Advance Search
HE Xueqiu,WEI Menghan,SONG Dazhao,et al. New progress in theory and technology of electromagnetic radiation in coal and rock[J]. Coal Science and Technology,2023,51(1):168−190. DOI: 10.13199/j.cnki.cst.2022-2020
Citation: HE Xueqiu,WEI Menghan,SONG Dazhao,et al. New progress in theory and technology of electromagnetic radiation in coal and rock[J]. Coal Science and Technology,2023,51(1):168−190. DOI: 10.13199/j.cnki.cst.2022-2020

New progress in theory and technology of electromagnetic radiation in coal and rock

Funds: 

National Natural Science Foundation of China (52174162); Major Science and Technology Innovation Project of Shandong Province (2019SDZY01)

More Information
  • Received Date: October 24, 2022
  • Accepted Date: November 17, 2022
  • Available Online: March 08, 2023
  • As an important basic energy and industrial raw material in China, the safe mining of coal is the key to ensuring the national energy security and supporting the stable development of economy and society. With the gradual depletion of shallow coal resources, deep mining has gradually become the new normal of coal resource development in China, and the risk of coal- rock dynamic disasters has risen, which seriously restricts the safety and efficiency of coal mining, and has caused adverse effects on the sustainable development of coal industry. Accurate and reliable monitoring methods are considered as the prerequisite for the prevention and control of coal-rock dynamic disasters. Geophysical methods are widely used in the early warning of coal and rock dynamic disasters by sensing the acoustic, electrical, magnetic and other physical signals released during the deformation and failure process to retrieve the damage and failure state of coal and rock mass. Among those methods, the electromagnetic radiation method is a non-invasive, non-destructive, real-time and strong precursory technique suitable for the development requirements of mine informatization and intellectualization. Therefore, the development of electromagnetic radiation monitoring technology is of great significance for the prevention and control of coal and rock dynamic disasters and can provide important technical support for the construction of intelligent mines. The research achievements of electromagnetic radiation theory and technology are summarized in three aspects: experimental phenomena, mechanism models and technical methods. The discovery process of electromagnetic radiation phenomenon is reviewed. The signal characteristics, influencing factors, electromechanical coupling effects and other electromagnetic radiation characteristics of coal-rock are analyzed. According to the correlation between typical electromagnetic radiation mechanism models, stress action and crack propagation process, a classified review is made. The existing coal and rock electromagnetic radiation monitoring and early warning equipment and technical methods are then briefly introduced. On this basis, the new progress made in recent years is described in detail, including the research on vector characteristics of electromagnetic radiation, micro-scale verification of electromagnetic radiation mechanism, and electromagnetic positioning technology of coal-rock fracture. It summarizes the two current theoretical and technical research bottlenecks that the mechanism is not fully revealed and the location of disaster-prone areas cannot be achieved. Finally, a new target for the future development of electromagnetic radiation theory and technology is proposed.

  • [1]
    彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331−2345. doi: 10.13225/j.cnki.jccs.DZ20.1089

    PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society,2020,45(7):2331−2345. doi: 10.13225/j.cnki.jccs.DZ20.1089
    [2]
    赵善坤,齐庆新,李云鹏,等. 煤矿深部开采冲击地压应力控制技术理论与实践[J]. 煤炭学报,2020,45(S2):626−636.

    ZHAO Shankun,QI Qingxin,LI Yunpeng,et al. Theory and practice of rockburst stress control technology in deep coal Mine[J]. Journal of China Coal Society,2020,45(S2):626−636.
    [3]
    齐庆新,李一哲,赵善坤,等. 我国煤矿冲击地压发展70年: 理论与技术体系的建立与思考[J]. 煤炭科学技术,2019,47(9):1−40.

    QI Qingxin,LI Yizhe,ZHAO Shankun,et al. Seventy years development of coal mine rockburst in China: establishment and consideration of theory and technology system[J]. Coal Science and Technology,2019,47(9):1−40.
    [4]
    何学秋,陈建强,宋大钊,等. 典型近直立煤层群冲击地压机理及监测预警研究[J]. 煤炭科学技术,2021,49(6):13−22. doi: 10.13199/j.cnki.cst.2021.06.002

    HE Xueqiu,CHEN Jianqiang,SONG Dazhao,et al. Study on mechanism of rock burst and early warning of typical steeply inclined coal seams[J]. Coal Science and Technology,2021,49(6):13−22. doi: 10.13199/j.cnki.cst.2021.06.002
    [5]
    何学秋. 含瓦斯煤岩流变动力学[M]. 徐州: 中国矿业大学出版社, 1995.

    HE Xueqiu. Rheological dynamics of gas-bearing coal rocks[M]. Xuzhou: China University of Mining and Technology Press, 1995.
    [6]
    陈 峰,潘一山,李忠华,等. 基于钻屑法的冲击地压危险性检测研究[J]. 中国地质灾害与防治学报,2013,24(2):116−119.

    CHEN Feng,PAN Yishan,LI Zhonghua,et al. Detection and study of rock burst hazard based on drilling cuttings method[J]. The Chinese Journal of Geological Hazard and Control,2013,24(2):116−119.
    [7]
    尹永明,姜福兴,谢广祥,等. 基于微震和应力动态监测的煤岩破坏与瓦斯涌出关系研究[J]. 采矿与安全工程学报,2015,32(2):325−330.

    YIN Yongming,JIANG Fuxing,XIE Guangxiang,et al. Relation between coal-rock failure and methane emission based on microseismic and dynamic stress monitoring[J]. Journal of Mining & Safety Engineering,2015,32(2):325−330.
    [8]
    宋大钊,何学秋,窦林名,等. 煤层突出危险微震区域探测技术研究[J]. 中国安全科学学报,2021,31(1):89−94. doi: 10.16265/j.cnki.issn1003-3033.2021.01.013

    SONG Dazhao,HE Xueqiu,DOU Linming,et al. Research on MS regional detection technology for coal and gas outburst hazard[J]. China Safety Science Journal,2021,31(1):89−94. doi: 10.16265/j.cnki.issn1003-3033.2021.01.013
    [9]
    高保彬,李回贵,李化敏,等. 声发射/微震监测煤岩瓦斯复合动力灾害的研究现状[J]. 地球物理学进展,2014,29(2):689−697.

