Research on fault monitoring of belt conveyor based on FBG sensor
-
摘要:
带式输送机的故障监测有助于预防安全事故、提高生产效率以及实现设备智能化运行。从带式输送机常见故障分析、综合保护系统组成、光纤型传感器阵列设计与分析、核心敏感元件设计与选材等方面,对基于FBG传感器的带式输送机故障监测进行了深入研究。首先针对传统监测手段无法定量感知、实时性不足、数据融合能力薄弱等问题,提出了一种基于光纤光栅(FBG)的带式输送机综合保护系统,明确了光纤型传感器阵列的设计是系统搭建的重要前提。其次,在分析带式输送机常见故障形成原因和表现形式的基础上,以FBG–等强度悬臂梁为核心敏感元件设计了一系列故障监测传感器,组成了带式输送机综合保护系统的光纤型传感器阵列,实现了故障的实时定量监测。接着,通过理论分析和Ansys有限元仿真,对FBG–等强度悬臂梁的尺寸结构设计和材料选择进行了深入研究,在传感模型中分析了灵敏度和精度的影响因素,并据此确定了敏感元件的结构尺寸,优选了尼龙6作为制作材料。最后,通过试验对FBG–等强度悬臂梁的结构有效性、灵敏度和稳定性进行了验证。在灵敏度试验中,敏感元件表现出良好的线性响应特性,理论灵敏度$S = 52.978\;0\;{\text{N/nm}}$,实际灵敏度$S_{}^* = 38.115\;7\;{\text{N/nm}}$;在重复性试验中,平均重复性误差仅为1.002%,表现出良好的重复性和稳定性;温度敏感性试验和温度补偿试验则验证了光纤光栅在温度测量中的线性相关性,从而进一步揭示了温度补偿对提升传感灵敏度的必要性,即便在微小温度变化环境下,补偿机制仍能有效提高灵敏度0.6%。所设计的光纤型传感器阵列解决了现有带式输送机运行故障无法实时定量感知的问题,为实现设备智能化感知与控制提供了坚实的数据基础。研究成果不仅能有效降低带式输送机故障率,提高生产效率,更推动了煤矿行业向自动化、智能化方向的发展。
Abstract:The fault monitoring of belt conveyors serves as a pivotal tool in preventing safety incidents, enhancing production efficiency, and facilitating the intelligent operation of equipment. This comprehensive study delves into the multi-sensor fault monitoring of belt conveyors utilizing Fiber Bragg Gratings (FBGs), examining aspects such as common fault analysis, the composition of integrated protection systems, the design and analysis of fiber-optic sensor arrays, and the design and material selection of core sensing elements.Firstly, to address the shortcomings of traditional monitoring methods, including the inability to quantify faults, inadequate real-time performance, and weak data fusion capabilities, an FBG-based integrated protection system for belt conveyors is proposed. This system underscores the cruciality of designing a fiber-optic sensor array as a fundamental prerequisite for system establishment.Secondly, building upon an analysis of the root causes and manifestations of common faults in belt conveyors, a series of fault monitoring sensors are devised, with FBG-based equal-strength cantilever beams serving as the core sensing elements. These sensors constitute the fiber-optic sensor array within the integrated protection system, enabling real-time and quantitative fault monitoring.Thirdly, theoretical analyses and Ansys finite element simulations are conducted to thoroughly investigate the dimensional design and material selection of FBG-based equal-strength cantilever beams. The influencing factors on sensitivity and accuracy are analyzed within the sensing model, guiding the determination of the structural dimensions of the sensing elements. Nylon 6 is selected as the optimal material for fabrication.Finally, experimental validation is performed to assess the structural effectiveness, sensitivity, and stability of the FBG-based equal-strength cantilever beams. In sensitivity tests, the sensing elements exhibit exceptional linear response characteristics, with a theoretical sensitivity of
52.9780 N/nm and an actual sensitivity of38.1157 N/nm. In repeatability tests, an average repeatability error of merely 1.002% is recorded, demonstrating robust repeatability and stability. Temperature sensitivity and compensation tests verify the linear correlation of FBGs in temperature measurement, emphasizing the necessity of temperature compensation for enhancing sensing sensitivity. Even under minor temperature variations, the compensation mechanism effectively boosts sensitivity by 0.6%.The designed fiber-optic sensor array resolves the challenge of real-time and quantitative fault perception in current belt conveyor operations, providing a solid data foundation for intelligent sensing and control. This research not only contributes to reducing belt conveyor failure rates and enhancing production efficiency but also propels the coal mining industry towards automation and intelligence. -
