中稀土元素主要以吸附态赋存于黏土矿物中,但不能完全排除以物理吸附或化学络合物的形式赋存的有机态稀土元素。
3.4 煤中稀土元素的来源和控制因素成因
煤中稀土元素的赋存状态与聚集是多种地质因素、多期地质作用综合叠加的结果,受沉积物源、搬运介质、沉积环境、风化淋滤和岩浆活动等因素影响[22];秦国红等研究表明,成煤植物提供给煤中的REY(镧元素和铱)含量很低,无法构成煤中REY的主要来源,因此煤中稀土元素的含量主要受控于陆源碎屑的供给[10]。
煤层中的Eu负异常主要继承于陆源碎屑[1, 23]。研究区煤的δEu值范围为0.82~0.98,均值为0.88,整体表现出较为显著Eu负异常,表明宁东煤田晚古生代煤中碎屑物源来源于长英质陆源碎屑,同时指示研究区煤层形成于温暖湿润的气候条件下[24]。海相环境常出现Ce的负异常,在浅海区Ce基本正常,在外海及开阔海域,Ce严重亏损[1]。研究区δCe值范围为0.95~1.04,均值0.98,呈微弱负异常,仅四股泉和红墩子煤样大于1,呈现出正Ce异常,说明本次研究采集样品的矿区聚煤微环境略有区别,四股泉和红墩子矿区成煤时沼泽的还原性也相对更弱一些。研究区煤层均表现为元素Eu负异常明显,元素Ce呈微弱负异常或不明显的异常,表明了稳定的陆源碎屑补给背景[25]。
稀土元素REY和La/Yb交汇图被广泛用于区分泥岩、页岩和煤的物源特征(图4),宁东煤田晚古生代煤样集中分布在沉积岩区,反映出母岩为沉积岩,结合显著的Eu负异常,认为先期沉积母岩具有花岗岩物源特征[26]。
δCe/δEu值大小反应煤层沉积时的氧化还原条件,该值越高反映还原条件越强,一般认为小于1表明氧化条件占主导,反之还原条件占主导[23, 27]。在δCe/δEu和ΣREE关系图中(图5),宁东晚古生代煤中δCe/δEu值都大于1,且δCe/δEu-ΣREE投点相对分散,反映了海陆交互相聚煤环境的非均一性和复杂性,可能受海陆交互相大背景下潮坪、泻湖、海湾及近滨岸三角洲等微环境控制。Ceanom亦广泛用于判别古氧化还原条件,Ceanom>−0.1时,指示还原环境, Ceanom<−0.1时指示氧化环境[28];研究区Ceanom介于0.82~0.98,指示其为还原环境。总体来说,研究区成煤环境主要为还原条件,属下三角洲平原及下三角洲−三角洲平原沉积背景,均受到海水不同程度的影响。
La/Lu-ΣREE关系图显示(图6),宁东晚古生代煤中轻重稀土元素的分馏程度与稀土元素含量总体成正相关性,表明随着稀土元素含量的增加,研究区煤中相对富集轻稀土,一方面是因为越靠近海水,海水的影响越大,轻重稀土元素的分馏程度就越小;另一方面是因为距离海岸越远,陆源碎屑物质的供给越强,煤中轻稀土元素的富集处于优势,这与煤中稀土元素含量和灰分呈正相关性是一致的。
SHIELDS等[29]认为成岩作用可以改变Ce异常值,通常会造成δCe与δEu具有较好的负相关性、δCe与∑REE具有较好的正相关性。宁东地区晚古生代煤的δCe和δEu不具有相关性,δCe和∑REE呈负相关性,R2=0.50,说明这三者之间并不具备较好的相关性,反映成岩作用对宁东煤田晚古生代煤的REE影响十分有限。
总体上来说,宁东煤田晚古生代石炭−二叠纪太原组煤中稀土元素主要受控于沉积物源背景,可能局部因微地形、微地貌及距离古海岸的距离远近等因素影响,造成煤中稀土元素富集程度及含量的变化,但总的背景及稀土元素相对不富集的状态没有改变。
4. 结 论
1)宁东煤田晚古生代石炭−二叠纪太原组煤中稀土元素含量较低,均值仅为91.19 μg/g,低于中国煤中稀土元素平均值,具有Eu负异常,Ce异常不明显的特征,稀土元素地球化学参数显示稀土元素分馏不明显,相对上地壳具有重稀土相对富集的分配模式。
2)煤中稀土元素赋存状态是源岩、沼泽氧化还原条件、温度、压力、pH等条件的综合作用结果,研究区煤中稀土元素主要以吸附态赋存于黏土矿物及黄铁矿当中。
3)煤中稀土元素主要受控于聚煤古环境,其含量与灰分、Si、Al、Na、K等元素呈正相关性,表明陆源碎屑是稀土元素的主要来源,且在沉积成岩作用过程中再分配;成煤时期受海水影响而相对富集重稀土,但海水及成岩作用对其影响十分有限,没有改变低稀土元素含量的事实。
-
表 1 有量纲时域统计参量对比
Table 1 Comparison of dimensional time-domain statistical parameters