    GAO Baobin,LI Huigui,LI Huamin,et al. Current situation of the study on acoustic cmision and microscismic monitoring of coupling dynamic catastrophe for gas-filled coal-rock[J]. Progress in Geophysics,2014,29(2):689−697.
    [10]
    王恩元,刘晓斐,李忠辉,等. 电磁辐射技术在煤岩动力灾害监测预警中的应用[J]. 辽宁工程技术大学学报(自然科学版),2012,31(5):642−645. doi: 10.3969/j.issn.1008-0562.2012.05.018

    WANG Enyuan,LIU Xiaofei,LI Zhonghui,et al. Application of electromagnetic radiation technology in monitoring and warning on coal and rock dynamic disasters[J]. Journal of Liaoning Technical University(Natural Science ),2012,31(5):642−645. doi: 10.3969/j.issn.1008-0562.2012.05.018
    [11]
    WANG E,HE X,WEI J,et al. Electromagnetic emission graded warning model and its applications against coal rock dynamic collapses[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(4):556−564. doi: 10.1016/j.ijrmms.2011.02.006
    [12]
    RABINOVITCH A,FRID V,BAHAT D,et al. Fracture area calculation from electromagnetic radiation and its use in chalk failure analysis[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(7):1149−1154. doi: 10.1016/S1365-1609(00)00042-3
    [13]
    袁 亮,姜耀东,何学秋,等. 煤矿典型动力灾害风险精准判识及监控预警关键技术研究进展[J]. 煤炭学报,2018,43(2):306−318. doi: 10.13225/j.cnki.jccs.2017.4151

    YUAN Liang,JIANG Yaodong,HE Xueqiu,et al. Research progress of precise risk accurate identification and monitoring early warning on typical dynamic disasters in coal mine[J]. Journal of China Coal Society,2018,43(2):306−318. doi: 10.13225/j.cnki.jccs.2017.4151
    [14]
    SHARMA S K,CHAUHAN V S,SINAPIUS M. A review on deformation-induced electromagnetic radiation detection: history and current status of the technique[J]. Journal of Materials Science,2021,56(7):4500−4551. doi: 10.1007/s10853-020-05538-x
    [15]
    STEPANOW A. On the mechanism of plastic deformation[J]. The European PHYSICAL Journal, A. Hadrons and Nuclei,1933,81(7):560−564.
    [16]
    HADJICONTIS V, MAVROMATOU C, NINOS D. Stress induced polarization currents and electromagnetic emission from rocks and ionic crystals, accompanying their deformation. Natural Hazards and Earth System Sciences, 2004, 4(5/6), 633–639.
    [17]
    KOTHARI A,CHAUHAN V S,KUMAR A,et al. Effect of Peierls stress and strain-hardening parameters on EMR emission in metals and alloys during progressive plastic deformation[J]. International Journal of Materials Research,2016,107(6):503−517. doi: 10.3139/146.111376
    [18]
    GADE S,ALACA B,SAUSE M. Determination of crack surface orientation in carbon fibre reinforced polymers by measuring electromagnetic emission[J]. Journal of Nondestructive Evaluation,2017,36(2):21. doi: 10.1007/s10921-017-0403-y
    [19]
    MALYSHKOV Y P,FURSA T V,GORDEYEV V F,et al. Sources and mechanisms of electromagnetic emission in concretes[J]. Izvestiia-Vysshie Uchebnye Zavedeniia Stroitel'stvo,1996:31−36.
    [20]
    王恩元,何学秋,窦林名,等. 煤矿采掘过程中煤岩体电磁辐射特征及应用[J]. 地球物理学报,2005,1:216−221. doi: 10.3321/j.issn:0001-5733.2005.01.029

    WANG Enyuan,HE Xueqiu,DOU Linming,et al. Flectromnagnetic radiation characterisics of coal and mocks during excavation in coal mine and their application[J]. Chinese Journal of Geophysics,2005,1:216−221. doi: 10.3321/j.issn:0001-5733.2005.01.029
    [21]
    Воларович М. П., Пархоменко Э. И.Пьезоэлектрическии эффект горных пород[J]. Изв. АН СССР, сер. геофиз,1955(2):215−222.
    [22]
    NITSAN U. Electromagnetic emission accompanying fracture of quartz-bearing rocks[J]. Geophysics Research letters,1977(4):333−336.
    [23]
    徐为民,童芜生,吴培稚. 岩石破裂过程中电磁辐射的实验研究[J]. 地球物理学报,1985,28(2):181−190. doi: 10.3321/j.issn:0001-5733.1985.02.007

    XU Weimin,TONG Wusheng,WU Peizhi. Experimental study of electromagnetic emission during rock rupture[J]. Chinese Journal of Geophysics,1985,28(2):181−190. doi: 10.3321/j.issn:0001-5733.1985.02.007
    [24]
    钱书清,张以勤,曹惠馨,等. 岩石破裂时产生电磁脉冲的观测与研究[J]. 地震学报,1986,8(3):301−308.

    QIAN Shuqing,ZHANG Yiqin,CAO Huixin,et al. Electromagnetic radiation generated by the rock rupture during an underground explosion[J]. Acta Seismologica Sinica,1986,8(3):301−308.
    [25]
    孙正江,王丽华,高 宏. 岩石标本破裂时的电磁辐射和光发射[J]. 地球物理学报,1986,29(5):491−495.

    SUN Zhengjiang,WANG Lihua,GAO Hong. Electromagnetic emission and light radiation during fracture of rock samples[J]. Chinese Journal of Geophysics,1986,29(5):491−495.
    [26]
    郭自强,郭子祺,钱书清,等. 岩石破裂中的电声效应[J]. 地球物理学报,1999,42(1):74−83. doi: 10.3321/j.issn:0001-5733.1999.01.009

    GUO Ziqiang,GUO Ziqi,QIAN Shuqing,et al. Electroacoustic effect in rock rupture[J]. Chinese Journal of Geophysics,1999,42(1):74−83. doi: 10.3321/j.issn:0001-5733.1999.01.009
    [27]
    何学秋,周广来,刘贞堂. 含瓦斯煤的能量耗散过程及突出非接触预测[J]. 煤炭科学技术,1993,21(12):18−21.

    HE Xueqiu,ZHOU Guanglai,LIU Zhentang. Energy dissipation process and prominent non-contact prediction of gas-bearing coal[J]. Coal Science and Technology,1993,21(12):18−21.
    [28]
    何学秋, 刘明举. 含瓦斯煤岩破坏电磁动力学[M]. 徐州: 中国矿业大学出版社, 1995.