-
表 1 材料选择与尺寸设计
Table 1 Table of material selection and dimension design
材料 ${F_0}$/N ${F_{\max }}$/N 最优尺寸 最大量程应变 评价 bmax/mm bmin/mm h/mm ${L_0}$/mm 304不锈钢 100 100 93 2 1.5 29.4 $4.5{ \times }{10^{ - 4}}$ 尺寸不合理 易切削黄铜 100 100 55.14 2 2.52 28.9 $4.0{ \times }{10^{ - 4}}$ 尺寸不合理 3003–铝合金 100 100 39.5 3 5.1 27.9 $2.55{ \times }{10^{ - 4}}$ 应变过小 1345铝合金 100 100 25.6 3 7.5 26.9 $1.8{ \times }{10^{ - 4}}$ 应变过小 尼龙101 100 100 25.6 2 5.2 27.8 $2.3{ \times }{10^{ - 2}}$ 应变过大 尼龙6/10 100 100 62.05 2 2.25 29.1 $6.3{ \times }{10^{ - 3}}$ 尺寸不合理 尼龙6 100 100 45.73 2 3 28.7 $1.5{ \times }{10^{ - 2}}$ 应变较大 表 2 最终材料选择与尺寸设计
Table 2 Table of final material selection and dimension design
材料 ${F_0}$/N ${F_{\max }}$/N 最优尺寸 最大量程应变 评价 bmax/mm bmin/mm h/mm ${L_0}$/mm 尼龙6 1 000 100 24.8 5 12.1 24.9 ${\text{2}}{{.2\times }}{10^{ - 3}}$ 尺寸、应变均合理 表 3 等强度悬臂梁受力与光纤光栅中心波长偏移量数据拟合
Table 3 Table of data fitting between the applied force on an equal-strength cantilever beam and the central wavelength shift of fiber bragg gratings
试样 拟合函数 拟合系数 传感灵敏度/(N·nm−1) 平均灵敏度$S_2^*$/(N·nm−1) 试样1 y=0.023 3x−0.060 7 0.998 2 42.918 5 38.115 7 试样2 y=0.028 0x−0.103 1 0.998 4 35.714 3 试样3 y=0.028 0x−0.041 9 0.998 1 35.714 3 表 4 温度补偿试验数据拟合
Table 4 Table of data fitting for temperature compensation experiments
试验内容 拟合函数 拟合系数 灵敏度/(10−6 N−1) 实际应变 y=21.596 1x−52.406 9 0.998 6 21.596 1 温补前测量应变 y=19.521 2x−50.864 5 0.998 3 19.521 2 温补后测量应变 y=19.641 3x−49.575 7 0.998 4 19.641 3 -
[1] 王国法,张德生. 煤炭智能化综采技术创新实践与发展展望[J]. 中国矿业大学学报,2018,47(3):459−467. WANG Guofa,ZHANG Desheng. Innovation practice and development prospect of intelligent fully mechanized technology for coal mining[J]. Journal of China University of Mining & Technology,2018,47(3):459−467.
[2] 王清峰,辛德忠,陈航. 煤矿井下自动化钻探技术概况与智能化发展前瞻[J]. 智能矿山,2020,1(1):71−77. WANG Qingfeng,XIN Dezhong,CHEN Hang. Overview of automatic drilling technology in underground coal mine and prospect of intelligent development[J]. Journal of Intelligent Mine,2020,1(1):71−77.
[3] 王海军,王洪磊. 带式输送机智能化关键技术现状与展望[J]. 煤炭科学技术,2022,50(12):225−239. WANG Haijun,WANG Honglei. Status and prospect of intelligent key technologies of belt conveyor[J]. Coal Science and Technology,2022,50(12):225−239.
[4] GONG X Y,ZHAO M X,WU Y,et al. Study on fuzzy comprehensive evaluation model for the safety of mine belt conveyor[J]. MATEC Web of Conferences,2017,136:02001. doi: 10.1051/matecconf/201713602001
[5] SALISBURY R,MITCHELL A. System and method for monitoring belt conveyor,FR20160053630[P],FR3035501B1,2020.
[6] YUAN L M,MAINIERO R J,ROWLAND J H,et al. Numerical and experimental study on flame spread over conveyor belts in a large-scale tunnel[J]. Journal of Loss Prevention in the Process Industries,2014,30:55−62. doi: 10.1016/j.jlp.2014.05.001
[7] FARIA H D,LIZARRALDE F,COSTA R R,et al. ROSI:A mobile robot for inspection of belt conveyor[J]. IFAC-PapersOnLine,2020,53(2):10031−10036. doi: 10.1016/j.ifacol.2020.12.2723
[8] 方崇全. 煤矿带式输送机巡检机器人关键技术研究[J]. 煤炭科学技术,2022,50(5):263−270. FANG Chongquan. Research on key technology of inspection robot for coal mine belt conveyor[J]. Coal Science and Technology,2022,50(5):263−270.