有量纲指标 割煤状态(dm·s−2) 割顶状态(dm·s−2) 绝对值增幅/% 均方值 71.40 281.28 295 方差 71.40 281.28 295 方根幅值 5.73 8.69 52 平均幅值 6.76 11.27 67 有效值 8.45 16.77 98 表 2 无量纲时域统计参量对比
Table 2 Comparison of dimensionless time-domain statistical parameters
无量纲指标 割煤状态 割顶状态 绝对值增幅/% 波形指标 1.25 1.49 24 峰值指标 4.96 9.20 85 脉冲指标 6.20 13.69 120 裕度指标 7.31 17.76 143 峭度指标 0.04 0.03 −25 表 3 采煤机自适应截割技术对比分析
Table 3 Comparison and Analysis of Adaptive Cutting Technology for shearers
单点技术 核心内容 技术特点 应用场景 优劣势对比 记忆截割 利用历史截割数据生成最优截割路径以提升作业效率 基于历史数据、具备路径优化能力和较高的重复精确度 地质条件相对稳定且重复作业较多的工况 优点:路径优化、提高效率
缺点:对地质变化的适应性较差,需配合其他技术以应对动态变化透明地质 通过地质数据采集、处理和透明化展示,使得地质特征更加清晰 实时展现地质特征、数据可视化强 复杂地质结构下的采矿场景 优点:清晰展示地质特征,辅助决策
缺点:依赖高精度传感器和实时处理系统,可能存在成本高的问题煤岩识别 利用传感器技术实时识别煤岩分界,实现精准截割 识别精度高、适应复杂地质环境 煤岩混杂、地质变化显著的工况 优点:精确识别煤岩分界,减少误割率
缺点:对传感器性能和数据处理要求高,在数据缺失或误差大的条件下可能失效自适应控制 通过实时反馈控制算法,自动调节截割参数以适应不同工况 智能化高,实时调整截割速度、力度等关键参数 工况实时变化明显、需要灵活调整的场景 优点:灵活应对复杂工况,提升作业稳定性和安全性
缺点:对控制算法和实时计算要求高,依赖大量实时数据以保证精度和响应速度 -
[1] 高有进,杨艺,常亚军,等. 综采工作面智能化关键技术现状与展望[J]. 煤炭科学技术,2021,49(8):1−22. GAO Youjin,YANG Yi,CHANG Yajun,et al. Status and prospect of key technologies of intelligentization of fully-mechanized coal mining face[J]. Coal Science and Technology,2021,49(8):1−22.
[2] 王国法,杜毅博,徐亚军,等. 中国煤炭开采技术及装备50年发展与创新实践:纪念《煤炭科学技术》创刊50周年[J]. 煤炭科学技术,2023,51(1):1−18. WANG Guofa,DU Yibo,XU Yajun,et al. Development and innovation practice of China coal mining technology and equipment for 50 years:commemorate the 50th anniversary of the publication of coal science and technology[J]. Coal Science and Technology,2023,51(1):1−18.
[3] 李福涛,王忠宾,司垒,等. 基于振动信号的采煤机煤岩截割状态识别[J]. 煤炭工程,2022,54(1):123−127. LI Futao,WANG Zhongbin,SI Lei,et al. Coal cutting state recognition of shearer based on vibration signal[J]. Coal Engineering,2022,54(1):123−127.
[4] 巩师鑫,任怀伟,黄伟,等. 复杂起伏煤层自适应开采截割路径优化与仿真[J]. 煤炭科学技术,2023,51(S2):210−218. GONG Shixin,REN Huaiwei,HUANG Wei,et al. Optimization and simulation of adaptive mining cutting path in complex undulating coal seam[J]. Coal Science and Technology,2023,51(S2):210−218.