    HE Xueqiu, LIU Mingju. Electromagnetic dynamics of gas-bearing coal rock failure[M]. Xuzhou: China University of Mining and Technology Press, 1995.
    [29]
    FRID V,SHABAROV A,PROSKURYAKOV V,et al. Formation of electromagnetic radiation in coal stratum[J]. Journal of Mining Science,1992,28(2):139−145. doi: 10.1007/BF00710732
    [30]
    FRID V. Electromagnetic radiation method for rock and gas outburst forecast[J]. Journal of Applied Geophysics,1997,38(2):97−104. doi: 10.1016/S0926-9851(97)00017-7
    [31]
    何学秋, 王恩元, 聂百胜, 等. 煤岩流变电磁动力学[M]. 北京: 科学出版社, 2003.

    HE Xueqiu, WANG Enyuan, NIE Baisheng, et al. Rheological electromagnetic dynamics of coal rock[M]. Beijing: Science Press, 2003.
    [32]
    YIN S,SONG D,HE X,et al. Time-frequency evolution law and generation mechanism of electromagnetic radiation in coal friction process[J]. Engineering Geology,2021,294:106377. doi: 10.1016/j.enggeo.2021.106377
    [33]
    O'KEEFE S, THIEL D. A mechanism for the production of electromagnetic radiation during fracture of brittle materials[J]. Physics of the Earth and Planetary Interiors, 1995, 89(1/2): 127–135.
    [34]
    FRID V, BAHAT D, GOLDBAUM J, et al. Experimental and theoretical investigations of electromagnetic radiation induced by rock fracture[J]. Israel Journal of Earth Sciences, 2000, 49(1).
    [35]
    MASTROGIANNIS D,ANTSYGINA T N,CHISHKO K A,et al. Relationship between electromagnetic and acoustic emissions in deformed piezoelectric media: microcracking signals[J]. International Journal of Solids and Structures,2015,56:118−125.
    [36]
    OGAWA T,OIKE K,MIURA T. Electromagnetic radiations from rocks[J]. Journal of Geophysical Research:Atmospheres,1985,90(D4):6245−6249. doi: 10.1029/JD090iD04p06245
    [37]
    刘煜洲,刘 因,金安忠,等. 岩矿石震源电磁辐射性质实验研究[J]. 物探与化探,1997(4):269−276.

    LIU Yuzhou,LIU Yin,JIN Anzhong,et al. Experimental study on electromagnetic radiation properties of rock ore source[J]. Geophysical & Geochemical Exploration,1997(4):269−276.
    [38]
    RABINOVITCH A,BAHAT D,FRID V. Similarity and dissimilarity of electromagnetic radiation from carbonate rocks under compression, drilling and blasting[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(1):125−129. doi: 10.1016/S1365-1609(02)00012-6
    [39]
    王恩元,何学秋,刘贞堂,等. 受载煤体电磁辐射的频谱特征[J]. 中国矿业大学学报,2003(5):21−24. doi: 10.3321/j.issn:1000-1964.2003.05.005

    WANG Enyuan,HE Xueqiu,LIU Zhentang,et al. Spectral characteristics of electromagnetic radiation of loaded coal[J]. Journal of China University of Mining & Technology,2003(5):21−24. doi: 10.3321/j.issn:1000-1964.2003.05.005
    [40]
    钱书清,郝锦绮,周建国,等. 岩石受压破裂的ULF和LF电磁前兆信号[J]. 中国地震,2003(2):7−14. doi: 10.3969/j.issn.1001-4683.2003.02.002

    QIAN Shuqing,HAO Jinqi,ZHOU Jianguo,et al. ULF electric and magnetic anomalies accompanying the cracking of rock sample[J]. Earthquake Research in China,2003(2):7−14. doi: 10.3969/j.issn.1001-4683.2003.02.002
    [41]
    郝锦绮,钱书清,高金田,等. 岩石破裂过程中的超低频电磁异常[J]. 地震学报,2003(1):102−111. doi: 10.3321/j.issn:0253-3782.2003.01.013

    HAO Jinqi,QIAN Shuqing,GAO Jintian,et al. Precursory electric and magnetic signals at ulf and lf bands during the fracture of rocks under pressure[J]. Acta Seismologica Sinica,2003(1):102−111. doi: 10.3321/j.issn:0253-3782.2003.01.013
    [42]
    NARDI A,CAPUTO M. Monitoring the mechanical stress of rocks through the electromagnetic emission produced by fracturing[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(5):940−945. doi: 10.1016/j.ijrmms.2009.01.005
    [43]
    LACIDOGNA G,CARPINTERI A,MANUELLO A,et al. Acoustic and electromagnetic emissions as precursor phenomena in failure processes[J]. Strain,2011,47:144−152. doi: 10.1111/j.1475-1305.2010.00750.x
    [44]
    聂百胜, 何学秋, 朱郴韦. 煤岩破坏电磁辐射效应及其应用[M]. 北京: 科学出版社, 2016.

    NIE Baisheng, HE Xueqiu, ZHU Chenwei. Electromagnetic radiation effect of coal rock failure and its application[M]. Beijing: Science Press, 2016.
    [45]
    BESPAL’KO A,YAVOROVICH L,EREMENKO A,et al. Electromagnetic emission of rocks after large-scale blasts[J]. Journal of Mining Science,2018,54(2):187−193. doi: 10.1134/S1062739118023533
    [46]
    娄 全,何学秋,宋大钊,等. 基于全波形的煤样单轴压缩破坏声电时频特征[J]. 工程科学学报,2019,41(7):874−881.

    LOU Quan,HE Xueqiu,SONG Dazhao,et al. Time-frequency characteristics of acoustic-electric signals induced by coal fracture under uniaxial compression based on full-waveform[J]. Chinese Journal of Engineering,2019,41(7):874−881.
    [47]
    LIN P,WEI P,WANG C,et al. Effect of rock mechanical properties on electromagnetic radiation mechanism of rock fracturing[J]. Journal of Rock Mechanics and Geotechnical Engineering,2021,13(4):798−810. doi: 10.1016/j.jrmge.2021.01.001
    [48]
    YAVOROVICH L, Bespal'Ko A, FEDOTOV P, et al. Study of interrelation between electromagnetic radiation and rock strength[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2016: 012085.
    [49]
    WEI M,SONG D,HE X,et al. Effect of rock properties on electromagnetic radiation characteristics generated by rock fracture during uniaxial compression[J]. Rock Mech Rock Eng,2020,53:5223−5238. doi: 10.1007/s00603-020-02216-x
    [50]
    曹惠馨,钱书清,吕 智. 岩石破裂过程中超长波段的电、磁信号和声发射的实验研究[J]. 地震学报,1994(2):235−241.