[9] 汪楚森. 基于机器视觉的煤矿井下带式输送机故障诊断技术研究[D]. 徐州:中国矿业大学,2023. WANG Chusen. Research on fault diagnosis technology of belt conveyor in coal mine based on machine vision[D]. Xuzhou:China University of Mining and Technology,2023.
[10] 韩涛,黄友锐,张立志,等. 基于图像识别的带式输送机输煤量和跑偏检测方法[J]. 工矿自动化,2020,46(4):17−22. HAN Tao,HUANG Yourui,ZHANG Lizhi,et al. Detection method of coal quantity and deviation of belt conveyor based on image recognition[J]. Industry and Mine Automation,2020,46(4):17−22.
[11] 马宏伟,杨文娟,张旭辉. 基于红外热像的带式输送机监测与预警系统[J]. 激光与红外,2017,47(4):448−452. doi: 10.3969/j.issn.1001-5078.2017.04.011 MA Hongwei,YANG Wenjuan,ZHANG Xuhui. Monitoring and warning system of belt conveyor based on infrared thermography[J]. Laser & Infrared,2017,47(4):448−452. doi: 10.3969/j.issn.1001-5078.2017.04.011
[12] 尉婷,乔学光,贾振安,等. 平面圆形膜片式光纤布拉格光栅温度补偿压强传感[J]. 光学学报,2007,27(1):80−84. doi: 10.3321/j.issn:0253-2239.2007.01.016 WEI Ting,QIAO Xueguang,JIA Zhen’an,et al. Temperature-insensitive fiber Bragg grating pressure sensing with plane round metal diaphragm[J]. Acta Optica Sinica,2007,27(1):80−84. doi: 10.3321/j.issn:0253-2239.2007.01.016
[13] 梁敏富,方新秋,薛广哲,等. 光纤光栅测力锚杆的标定试验[J]. 煤矿安全,2015,46(1):44−46. LIANG Minfu,FANG Xinqiu,XUE Guangzhe,et al. Calibration test of force- measuring bolt based on fiber grating[J]. Safety in Coal Mines,2015,46(1):44−46.
[14] NARUSE H,UEHARA H,DEGUCHI T,et al. Application of distributed fiber optic strain sensing system to underground mine monitoring[J]. Ieice Technical Report,2006,106(497):71−76.
[15] 柴敬,邱标,李毅,等. 钻孔植入光纤Bragg光栅检测岩层变形的模拟实验[J]. 采矿与安全工程学报,2012,29(1):44−47. doi: 10.3969/j.issn.1673-3363.2012.01.008 CHAI Jing,QIU Biao,LI Yi,et al. Simulation experiment of embedded fiber Bragg grating monitoring in rock deformation through borehole[J]. Journal of Mining & Safety Engineering,2012,29(1):44−47. doi: 10.3969/j.issn.1673-3363.2012.01.008
[16] 梁敏富,方新秋,陈宁宁,等. 正交试验设计的FBG测力锚杆结构封装优化及应用[J]. 煤炭学报,2022,47(8):2950−2960. LIANG Minfu,FANG Xinqiu,CHEN Ningning,et al. Structure packaging optimization and application of FBG dynamometry bolts based on the orthogonal test design[J]. Journal of China Coal Society,2022,47(8):2950−2960.
[17] 李丽君,张旭,唐斌,等. 一种微型光纤光栅矿压传感器[J]. 煤炭学报,2013,38(11):2084−2088. LI Lijun,ZHANG Xu,TANG Bin,et al. A kind of mirco-fiber Bragg grating mine pressure sensor[J]. Journal of China Coal Society,2013,38(11):2084−2088.
[18] 张登攀,郑艳,姚新景. 基于光纤光栅的煤矿瓦斯压力传感器的研制[J]. 河南理工大学学报(自然科学版),2018,37(2):8−13. ZHANG Dengpan,ZHENG Yan,YAO Xinjing. Study on a new gas pressure sensor based on Fiber Bragg Grating[J]. Journal of Henan Polytechnic University (Natural Science),2018,37(2):8−13.
[19] 梁敏富,方新秋,柏桦林,等. 温补型光纤Bragg光栅压力传感器在锚杆支护质量监测中的应用[J]. 煤炭学报,2017,42(11):2826−2833. LIANG Minfu,FANG Xinqiu,BAI Hualin,et al. Application of temperature compensation fiber Bragg grating pressure sensor for bolting quality monitoring[J]. Journal of China Coal Society,2017,42(11):2826−2833.
[20] 孙丽,王兴业,李闯,等. 基于等强度梁的新型双光纤光栅静力水准仪[J]. 光学学报,2021,41(14):58−66. SUN Li,WANG Xingye,LI Chuang,et al. New double fiber Bragg grating static level based on equal strength beams[J]. Acta Optica Sinica,2021,41(14):58−66.