[5] 刘春生,陈金国. 基于单示范刀采煤机记忆截割的数学模型[J]. 煤炭科学技术,2011,39(3):71−73,103. LIU Chunsheng,CHEN Jinguo. Mathematic model of memory cutting for coal shearer based on single demo knife[J]. Coal Science and Technology,2011,39(3):71−73,103.
[6] 张强,张润鑫,刘峻铭,等. 煤矿智能化开采煤岩识别技术综述[J]. 煤炭科学技术,2022,50(2):1−26. ZHANG Qiang,ZHANG Runxin,LIU Junming,et al. Review on coal and rock identification technology for intelligent mining in coal mines[J]. Coal Science and Technology,2022,50(2):1−26.
[7] 薛国华. 基于透明地质的综采工作面三维煤层建模[J]. 工矿自动化,2022,48(4):135−141. XUE Guohua. Three-dimensional coal seam modeling of fully mechanized working face based on transparent geology[J]. Journal of Mine Automation,2022,48(4):135−141.
[8] 刘旭南,赵丽娟,盖东民,等. 基于采煤机可靠性的智能牵引调速系统研究[J]. 系统仿真学报,2016,28(7):1601−1608. LIU Xunan,ZHAO Lijuan,GAI Dongmin,et al. Research on intelligent hauling speed regulation system based on shearer’s reliability[J]. Journal of System Simulation,2016,28(7):1601−1608.
[9] 夏蒙健,刘洋. 煤矿采煤机智能化关键技术[J]. 工矿自动化,2023,49(S2):10−12. XIA Mengjian,LIU Yang. Intelligent key technologies of coal mine shearer[J]. Industry and Mine Automation,2023,49(S2):10−12.
[10] 王福忠,高颖. 采煤机截割滚筒轨迹的迭代学习跟踪控制[J]. 控制工程,2018,25(6):966−971. WANG Fuzhong,GAO Ying. Tracking control of shearer cutting-drum using iterative learning[J]. Control Engineering of China,2018,25(6):966−971.
[11] 刘春生,杨秋,李春华. 采煤机滚筒记忆程控截割的模糊控制系统仿真[J]. 煤炭学报,2008,33(7):822−825. doi: 10.3321/j.issn:0253-9993.2008.07.021 LIU Chunsheng,YANG Qiu,LI Chunhua. Simulation of shearer drum cutting with memory program controlling by fuzzy control[J]. Journal of China Coal Society,2008,33(7):822−825. doi: 10.3321/j.issn:0253-9993.2008.07.021
[12] 王忠宾,徐志鹏,董晓军. 基于人工免疫和记忆切割的采煤机滚筒自适应调高[J]. 煤炭学报,2009,34(10):1405−1409. doi: 10.3321/j.issn:0253-9993.2009.10.021 WANG Zhongbin,XU Zhipeng,DONG Xiaojun. Self-adaptive adjustment height of the drum in the shearer based on artificial immune and memory cutting[J]. Journal of China Coal Society,2009,34(10):1405−1409. doi: 10.3321/j.issn:0253-9993.2009.10.021
[13] 陈伟华,南鹏飞,闫孝姮,等. 基于深度学习的采煤机截割轨迹预测及模型优化[J]. 煤炭学报,2020,45(12):4209−4215. CHEN Weihua,NAN Pengfei,YAN Xiaoheng,et al. Prediction and model optimization of shearer memory cutting trajectory based on deep learning[J]. Journal of China Coal Society,2020,45(12):4209−4215.
[14] 齐爱玲,王雨,马宏伟. 基于改进门控循环神经网络的采煤机滚筒调高量预测[J]. 工矿自动化,2024,50(2):116−123. QI Ailing,WANG Yu,MA Hongwei. Prediction of height adjustment of shearer drum based on improved gated recurrent neural network[J]. Journal of Mine Automation,2024,50(2):116−123.
[15] 李重重,刘清. 基于截割顶底板高度预测模型的采煤机自动调高技术[J]. 工矿自动化,2024,50(1):9−16. LI Zhongzhong,LIU Qing. Automatic height adjustment technology of shearer based on cutting roof and floor height prediction model[J]. Journal of Mine Automation,2024,50(1):9−16.
[16] 程诚,吴洪状,刘送永. 基于B样条曲线拟合和蜉蝣算法的采煤机截割路径约束优化[J]. 煤炭科学技术,2024,52(S1):269−279. CHENG Cheng,WU Hongzhuang,LIU Songyong. Constraint optimization of shearer cutting path based on B-spline curve fitting and mayfly algorithm[J]. Coal Science and Technology,2024,52(S1):269−279.