    CAO Huixin,QIAN Shuqing,LYU Zhi. Experimental study on electrical and magnetic signals and acoustic emission in ultra-long band during rock rupture[J]. Acta Seismosinica,1994(2):235−241.
    [51]
    王恩元,何学秋,刘贞堂,等. 煤岩变形破裂的电磁辐射规律及其应用研究[J]. 中国安全科学学报,2000,10(2):38−42.

    WANG Enyuan,HE Xueqiu,LIU Zhentang,et al. Research on electromagnetic radiation law of coal rock deformation and rupture and its application[J]. China Safety Science Journal,2000,10(2):38−42.
    [52]
    FUKUI K,OKUBO S,TERASHIMA T. Electromagnetic radiation from rock during uniaxial compression testing: the effects of rock characteristics and test conditions[J]. Rock Mechanics and Rock Engineering,2005,38(5):411−423. doi: 10.1007/s00603-005-0046-7
    [53]
    SONG D,YOU Q,WANG E,et al. Characteristics of EMR emitted by coal and rock with prefabricated cracks under uniaxial compression[J]. Geomechanics and Engineering,2019,19(1):49−60.
    [54]
    李忠辉,王恩元,何学秋,等. 含水量对煤岩电磁辐射特征的影响[J]. 中国矿业大学学报,2006,35(3):362−366. doi: 10.3321/j.issn:1000-1964.2006.03.015

    LI Zhonghui,WANG Enyuan,HE Xueqiu,et al. Effect of water content on electromagnetic radiation characteristics of coal rock[J]. Journal of China University of Mining & Technology,2006,35(3):362−366. doi: 10.3321/j.issn:1000-1964.2006.03.015
    [55]
    刘明举,何学秋,许 考. 孔隙气体对断裂电磁辐射的影响及其机理[J]. 煤炭学报,2002,27(5):483−487. doi: 10.3321/j.issn:0253-9993.2002.05.008

    LIU Mingju,HE Xueqiu,XU Kao. Influence and mechanism of pore gas on electromagnetic radiation at break[J]. Journal of China Coal Society,2002,27(5):483−487. doi: 10.3321/j.issn:0253-9993.2002.05.008
    [56]
    刘煜洲,刘 因,王寅生,等. 岩石破裂时电磁辐射的影响因素和机理[J]. 地震学报,1997(4):83−90.

    LIU Yuzhou,LIU Yin,WANG Yinsheng,et al. Influencing factors and mechanism of electromagnetic radiation during rock breakage[J]. Acta Seismological Sinica,1997(4):83−90.
    [57]
    MU H,SONG D,YIN S,et al. Time-frequency characteristics and the influence mechanism of the emr from coal with different joint angles[J]. Shock and Vibration,2021:8340076.
    [58]
    王恩元,孔 彪,梁俊义,等. 煤受热升温电磁辐射效应实验研究[J]. 中国矿业大学学报,2016,45(2):205−210.

    WANG Enyuan,KONG Biao,LIANG Junyi,et al. Experimental study on electromagnetic radiation effect of coal heating up[J]. Journal of China University of Mining & Technology,2016,45(2):205−210.
    [59]
    KONG B,WANG E,LI Z,et al. Electromagnetic radiation characteristics and mechanical properties of deformed and fractured sandstone after high temperature treatment[J]. Engineering Geology,2016,209:82−92. doi: 10.1016/j.enggeo.2016.05.009
    [60]
    LI C,WANG Q,LYU P. Study on electromagnetic radiation and mechanical characteristics of coal during an SHPB test[J]. Journal of Geophysics and Engineering,2016,13(3):391−398. doi: 10.1088/1742-2132/13/3/391
    [61]
    KOBAYASHI H,HORIKAWA K,OGAWA K,et al. Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2014,372(2023):20130292. doi: 10.1098/rsta.2013.0292
    [62]
    李夕兵,万国香,周子龙. 岩石破裂电磁辐射频率与岩石属性参数的关系[J]. 地球物理学报,2009,52(1):253−259.

    LI Xibing,WAN Guoxiang,ZHOU Zilong. Relationship between electromagnetic radiation frequency and rock attribute parameters of rock rupture[J]. Chinese Journal of Geophysics,2009,52(1):253−259.
    [63]
    李夕兵. 岩石动力学基础与应用[M]. 北京: 科学出版社, 2014.

    LI Xibing. Fundamentals and applications of rock dynamics[M]. Beijing: Science Press, 2014.
    [64]
    KOKTAVY P,PAVELKA J,SIKULA J. Characterization of acoustic and electromagnetic emission sources[J]. Measurement Science and Technology,2004,15(5):973. doi: 10.1088/0957-0233/15/5/028
    [65]
    MORI Y, OBATA Y. Electromagnetic emission and AE Kaiser Effect for estimating rock in-situ stress[M]. Nihon University, 2008.
    [66]
    SONG D,WANG E,SONG X,et al. Changes in frequency of electromagnetic radiation from loaded coal rock[J]. Rock Mechanics and Rock Engineering,2016,49(1):291−302. doi: 10.1007/s00603-015-0738-6
    [67]
    肖红飞,何学秋,王恩元. 受压煤岩破裂过程电磁辐射与能量转化规律研究[J]. 岩土力学,2006,27(7):1097−1100.

    XIAO Hongfei,HE Xueqiu,WANG Enyuan. Study on electromagnetic radiation and energy conversion law during rupture of pressurized coal rock[J]. Rock and Soil Mechanics,2006,27(7):1097−1100.
    [68]
    姚精明,闫永业,刘茜倩,等. 基于能量理论的煤岩体破坏电磁辐射规律研究[J]. 岩土力学,2012,33(1):233−237. doi: 10.3969/j.issn.1000-7598.2012.01.037