[21] 于涛,陈玉璞,王壮,等. 基于等强度梁的光纤光栅顶板离层仪研究与应用[J]. 煤炭技术,2023,42(10):195−199. YU Tao,CHEN Yupu,WANG Zhuang,et al. Research and application of fiber grating top plate delamination instrument based on equal strength beam[J]. Coal Technology,2023,42(10):195−199.
[22] 方新秋,梁敏富,邢晓鹏,等. 光纤光栅支架压力表的研制及性能测试[J]. 采矿与安全工程学报,2018,35(5):945−952. FANG Xinqiu,LIANG Minfu,XING Xiaopeng,et al. Development of hydraulic support pressure gauge based on FBG and its performance test[J]. Journal of Mining & Safety Engineering,2018,35(5):945−952.
[23] 方新秋,陈宁宁,冯豪天,等. 刮板输送机直线度光纤精准感知与调直关键技术[J]. 采矿与安全工程学报,2023,40(5):1043−1056. FANG Xinqiu,CHEN Ningning,FENG Haotian,et al. Key technologies of optical fiber accurate perception and straightening of straightness of the scraper conveyor[J]. Journal of Mining & Safety Engineering,2023,40(5):1043−1056.
[24] 谭跃刚,陈宇佳,李瑞亚,等. 高精度弓型光纤光栅微位移传感器[J]. 光学 精密工程,2018,26(3):556−564. doi: 10.3788/OPE.20182603.0556 TAN Yuegang,CHEN Yujia,LI Ruiya,et al. High-precision bow-shaped fiber Bragg grating micro-displacement sensors[J]. Optics and Precision Engineering,2018,26(3):556−564. doi: 10.3788/OPE.20182603.0556
[25] 周坪,马国庆,周公博,等. 智能化带式输送机健康监测技术研究综述[J]. 仪器仪表学报,2023,44(12):1−21. ZHOU Ping,MA Guoqing,ZHOU Gongbo,et al. Health monitoring technology for the intelligent belt conveyor:A review[J]. Chinese Journal of Scientific Instrument,2023,44(12):1−21.
[26] 杨鑫,苏乐,程永军,等. 基于多种图结构信息融合的刮板输送机健康状态识别[J]. 煤炭科学技术,2024,52(8):171−181. doi: 10.12438/cst.2023-1557 YANG Xin,SU Le,CHENG Yongjun,et al. Health status identification of scraper conveyer based on fusion of multiple graph structure information[J]. Coal Science and Technology,2024,52(8):171−181. doi: 10.12438/cst.2023-1557
[27] 王伟峰,杨泽,赵轩冲,等. 矿井带式输送机液压拉紧Fuzzy-PID控制技术研究[J]. 煤炭科学技术,2024,52(3):217−224. WANG Weifeng,YANG Ze,ZHAO Xuanchong,et al. Research on hydraulic tension Fuzzy-PID control technology of mine belt conveyor[J]. Coal Science and Technology,2024,52(3):217−224.
[28] 李天梁,谭跃刚,张翔,等. 受弯件上粘贴型光纤布拉格光栅的应变传递规律[J]. 光学 精密工程,2015,23(5):1254−1264. doi: 10.3788/OPE.20152305.1254 LI Tianliang,TAN Yuegang,ZHANG Xiang,et al. Strain transfer factors of pasted FBG on bending part surface[J]. Optics and Precision Engineering,2015,23(5):1254−1264. doi: 10.3788/OPE.20152305.1254
[29] 权志桥,方新秋,薛广哲,等. 表面粘贴布拉格光纤光栅传感器的应变传递耦合机理研究[J]. 中国激光,2020,47(1):163−172. QUAN Zhiqiao,FANG Xinqiu,XUE Guangzhe,et al. Strain transfer coupling mechanism of surface-bonded fiber Bragg grating sensor[J]. Chinese Journal of Lasers,2020,47(1):163−172.
[30] 王威. 基于机器视觉的微小振动测量技术研究[D]. 成都:电子科技大学,2023. WANG Wei. Research on micro vibration measurement technology based on machine vision[D]. Chengdu:University of Electronic Science and Technology of China,2023.
[31] 姜达洲. 小型光纤光栅加速度传感器传感特性研究[D]. 武汉:武汉理工大学,2020. JIANG Dazhou. Study on sensing characteristics of small fiber grating acceleration sensor[D]. Wuhan:Wuhan University of Technology,2020.
[32] 解鹏,董继军,郭学让,等. 基于光纤光栅的OPGW输电杆塔多参数监测[J]. 光学与光电技术,2023,21(4):107−111. XIE Peng,DONG Jijun,GUO Xuerang,et al. Multi-parameter monitoring of OPGW transmission tower based on fiber Bragg gratings[J]. Optics & Optoelectronic Technology,2023,21(4):107−111.