[17] 程建远,王保利,范涛,等. 煤矿地质透明化典型应用场景及关键技术[J]. 煤炭科学技术,2022,50(7):1−12. CHENG Jianyuan,WANG Baoli,FAN Tao,et al. Typical application scenes and key technologies of coal mine geological transparency[J]. Coal Science and Technology,2022,50(7):1−12.
[18] 毛明仓,张孝斌,张玉良. 基于透明地质大数据智能精准开采技术研究[J]. 煤炭科学技术,2021,49(1):286−293. MAO Mingcang,ZHANG Xiaobin,ZHANG Yuliang. Research on intelligent and precision mining technology based on transparent geological big data[J]. Coal Science and Technology,2021,49(1):286−293.
[19] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1−27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001 WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1−27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001
[20] 刘再斌,刘程,刘文明,等. 透明工作面多属性动态建模技术[J]. 煤炭学报,2020,45(7):2628−2635. LIU Zaibin,LIU Cheng,LIU Wenming,et al. Multi-attribute dynamic modeling technique for transparent working face[J]. Journal of China Coal Society,2020,45(7):2628−2635.
[21] 袁亮. 煤炭精准开采科学构想[J]. 煤炭学报,2017,42(1):1−7. YUAN Liang. Scientific conception of precision coal mining[J]. Journal of China Coal Society,2017,42(1):1−7.
[22] 袁亮,张平松. 煤炭精准开采透明地质条件的重构与思考[J]. 煤炭学报,2020,45(7):2346−2356. YUAN Liang,ZHANG Pingsong. Framework and thinking of transparent geological conditions for precise mining of coal[J]. Journal of China Coal Society,2020,45(7):2346−2356.
[23] 侯运炳,张弘,毛善君,等. 基于高精度三维动态地质模型的采煤机自适应智能截割技术研究[J]. 矿业科学学报,2023,8(1):26−38. HOU Yunbing,ZHANG Hong,MAO Shanjun,et al. Adaptive intelligent cutting technology of the shearer based on the high-precision three-dimensional dynamic geological model[J]. Journal of Mining Science and Technology,2023,8(1):26−38.
[24] 李森,李重重,刘清. 基于透明地质的综采工作面规划截割协同控制系统[J]. 煤炭科学技术,2023,51(4):175−184. LI Sen,LI Zhongzhong,LIU Qing. Planned cutting and collaborative control system for fully-mechanized mining face based on transparent geology[J]. Coal Science and Technology,2023,51(4):175−184.
[25] 王海舰,黄梦蝶,高兴宇,等. 考虑截齿损耗的多传感信息融合煤岩界面感知识别[J]. 煤炭学报,2021,46(6):1995−2008. WANG Haijian,HUANG Mengdie,GAO Xingyu,et al. Coal-rock interface recognition based on multi-sensor information fusion considering pick wear[J]. Journal of China Coal Society,2021,46(6):1995−2008.
[26] 苏秀平,李威,徐志鹏. 采煤机工作面截割试验分析[J]. 煤炭学报,2013,38(9):1681−1685. SU Xiuping,LI Wei,XU Zhipeng. Test analysis of shearer cutting at coal face[J]. Journal of China Coal Society,2013,38(9):1681−1685.
[27] 田立勇,毛君,王启铭. 基于采煤机摇臂惰轮轴受力分析的综合煤岩识别方法[J]. 煤炭学报,2016,41(3):782−787. TIAN Liyong,MAO Jun,WANG Qiming. Coal and rock identification method based on the force of idler shaft in shearer’s ranging arm[J]. Journal of China Coal Society,2016,41(3):782−787.
[28] 刘春生,刘延婷,刘若涵,等. 采煤机截割状态与煤岩识别的关联载荷特征模型[J]. 煤炭学报,2022,47(1):527−540. LIU Chunsheng,LIU Yanting,LIU Ruohan,et al. Correlation load characteristic model between shearer cutting state and coal-rock recognition[J]. Journal of China Coal Society,2022,47(1):527−540.