    YAO Jingming,YAN Yongye,LIU Qianqian,et al. Study of EME rules during coal or rock mass failure base on energy theory[J]. Rock and Soil Mechanics,2012,33(1):233−237. doi: 10.3969/j.issn.1000-7598.2012.01.037
    [69]
    SONG D,WANG E,LI Z,et al. Energy dissipation of coal and rock during damage and failure process based on EMR[J]. International Journal of Mining Science and Technology,2015,25(5):787−795. doi: 10.1016/j.ijmst.2015.07.014
    [70]
    HU S,WANG E,LI Z,et al. Time-varying multifractal characteristics and formation mechanism of loaded coal electromagnetic radiation[J]. Rock Mechanics and Rock Engineering,2014,47(5):1821−1838. doi: 10.1007/s00603-013-0501-9
    [71]
    QIU L,SONG D,HE X,et al. Multifractal of electromagnetic waveform and spectrum about coal rock samples subjected to uniaxial compression[J]. Fractals,2020,28(4):2050061. doi: 10.1142/S0218348X20500619
    [72]
    CARPINTERI A,LACIDOGNA G,MANUELLO A,et al. Mechanical and electromagnetic emissions related to stress-induced cracks[J]. Experimental Techniques,2012,36(3):53−64. doi: 10.1111/j.1747-1567.2011.00709.x
    [73]
    LOU Q,SONG D,HE X,et al. Correlations between acoustic and electromagnetic emissions and stress drop induced by burst-prone coal and rock fracture[J]. Safety Science,2019,115:310−319. doi: 10.1016/j.ssci.2019.02.022
    [74]
    HE X,CHEN W,NIE B,et al. Electromagnetic emission theory and its application to dynamic phenomena in coal-rock[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(8):1352−1358. doi: 10.1016/j.ijrmms.2011.09.004
    [75]
    TAKEUCHI A, NAGAHAMA H. Electric dipoles perpendicular to a stick-slip plane[J]. Physics of the Earth and Planetary Interiors, 2006, 155(3/4): 208–218.
    [76]
    GADE S,SAUSE M. Measurement and study of electromagnetic emission generated by tensile fracture of polymers and carbon fibres[J]. Journal of Nondestructive Evaluation,2017,36(1):1−13. doi: 10.1007/s10921-016-0379-z
    [77]
    GADE S,ALACA B,SAUSE M. Determination of crack surface orientation in carbon fibre reinforced polymers by measuring electromagnetic emission[J]. Journal of Nondestructive Evaluation,2017,36(2):1−7.
    [78]
    WEI M,SONG D,HE X,et al. A three-axis antenna to measure near-field low-frequency electromagnetic radiation generated from rock fracture[J]. Measurement,2021,173:108563. doi: 10.1016/j.measurement.2020.108563
    [79]
    SRIDHAR S,GIANNAKOPOULOS A,SURESH S,et al. Electrical response during indentation of piezoelectric materials: a new method for material characterization[J]. Journal of applied Physics,1999,85(1):380−387. doi: 10.1063/1.369459
    [80]
    YOSHIDA S,OGAWA T. Electromagnetic emissions from dry and wet granite associated with acoustic emissions[J]. Journal of Geophysical Research:Solid Earth,2004,109:B09204.
    [81]
    郭 志. 实用岩体力学[M]. 北京: 地震出版社, 1996.

    GUO Zhi. Practical rock mechanics [M]. Beijing: Seismological Publishing House, 1996
    [82]
    FREUND F. Charge generation and propagation in igneous rocks[J]. Journal of Geodynamics, 2002, 33(4–5): 543–570.
    [83]
    YAVOROVICH L,BESPALKO A,FEDOTOV P,et al. Electromagnetic radiation generated by acoustic excitation of rock samples[J]. Acta Geophysica,2016,64(5):1446−1461. doi: 10.1515/acgeo-2016-0081
    [84]
    TEISSEYRE R,ERNST T. Electromagnetic radiation related to dislocation dynamics in a seismic preparation zone[J]. Annals of geophysics,2002,45(2):393−399.
    [85]
    IVANOV V,EGOROV P,KOLPAKOVA L,et al. Crack dynamics and electromagnetic emission by loaded rock masses[J]. Soviet Mining Science,1988,24(5):406−412. doi: 10.1007/BF02498591
    [86]
    IVANOV V,PIMONOV A. Statistical model of electromagnetic emission from a fracture in a rock[J]. Soviet Mining Science,1991,26(2):148−151.
    [87]
    EGOROV P V,IVANOV V V,KOLPAKOVA L A. Patterns in the electromagnetic pulsed radiation of alkali halide crystals and rocks[J]. Journal of Mining Science,1988,24(1):58−61. doi: 10.1007/BF02498075
    [88]
    FREUND F, SORNETTE D. Electro-magnetic earthquake bursts and critical rupture of peroxy bond networks in rocks[J]. Tectonophysics, 2007, 431(1/4): 33–47.
    [89]
    TAKEUCHI A,FUTADA Y,OKUBO K,et al. Positive electrification on the floor of an underground mine gallery at the arrival of seismic waves and similar electrification on the surface of partially stressed rocks in laboratory[J]. Terra Nova,2010,22(3):203−207. doi: 10.1111/j.1365-3121.2010.00935.x
    [90]
    TAKEUCHI A,NAGAO T. Activation of hole charge carriers and generation of electromotive force in gabbro blocks subjected to nonuniform loading[J]. Journal of Geophysical Research:Solid Earth,2013,118(3):915−925. doi: 10.1002/jgrb.50111
    [91]
    王恩元, 何学秋. 煤岩变形破裂电磁辐射的实验研究[J]. 地球物理学报, 2000, 43(1): 131–137.

    WANG Enyuan, He Xueqiu Experimental study on electromagnetic radiation from coal and rock deformation and fracture [J]. Chinese Journal of Geophysics, 2000, 43(1): 131–137.
    [92]
    王恩元, 何学秋, 李忠辉, 等. 煤岩电磁辐射技术及其应用[M]. 北京: 科学出版社, 2009

    WANG Enyuan, HE Xueqiu, LI Zhonghui, et al Electromagnetic radiation technology of coal and rock and its application [M]. Beijing: Science Press, 2009
    [93]
    KHATIASHVILI N. The electromagnetic effect accompanying the fracturing of alkaline halide crystals and rocks[J]. Physics of the Solid Earth,1984,20(9):656−661.
    [94]
    BRADY B T,ROWELL G A. Laboratory investigation of the electrodynamics of rock fracture[J]. Nature,1986,321(6069):488−492. doi: 10.1038/321488a0
    [95]
    TAKEUCHI A,NAGAHAMA H. Interpretation of charging on fracture or frictional slip surface of rocks[J]. Physics of the Earth and Planetary Interiors,2002,130(3):285−291.
    [96]
    潘一山, 唐 治, 李忠华, 等. 不同加载速率下煤岩单轴压缩电荷感应规律研究[J]. 地球物理学报, 2013, 56(3): 1043–1048.