[29] LI F T,WANG Z B,SI L,et al. Traction resistance analysis and cutting state recognition of shearer based on numerical simulation[J]. Measurement,2024,237:115261. doi: 10.1016/j.measurement.2024.115261
[30] JIANG K,WAN L R,ZENG Q L,et al. New effective method for identification of coal and roof interface based on cutting performance[J]. Arabian Journal for Science and Engineering,2023,48(9):11351−11362. doi: 10.1007/s13369-022-07400-5
[31] 赵健博. 采煤机截割载荷识别与智能控制方法研究[D]. 西安科技大学机械工程,2022. ZHAO Jianbo. Research on cutting load identification and intelligent control method of shearer[D]. Xi`an University of Science and Technology,2022
[32] 刘俊利,赵豪杰,李长有. 基于采煤机滚筒截割振动特性的煤岩识别方法[J]. 煤炭科学技术,2013,41(10):93−95,116. LIU Junli,ZHAO Haojie,LI Changyou. Coal-rock recognition method based on cutting vibration features of coal shearer drums[J]. Coal Science and Technology,2013,41(10):93−95,116.
[33] 杨健健,姜海,吉晓东,等. 基于小波包特征提取的煤岩硬度振动识别方法[J]. 煤炭科学技术,2015,43(12):114−117,179. YANG Jianjian,JIANG Hai,JI Xiaodong,et al. Vibration identification method of coal and rock hardness based on wavelet packet features[J]. Coal Science and Technology,2015,43(12):114−117,179.
[34] 丛晓妍,王增才,王保平,等. 基于EMD与峭度滤波的煤岩界面识别[J]. 振动 测试与诊断,2015,35(5):950-954,995-996. CONG Xiaoyan,WANG Zengcai,WANG Baoping,et al. Application of filtering method based on EMD and kurtosis in coal-rock interface recognition[J]. Journal of Vibration,Measurement & Diagnosis,2015,35(5):950-954,995-996.
[35] 任洁,刘頔. 基于采煤机振动时域特性的煤岩识别方法研究[J]. 煤炭工程,2016,48(3):106−109. REN Jie,LIU Di. Recognition method of coal-rock interface based on time-domain vibration characteristics of coal cutter[J]. Coal Engineering,2016,48(3):106−109.
[36] SI L,WANG Z B,TAN C,et al. Vibration-based signal analysis for shearer cutting status recognition based on local mean decomposition and fuzzy C-means clustering[J]. Applied Sciences,2017,7(2):164. doi: 10.3390/app7020164
[37] 许静. 采煤机煤岩截割模式识别关键技术研究[D]. 徐州:中国矿业大学,2018. XU Jing. Research on key technologies of coal-rock cutting pattern recognition for shearer[D]. Xuzhou:China University of Mining and Technology,2018.
[38] LI C P,PENG T H,ZHU Y M,et al. Noise reduction method of shearer’s cutting sound signal under strong background noise[J]. Measurement and Control,2022,55(7-8):783−794. doi: 10.1177/00202940221091547
[39] 尹玉玺,周常飞,许志鹏,等. 基于改进1DCNN的煤岩识别模型研究[J]. 工矿自动化,2023,49(1):116−122. YIN Yuxi,ZHOU Changfei,XU Zhipeng,et al. Research on coal and rock recognition model based on improved 1DCNN[J]. Journal of Mine Automation,2023,49(1):116−122.
[40] LI F T,WANG Z B,SI L,et al. A novel recognition method of shearer cutting status based on SDP image and MCK-DCNN[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2024,238(5):1495−1506. doi: 10.1177/09544062231185486
[41] 黄韶杰. 基于灰度阈值法的煤岩界面识别研究[J]. 工矿自动化,2013,39(5):52−54. doi: 10.7526/j.issn.1671-251X.2013.05.015 HUANG Shaojie. Research of coal-rock interface identification based on gray threshold method[J]. Industry and Mine Automation,2013,39(5):52−54. doi: 10.7526/j.issn.1671-251X.2013.05.015
[42] 李嘉豪,司垒,王忠宾,等. 综放工作面煤矸识别技术及其应用[J]. 仪器仪表学报,2024,45(1):1−15. LI Jiahao,SI Lei,WANG Zhongbin,et al. Coal gangue identification technology and its application in fully-mechanized coal mining face[J]. Chinese Journal of Scientific Instrument,2024,45(1):1−15.
[43] 王超,张强. 基于LBP和GLCM的煤岩图像特征提取与识别方法[J]. 煤矿安全,2020,51(4):129−132. WANG Chao,ZHANG Qiang. Coal rock image feature extraction and recognition method based on LBP and GLCM[J]. Safety in Coal Mines,2020,51(4):129−132.
[44] 张万枝,王增才. 基于视觉技术的煤岩特征分析与识别[J]. 煤炭技术,2014,33(10):272−274. ZHANG Wanzhi,WANG Zengcai. Characteristic analysis and recognition of coal and rock based on visual technology[J]. Coal Technology,2014,33(10):272−274.
[45] 黄韶杰,刘建功. 基于高斯混合聚类的煤岩识别技术研究[J]. 煤炭学报,2015,40(S2):576−582. HUANG Shaojie,LIU Jiangong. Research of coal-rock recognition technology based on GMM clustering analysis[J]. Journal of China Coal Society,2015,40(S2):576−582.
[46] 伍云霞,田一民. 基于字典学习的煤岩图像特征提取与识别方法[J]. 煤炭学报,2016,41(12):3190−3196. WU Yunxia,TIAN Yimin. Method of coal-rock image feature extraction and recognition based on dictionary learning[J]. Journal of China Coal Society,2016,41(12):3190−3196.
[47] 高峰,殷欣,刘泉声,等. 基于塔式池化架构的采掘工作面煤岩图像识别方法[J]. 煤炭学报,2021,46(12):4088−4102. GAO Feng,YIN Xin,LIU Quansheng,et al. Coal-rock image recognition method for mining and heading face based on spatial pyramid pooling structure[J]. Journal of China Coal Society,2021,46(12):4088−4102.
[48] 司垒,王忠宾,熊祥祥,等. 基于改进U-net网络模型的综采工作面煤岩识别方法[J]. 煤炭学报,2021,46(S1):578−589. SI Lei,WANG Zhongbin,XIONG Xiangxiang,et al. Coal-rock recognition method of fully-mechanized coal mining face based on improved U-net network model[J]. Journal of China Coal Society,2021,46(S1):578−589.
[49] 闫志蕊,王宏伟,耿毅德. 基于改进DeeplabV3+和迁移学习的煤岩界面图像识别方法[J]. 煤炭科学技术,2023,51(S1):429−439. YAN Zhirui,WANG Hongwei,GENG Yide. Coal-rock interface image recognition method based on improved DeeplabV3+ and transfer learning[J]. Coal Science and Technology,2023,51(S1):429−439.
[50] 张云,童亮,来兴平,等. 基于机器视觉的煤尘环境下掘进空间煤岩界面感知与精准识别[J]. 煤炭学报,2024,49(7):3276−3290. ZHANG Yun,TONG Liang,LAI Xingping,et al. Coal-rock interface perception and accurate recognition in heading face under coal dust environment based on machine vision[J]. Journal of China Coal Society,2024,49(7):3276−3290.
[51] 张强,王海舰,郭桐,等. 基于截齿截割红外热像的采煤机煤岩界面识别研究[J]. 煤炭科学技术,2017,45(5):22−27. ZHANG Qiang,WANG Haijian,GUO Tong,et al. Study on coal-rock interface recognition of coal shearer based on cutting infrared thermal image of picks[J]. Coal Science and Technology,2017,45(5):22−27.
[52] 张强,刘志恒,王海舰,等. 基于截齿振动及温度特性的煤岩识别研究[J]. 煤炭科学技术,2018,46(3):1−9,18. ZHANG Qiang,LIU Zhiheng,WANG Haijian,et al. Study on coal and rock identification based on vibration and temperature features of picks[J]. Coal Science and Technology,2018,46(3):1−9,18.
[53] 刘治翔,孙战,尹家阔,等. 基于红外热像和振动信号的煤岩识别实验研究[J]. 工矿自动化,2024,50(4):78−83,152. LIU Zhixiang,SUN Zhan,YIN Jiakuo,et al. Experimental study on coal rock recognition based on infrared thermal imaging and vibration signals[J]. Journal of Mine Automation,2024,50(4):78−83,152.
[54] 张强,孙绍安,张坤,等. 基于主动红外激励的煤岩界面识别[J]. 煤炭学报,2020,45(9):3363−3370. ZHANG Qiang,SUN Shaoan,ZHANG Kun,et al. Coal and rock interface identification based on active infrared excitation[J]. Journal of China Coal Society,2020,45(9):3363−3370.
[55] 王海舰,刘丽丽,卢士林,等. 多参数耦合优化煤岩界面主动红外感知识别[J]. 振动 测试与诊断,2022,42(2):308-314,408−409. WANG Haijian,LIU Lili,LU Shilin,et al. Coal-rock interface recognition based on active infrared and coupling optimization of multiple parameters[J]. Journal of Vibration,Measurement & Diagnosis,2022,42(2):308-314,408-409.