    PAN Yishan, TANG Zhi, LI Zhonghua, et al. Study on charge induction law of coal and rock under uniaxial compression at different loading rates [J]. Chinese Journal of Geophysics, 2013, 56(3): 1043–1048
    [97]
    潘一山, 徐连满, 李国臻, 等. 煤矿深井动力灾害电荷辐射特征及应用[J]. 岩石力学与工程学报, 2014, 33(8): 1619–1625.

    PAN Yishan, XU Lianman, LI Guozhen, et al. Characteristics and Application of Dynamic Disaster Charge Radiation in Deep Coal Mines [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(8): 1619–1625
    [98]
    潘一山,罗 浩,李忠华,等. 含瓦斯煤岩围压卸荷瓦斯渗流及电荷感应试验研究[J]. 岩石力学与工程学报,2015,34(4):713−719.

    PAN Yishan,LUO Hao,LI Zhonghua,et al. Experimental study on gas seepage and charge induction of gas bearing coal and rock under confining pressure unloading[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(4):713−719.
    [99]
    PETRENKO V. On the nature of electrical polarization of materials caused by cracks. Application to ice electromagnetic emission[J]. Philosophical MAGAZINE B,1993,67(3):301−315. doi: 10.1080/13642819308220134
    [100]
    LV X,PAN Y,XIAO X,et al. Barrier formation of micro-crack interface and piezoelectric effect in coal and rock masses[J]. International Journal of Rock Mechanics and Mining Sciences,2013,64:1−5. doi: 10.1016/j.ijrmms.2013.08.003
    [101]
    FINKEL V M,GOLOVIN Y I,SEREDA V E,et al. Electric effects during fracture of lif crystal in connection with problem of crack control[J]. Fizika Tverdogo Tela,1975,17(3):770−776.
    [102]
    Miroshnichenko M,KUKSENKO V. Study of electromagnetic pulses in initiation of cracks in solid dielectrics[J]. Sov Phys Solid State,1980,22(5):895−896.
    [103]
    CRESS G O,BRADY B T,ROWELL G A. Sources of electromagnetic radiation from fracture of rock samples in the laboratory[J]. Geophysical Research Letters,1987,14(4):331−334. doi: 10.1029/GL014i004p00331
    [104]
    ENOMOTO Y,HASHIMOTO H. Emission of charged particles from indentation fracture of rocks[J]. Nature,1990,346(6285):641−643. doi: 10.1038/346641a0
    [105]
    郭自强,尤峻汉,李 高,等. 破裂岩石的电子发射与原子压缩模型[J]. 地球物理学报,1989,32(2):173−177. doi: 10.3321/j.issn:0001-5733.1989.02.006

    GUO Ziqiang,YOU Junhan,LI Gao,et al. Electron emission and atomic compression model of fractured rock[J]. Chinese Journal of Geophysics,1989,32(2):173−177. doi: 10.3321/j.issn:0001-5733.1989.02.006
    [106]
    郭自强, 周大庄, 施行觉, 等. 岩石破裂中的电子发射[J]. 地球物理学报, 1988, 31(5): 566–571.

    GUO Ziqiang, ZHOU Dazhuang, SHI Xingjue, et al. Electron emission in rock fracture [J]Chinese Journal of Geophysics, 1988, 31(5): 566–571.
    [107]
    郭自强, 刘 斌. 岩石破裂电磁辐射的频率特性[J]. 地球物理学报, 1995(2): 221–226.

    GUO Ziqiang, LIU Bin. Frequency characteristics of electromagnetic radiation from rock fracture [J] Chinese Journal of Geophysics, 1995(2): 221–226.
    [108]
    朱元清, 罗祥麟, 郭自强, 等. 岩石破裂时电磁辐射的机理研究[J]. 地球物理学报, 1991, 34(5): 594–601.

    ZHU Yuanqing, LUO Xianglin, GUO Ziqiang, et al. Study on the mechanism of electromagnetic radiation during rock fracture [J] Chinese Journal of Geophysics, 1991, 34(5): 594–601.
    [109]
    FRID V,RABINOVITCH A,BAHAT D. Fracture induced electromagnetic radiation[J]. Journal of physics D:applied physics,2003,36(13):1620−1628. doi: 10.1088/0022-3727/36/13/330
    [110]
    RABINOVITCH A, FRID V, BAHAT D. Surface oscillations-a possible source of fracture induced electromagnetic radiation[J]. Tectonophysics, 2007, 431(1–4): 15–21.
    [111]
    RABINOVITCH A,FRID V,BAHAT D. Directionality of electromagnetic radiation from fractures[J]. International Journal of Fracture,2017,204(2):239−244. doi: 10.1007/s10704-016-0178-7
    [112]
    LIU X,SONG D,HE X,et al. Nanopore structure of deep-burial coals explored by AFM[J]. Fuel,2019,246:9−17. doi: 10.1016/j.fuel.2019.02.090
    [113]
    TIAN X,HE X,SONG D,et al. AFM characterization of surface mechanical and electrical properties of some common rocks[J]. International Journal of Mining Science and Technology,2022,32(2):435−445. doi: 10.1016/j.ijmst.2021.12.008
    [114]
    王伟象. 受载煤微表面力电特性及电荷振荡电磁辐射模型研究[D]. 北京: 北京科技大学, 2020.

    Wang Weixiang. Study on the micro-nano electromechanical characteristics of loaded coal and the electromagnetic radiation model of charge oscillation [D]. Beijing: University of Science and Technology Beijing, 2020.
    [115]
    LIU H,LI Z,HE X,et al. Dynamic and static electrical characteristics of micro-surface of rocks by coupled use of Atomic Force Microscope and micro-loading device[J]. International Journal of Rock Mechanics and Mining Sciences,2021,148:104977. doi: 10.1016/j.ijrmms.2021.104977
    [116]
    CARPINTERI A,BORLA O. Fracto-emissions as seismic precursors[J]. Engineering Fracture Mechanics,2017,177:239−250. doi: 10.1016/j.engfracmech.2017.03.007
    [117]
    钱书清, 张以勤, 曹惠馨, 等. 岩石破裂时产生的电磁脉冲的观测与研究[J]. 地震学报, 1986, 8(3): 301–308

    QIAN Shuqing, ZHANG Yiqin, CAO Huixin, et al. Observation and study of electromagnetic pulse generated during rock fracture [J]Acta Seismology Sinica, 1986, 8(3): 301–308
    [118]
    FRID V. Rockburst hazard forecast by electromagnetic radiation excited by rock fracture[J]. Rock Mechanics and Rock Engineering,1997,30(4):229−236. doi: 10.1007/BF01045719
    [119]
    王恩元, 何学秋, 窦林名, 等. 煤矿采掘过程中煤岩体电磁辐射特征及应用[J]. 地球物理学报, 2005, 48(1): 216–216.