[56] 王海舰,刘丽丽,赵雪梅,等. 基于改进PSPnet-MobileNetV2的煤岩界面快速精准识别[J]. 振动 测试与诊断,2024,44(4):793−800,832−833. WANG Haijian,LIU Lili,ZHAO Xuemei,et al. Rapid and accurate identification of coal-rock interface based on improved PSPnet-MobileNetV2[J]. Journal of Vibration,Measurement & Diagnosis,2024,44(4):793−800,832−833.
[57] 王昕,丁恩杰,胡克想,等. 煤岩散射特性对探地雷达探测煤岩界面的影响[J]. 中国矿业大学学报,2016,45(1):34−41. WANG Xin,DING Enjie,HU Kexiang,et al. Effects of coal-rock scattering characteristics on the GPR detection of coal-rock interface[J]. Journal of China University of Mining & Technology,2016,45(1):34−41.
[58] 刘帅,赵文生,高思伟. 超宽带探地雷达煤层厚度探测试验研究[J]. 煤炭科学技术,2019,47(8):207−212. LIU Shuai,ZHAO Wensheng,GAO Siwei. Experimental study on coal seam thickness measurement of ultra-wide band ground penetrating radar[J]. Coal Science and Technology,2019,47(8):207−212.
[59] 苗曙光,刘晓文,李淮江,等. 基于探地雷达的煤岩界面探测数据解释方法[J]. 工矿自动化,2019,45(1):35−39. MIAO Shuguang,LIU Xiaowen,LI Huaijiang,et al. Data interpretation method of coal-rock interface detection based on ground penetrating radar[J]. Industry and Mine Automation,2019,45(1):35−39.
[60] 刘万里,马修泽,张学亮. 基于探地雷达的特厚煤层厚度动态探测技术[J]. 煤炭学报,2021,46(8):2706−2714. LIU Wanli,MA Xiuze,ZHANG Xueliang. Dynamic detection technology of extra-thick coal seam thickness based on ground penetrating radar[J]. Journal of China Coal Society,2021,46(8):2706−2714.
[61] 许献磊,陈令洲,彭苏萍,等. 矿井煤岩界面节点式雷达快速动态探测系统及实验研究[J]. 煤炭学报,2024,49(4):1964−1975. XU Xianlei,CHEN Lingzhou,PENG Suping,et al. Mining coal-rock interface nodal GPR rapid dynamic detection system and experimental research[J]. Journal of China Coal Society,2024,49(4):1964−1975.
[62] 李力,刘佳鹏,魏伟. 基于经验小波变换的煤岩界面识别超声回波处理方法研究[J]. 煤炭学报,2019,44(S1):370−377. LI Li,LIU Jiapeng,WEI Wei. Signal processing method on ultrasonic echo from coal-rock interface based on EWT[J]. Journal of China Coal Society,2019,44(S1):370−377.
[63] 李力,唐汝琪,魏伟. 黏弹性VTI煤层介质超声波传播模型建立与分析[J]. 煤炭学报,2015,40(12):2987−2994. LI Li,TANG Ruqi,WEI Wei. Modeling and analyzing the propagation of ultrasonic waves in viscoelastic VTI medium of coal seam[J]. Journal of China Coal Society,2015,40(12):2987−2994.
[64] 李力,欧阳春平. 基于超声相控阵的煤岩界面识别研究[J]. 中国矿业大学学报,2017,46(3):485−492. LI Li,OUYANG Chunping. Research on coal-rock interface recognition based on ultrasonic phased array[J]. Journal of China University of Mining & Technology,2017,46(3):485−492.
[65] 李力,魏伟,唐汝琪. 基于改进S变换的煤岩界面超声反射信号处理[J]. 煤炭学报,2015,40(11):2579−2586. LI Li,WEI Wei,TANG Ruqi. Processing of ultrasonic reflection signal from coal-rock interface using modified S-transform[J]. Journal of China Coal Society,2015,40(11):2579−2586.
[66] 李力,施万发,魏伟. 基于VMD的多相介质超声回波检测技术[J]. 煤炭学报,2018,43(10):2944−2950. LI Li,SHI Wanfa,WEI Wei. Ultrasonic detection research on multiphase medium based on VMD[J]. Journal of China Coal Society,2018,43(10):2944−2950.