    WANG Enyuan, HE Xueqiu, DOU Linming, et al. Electromagnetic radiation characteristics of coal and rocks during excavation in coal mine and their application [J] Chinese Journal of Geophysics, 2005, 48(1): 216–216
    [120]
    HE X, NIE B, CHEN W, et al. Research progress on electromagnetic radiation in gas-containing coal and rock fracture and its applications. Safety Science[J], 2012, 50(4), 728–735.
    [121]
    WANG E,JIA H,SONG D,et al. Use of ultra-low-frequency electromagnetic emission to monitor stress and failure in coal mines[J]. International Journal of Rock Mechanics & Mining ences,2014,70:16−25.
    [122]
    QIU L,WANG E,SONG D,et al. Measurement of the stress field of a tunnel through its rock EMR[J]. Journal of Geophysics and Engineering,2017,14(4):949−959. doi: 10.1088/1742-2140/aa6dde
    [123]
    DAS S,MALLIK J,DHANKHAR S,et al. Application of Fracture Induced Electromagnetic Radiation(FEMR) technique to detect landslide-prone slip planes[J]. Natural Hazards,2020,101:505−535. doi: 10.1007/s11069-020-03883-3
    [124]
    VOSTRETSOV A G,KRIVETSKII A V,BIZYAEV A A,et al. EMR recording equipment for underground mines[J]. Journal of Mining Science,2008,44(2):218−224. doi: 10.1007/s10913-008-0035-9
    [125]
    GREILING R O,OBERMEYER H. Natural electromagnetic radiation(EMR) and its application in structural geology and neotectonics[J]. Journal of the Geological Society of India,2010,75(1):278−288. doi: 10.1007/s12594-010-0015-y
    [126]
    DAS S,MALLIK J,BANDYOPADHYAY K,et al. Evaluation of maximum horizontal near-surface stress(SHmax) azimuth and its distribution along Narmada-SON Lineament, India by geogenic Electromagnetic Radiation(EMR) technique[J]. Journal of Geodynamics,2020,133:101672. doi: 10.1016/j.jog.2019.101672
    [127]
    王恩元, 何学秋, 刘贞堂, 等. 煤岩动力灾害电磁辐射监测仪及其应用[J]. 煤炭学报, 2003, 28(4): 366–369.

    WANG Enyuan, HE Xueqiu, LIU Zhentang, et al. Electromagnetic radiation detector of coal or rock dynamic disasters and its application [J] Journal of China Coal Industry, 2003, 28(4): 366–369.
    [128]
    王恩元,李忠辉,李德行,等. 电磁辐射监测技术装备在煤与瓦斯突出监测预警中的应用[J]. 煤矿安全,2020,51(10):46−51.

    WANG Enyuan,LI Zhonghui,LI Dexing,et al. Application of Electromagnetic Radiation Monitoring Equipment in Monitoring and Warning of Coal and Gas Outburst[J]. Safety in Coal Mines,2020,51(10):46−51.
    [129]
    SONG D,WANG E,HE X,et al. Use of electromagnetic radiation from fractures for mining-induced stress field assessment[J]. Journal of Geophysics and Engineering,2018,15(4):1093−1103. doi: 10.1088/1742-2140/aaa26d
    [130]
    何学秋, 聂百胜, 王恩元, 等. 矿井煤岩动力灾害电磁辐射预警技术[J]. 煤炭学报, 2007, 33(1): 56–59.

    HE Xueqiu, NIE Baisheng, WANG Enyuan, et al. Electromagnetic radiation early warning technology for mine coal and rock dynamic disaster [J]. Journal of China Coal Industry, 2007, 33(1): 56–59
    [131]
    窦林名, 王云海, 何学秋, 等. 煤样变形破坏峰值前后电磁辐射特征研究[J]. 岩石力学与工程学报, 2007(5): 908–914.

    DOU Linming, WANG Yunhai, HE Xueqiu, et al. Study on characteristics of electromagnetic radiation before and after peak deformation and failure of coal samples [J]. Chinese Journal of Rock Mechanics and Engineering, 2007(5): 908–914.
    [132]
    邹喜正, 窦林名, 徐方军. 分维在电磁幅射技术预测冲击矿压中的应用[J]. 辽宁工程技术大学学报, 2002(4): 452–455.

    ZOU Xizheng, DOU Linming, XU Fangjun. Study and practice of fractal dimension in prediction of rock burst by technology of electromagnetic emmision(eme) [J]. Journal of Liaoning University of Engineering and Technology, 2002(4): 452–455.
    [133]
    刘贞堂, 赵恩来, 王恩元, 等. 不同尺度电磁辐射时间序列的混沌特征初步分析[J]. 煤炭学报, 2009, 34(2): 224–227.

    LIU Zhentang, ZHAO Enlai, WANG Enyuan, et al. Chaotic characteristics of electromagnetic radiation of coal or rock time series under different scales [J]. Journal of China Coal Industry, 2009, 34(2): 224–227.
    [134]
    蒋金泉, 李 洪. 基于混沌时序预测方法的冲击地压预测研究[J]. 岩石力学与工程学报, 2006, 25(5): 889–895.

    JIANG Jinquan, LI Hong. Study on Rockburst Forecast with Forecast method based on chaotic time series [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 889–895.
    [135]
    刘晓斐. 冲击地压电磁辐射前兆信息的时间序列数据挖掘及群体识别体系研究[D]. 徐州: 中国矿业大学, 2008.

    LIU Xiaofei. Study on time series data mining and group recognition system of electronmagnetic precursor information of rock burst [D]. Xuzhou: China University of Mining and Technology, 2008.
    [136]
    陈世海. 冲击地压电磁辐射前兆信息识别技术研究[D]. 徐州: 中国矿业大学, 2012.

    CHEN Shihai. Study on the Omen Information Identification of Rock Burst Based on the Electromagnetic Radiation Monitoring [D]. Xuzhou: China University of Mining and Technology, 2012.
    [137]
    姜耀东,潘一山,姜福兴,等. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报,2014,39(2):205−213.

    JIANG Yaodong,PAN Yishan,JIANG Fuxing,et al. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society,2014,39(2):205−213.
    [138]
    王恩元, 刘晓斐, 何学秋, 等. 煤岩动力灾害声电协同监测技术及预警应用[J]. 中国矿业大学学报, 2018, 47(5): 942–948.