[67] 毛君,杨振华,潘德文. 基于自适应模糊滑模变结构的采煤机自动调高控制策略[J]. 中国机械工程,2016,27(3):360−364. doi: 10.3969/j.issn.1004-132X.2016.03.014 MAO Jun,YANG Zhenhua,PAN Dewen. Control strategy of shearer automatic height adjusting based on adaptive fuzzy sliding-mode variable structure[J]. China Mechanical Engineering,2016,27(3):360−364. doi: 10.3969/j.issn.1004-132X.2016.03.014
[68] 李鹏,孔屹刚,张敬芳,等. 基于负载敏感的采煤机调高液压系统效率分析[J]. 煤炭工程,2017,49(6):103−106. doi: 10.11799/ce201706030 LI Peng,KONG Yigang,ZHANG Jingfang,et al. Efficiency analysis of shearer with height-adjusting hydraulic system based on load sensitive technology[J]. Coal Engineering,2017,49(6):103−106. doi: 10.11799/ce201706030
[69] 王慧,宋宇宁. 滚筒截割负载扰动对采煤机调高的影响[J]. 中国机械工程,2018,29(2):127−133. doi: 10.3969/j.issn.1004-132X.2018.02.001 WANG Hui,SONG Yuning. Influences of drum cutting load disturbances on shearer height adjustments[J]. China Mechanical Engineering,2018,29(2):127−133. doi: 10.3969/j.issn.1004-132X.2018.02.001
[70] 李雪梅. 基于变速趋近律的采煤机调高滑模控制研究[J]. 控制工程,2019,26(4):724−728. LI Xuemei. Research on control method of sliding mode based on the variable rate reaching law for shearer automatic height adjusting[J]. Control Engineering of China,2019,26(4):724−728.
[71] 赵丽娟,王雅东,张美晨,等. 复杂煤层条件下采煤机自适应截割控制策略[J]. 煤炭学报,2022,47(1):541−563. ZHAO Lijuan,WANG Yadong,ZHANG Meichen,et al. Research on self-adaptive cutting control strategy of shearer in complex coal seam[J]. Journal of China Coal Society,2022,47(1):541−563.
[72] 王雅东,赵丽娟,张美晨. 采煤机自适应调高控制策略[J]. 煤炭学报,2022,47(9):3505−3522. WANG Yadong,ZHAO Lijuan,ZHANG Meichen. Research on self-adaptive height adjustment control strategy of shearer[J]. Journal of China Coal Society,2022,47(9):3505−3522.
[73] 葛帅帅,秦大同,胡明辉. 突变工况下滚筒式采煤机调速控制策略研究[J]. 煤炭学报,2015,40(11):2569−2578. GE Shuaishuai,QIN Datong,HU Minghui. Research on drum shearer speed control strategies under impact conditions[J]. Journal of China Coal Society,2015,40(11):2569−2578.
[74] 秦大同,王镇,胡明辉,等. 基于多目标优化的采煤机滚筒最优运动参数的动态匹配[J]. 煤炭学报,2015,40(S2):532−539. QIN Datong,WANG Zhen,HU Minghui,et al. Dynamic matching of optimal drum movement parameters of shearer based on multi-objective optimization[J]. Journal of China Coal Society,2015,40(S2):532−539.
[75] 刘永刚,闫忠良,秦大同,等. 采煤机无人自适应变速截割控制方法[J]. 中南大学学报(自然科学版),2017,48(6):1513−1521. doi: 10.11817/j.issn.1672-7207.2017.06.014 LIU Yonggang,YAN Zhongliang,QIN Datong,et al. Adaptive control method of unmanned shearer with variable speed cutting[J]. Journal of Central South University (Science and Technology),2017,48(6):1513−1521. doi: 10.11817/j.issn.1672-7207.2017.06.014
[76] 刘永刚,侯立良,秦大同,等. 基于综合截割性能优化的采煤机变速截割控制[J]. 东北大学学报(自然科学版),2018,39(1):118−122,137. LIU Yonggang,HOU Liliang,QIN Datong,et al. Variable speed cutting control of shearer based on cutting performance optimization[J]. Journal of Northeastern University (Natural Science),2018,39(1):118−122,137.
-
期刊类型引用(1)
1. 马丽,何金先,夏筱红,岳鹏,李聚豪,黄正鑫. 淮北煤田许疃煤矿煤岩及矿井水微量元素地球化学特征. 中国煤炭地质. 2024(12): 62-69 . 百度学术
其他类型引用(0)