    WANG Enyuan, LIU Xiaofei, HE Xueqiu, et al. Acoustic emission and electromagnetic radiation synchronized monitoring technology and early-warning application for coal and rock dynamic disaster [J]. Journal of China University of Mining & Technology, 2018, 47(5): 942–948
    [139]
    贺 虎,孙 昊,王 茜. 冲击矿压危险的电磁–震动耦合评价[J]. 煤炭学报,2018,43(2):364−370.

    HE Hu,SUN Hao,WANG Qian. Electromagnetic emission-microseismicity coupling evaluation method for rockburst[J]. Journal of China Coal Society,2018,43(2):364−370.
    [140]
    何学秋, 窦林名, 牟宗龙, 等. 煤岩冲击动力灾害连续监测预警理论与技术[J]. 煤炭学报, 2014, 39(8): 1485–1491.

    HE Xueqiu, DOU Linming, MU Zonglong, et al. Continuous monitoring and warning theory and technology of rock burst dynamiodisaster of coal[J]. Journal of China Coal Society, 2014, 39(8):1485−1491.
    [141]
    何生全,何学秋,宋大钊,等. 冲击地压多参量集成预警模型及智能判识云平台[J]. 中国矿业大学学报,2022,51(5):850−862.

    HE Shengquan,HE Xueqiu,SONG Dazhao,et al. Multi-parameter integrated early warning model and an intelligent identification cloud platform of rockburst[J]. Journal of China University of Mining & Technology,2022,51(5):850−862.
    [142]
    狄洋阳. 基于深度学习的冲击地压震声电综合预警研究[D]. 徐州: 中国矿业大学, 2022.

    DI Yangyang. Research on early warning of rock burst microseismic, acoustic emission and electromagnetic radiation signals based on deep learning[D]. Xuzhou: China University of Mining and Technology, 2022.
    [143]
    宋大钊,何学秋,邱黎明,等. 区域和局部突出危险性动态实时监测预警技术研究[J]. 煤炭科学技术,2021,49(5):110−119. doi: 10.13199/j.cnki.cst.2021.05.014

    SONG Dazhao,HE Xueqiu,QIU Liming,et al. Study on real time monitoring and early warning technology of regional and Local outburst danger[J]. Coal Science and Technology,2021,49(5):110−119. doi: 10.13199/j.cnki.cst.2021.05.014
    [144]
    REUTHER C,MOSER E. Orientation and nature of active crustal stresses determined by electromagnetic measurements in the Patagonian segment of the South America Plate[J]. International Journal of Earth Sciences,2009,98(3):585−599. doi: 10.1007/s00531-007-0273-0
    [145]
    KRUMBHOLZ M,BOCK M,BURCHARDT S,et al. A critical discussion of the electromagnetic radiation(EMR) method to determine stress orientations within the crust[J]. Solid Earth,2012,3(2):401−414. doi: 10.5194/se-3-401-2012
    [146]
    张地平. 地下电磁定位测距方法研究[D]. 成都: 电子科技大学, 2018.

    ZHANG Diping. Research on location method of underground electromagnetic positioning [D]. Chengdu: University of Electronic Science and Technology, 2018.
    [147]
    张 军. 钻孔瞬变电磁响应规律与水体定位研究[D]. 济南: 山东大学, 2020.

    ZHANG Jun. Study on transient electromagnetic response characteristics of borehole and water body positioning [D].Jinan: Shandong University, 2020.
    [148]
    WEI M,SONG D,HE X,et al. Generation mechanism of fracture-induced electromagnetic radiation and directionality characterization in the near field[J]. Engineering Fracture Mechanics,2022,273:108684. doi: 10.1016/j.engfracmech.2022.108684
    [149]
    宋大钊,何学秋,韦梦菡,等. 煤岩破坏电磁辐射定位技术方法[J]. 煤炭学报,2022,47(10):3654−3667. doi: 10.13225/j.cnki.jccs.xr21.1647

    SONG Dazhao,HE Xueqiu,WEI Menghan,et al. Study on electromagnetic radiation location technology for coal and rock failure[J]. Journal of China Coal Society,2022,47(10):3654−3667. doi: 10.13225/j.cnki.jccs.xr21.1647
  • Cited by

    Periodical cited type(10)

    1. 张敬华,彭丽莎,李世松,刘旭菲,黄松岭. 混凝土大坝活动裂纹电磁监测系统研制. 中国测试. 2025(01): 90-96 .
    2. 宋大钊,童永军,邱黎明,韦梦菡,王满,郭明功. 花岗岩劈裂破坏电磁-震动有效信号重构与混沌特征. 煤炭学报. 2024(03): 1375-1387 .
    3. 杨光宇,陈学慧,周宏伟. 深部综采工作面多关键层-煤柱系统失稳诱冲机理研究. 煤炭工程. 2024(05): 121-128 .
    4. 殷山,宋大钊,王恩元,何学秋,李忠辉,刘晓斐,刘玉冰. 受载砂岩变形破坏过程磁场响应规律研究. 岩土力学. 2024(06): 1803-1812 .
    5. 杨勇,罗少军,杨朋威,单磊,周蓉蓉. 采动空间声电监测信号响应机制及冲击地压前兆特征分析. 煤炭科技. 2024(03): 121-125 .
    6. 范鹏宏,聂百胜. 煤蠕变过程电磁辐射频谱特征实验研究. 中国煤炭. 2024(07): 105-114 .
    7. 范鹏宏,聂百胜. 煤单轴压缩介电常数与电磁辐射同步响应实验研究. 矿业安全与环保. 2024(05): 61-65 .
    8. 崔小超,王艳立,王方方,张斌,张修峰,张浩,赵金鑫,夏彪. 深部沿空综放面巨厚表土加载型冲击地压机理研究. 矿业研究与开发. 2023(06): 89-96 .
    9. 韦梦菡,何学秋,宋大钊,任廷祥,邱黎明,李振雷,何生全. 煤岩破裂电磁辐射矢量特征规律. 中国矿业大学学报. 2023(06): 1096-1107 .
    10. 孔彪,钟建辉,陆伟,胡相明,辛林,张斌,张晓龙,庄则栋. 煤升温过程中声发射信号变化及产生机制研究. 煤炭科学技术. 2023(S2): 84-91 . 本站查看

    Other cited types(7)

Catalog

    Article views (345) PDF downloads (364) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return