Advance Search
JIANG Fuxing,ZHANG Xiang,ZHU Sitao. Discussion on key problems in prevention and control system of coal mine rock burst[J]. Coal Science and Technology,2023,51(1):203−213. DOI: 10.13199/j.cnki.cst.2022-1483
Citation: JIANG Fuxing,ZHANG Xiang,ZHU Sitao. Discussion on key problems in prevention and control system of coal mine rock burst[J]. Coal Science and Technology,2023,51(1):203−213. DOI: 10.13199/j.cnki.cst.2022-1483

Discussion on key problems in prevention and control system of coal mine rock burst

Funds: 

National Natural Science Foundation of China (51634001); National Natural Science Foundation of China (51904017); Major Science and Technology Innovation Project of Shandong Province (2019SDZY02)

More Information
  • Received Date: September 01, 2022
  • Available Online: March 08, 2023
  • According to the present situation of prevention and control of coal mine rock burst in China, several key problems in the prevention and control system of coal mine rock burst are discussed, and the following main conclusions are obtained: from the perspective of disaster control, rock burst and mine earthquake and their relationship are defined, and 32 types of rock burst and 5 types of mine earthquake are put forward through the classification and combination of main force source and coal seam-surrounding rock structure, and it is clear that the goal of rock burst is to eliminate disasters, while mine earthquake needs to be treated according to the degree of disaster; Four impact risk evaluation indexes, namely, foundation stress impact index, additional stress impact index, impact tendency impact index and support strength impact index, are quantified, and a multi-parameter coupling evaluation method of impact risk including stress condition, impact tendency condition and support condition is designed. This paper probes into the monitoring and early warning mechanism of three-level impact hazards in vibration field, stress field and displacement field, puts forward an early warning mechanism combining single-parameter special warning with multi-parameter conventional warning, and designs a joint monitoring method for the excavation-affected area, mining-affected area and non-excavation-affected area. According to the requirements of reducing the impact risk of various factors in multiple evaluation indexes, the prevention and control routes of rock burst with low stress, low disturbance, low inclination and strong support are put forward, and the combination technology of local pressure relief and risk relief measures based on stress and surrounding rock structure classification is designed. In view of the dynamic disasters caused by underground rock burst and ground vibration caused by mine earthquake, the governance levels of such disasters are divided into three levels: prevention and control, symptomatic control and source control, and a multi-level prevention and control technology system of source shock absorption, classified disaster treatment, pressure relief and earthquake resistance is designed.

  • [1]
    齐庆新,王守光,李海涛,等. 冲击地压应力流理论及其数值实现[J]. 煤炭学报,2022,47(1):172−179. doi: 10.13225/j.cnki.jccs.YG21.2003

    QI Qingxin,WANG Shouguang,LI Haitao,et al. Stress flow theory for coal bump and its numerical implementation[J]. Journal of China Coal Society,2022,47(1):172−179. doi: 10.13225/j.cnki.jccs.YG21.2003
    [2]
    窦林名,田鑫元,曹安业,等. 我国煤矿冲击地压防治现状与难题[J]. 煤炭学报,2022,47(1):152−171. doi: 10.13225/j.cnki.jccs.yg21.1873

    DOU Linming,TIAN Xinyuan,CAO Anye,et al. Present situation and problem of coal mine rock burst prevention and control in China[J]. Journal of China Coal Society,2022,47(1):152−171. doi: 10.13225/j.cnki.jccs.yg21.1873
    [3]
    潘一山. 煤矿冲击地压扰动响应失稳理论及应用[J]. 煤炭学报,2018,43(8):2091−2098. doi: 10.13225/j.cnki.jccs.2018.0604

    PAN Yishan. Disturbance response instability theory of rock burst in coal mine[J]. Journal of China Coal Society,2018,43(8):2091−2098. doi: 10.13225/j.cnki.jccs.2018.0604
    [4]
    潘俊锋,闫耀东,马小辉,等. 考虑时变特性的煤层大巷群冲击地压机理及防治[J]. 煤炭学报,2022,47(9):3384−3395.

    PAN Junfeng,YAN Yaodong,MA Xiaohui,et al. Mechanism and prevention of rock burst in coal seam roadway group considering time-varying characteristics[J]. Journal of China Coal Society,2022,47(9):3384−3395.
    [5]
    刘金海,姜福兴,朱斯陶,等. 典型深厚表土煤层冲击地压模式研究[J]. 煤炭学报,2020,45(5):1753−1763. doi: 10.13225/j.cnki.jccs.2020.0367

    LIU Jinhai,JIANG Fuxing,ZHU Sitao,et al. Rock burst model of typical coal seam under thick alluvium[J]. Journal of China Coal Society,2020,45(5):1753−1763. doi: 10.13225/j.cnki.jccs.2020.0367
    [6]
    王恩元,冯俊军,张奇明,等. 冲击地压应力波作用机理[J]. 煤炭学报,2020,45(1):100−110.

    WANG Enyuan,FENG Junjun,ZHANG Qiming,et al. Mechanism of rockbust stress wave[J]. Journal of China Coal Society,2020,45(1):100−110.
    [7]
    谭云亮,张 明,徐 强,等. 坚硬顶板型冲击地压发生机理及监测预警研究[J]. 煤炭科学技术,2019,47(1):166−172.

    TAN Yunliang,ZHANG Ming,XU Qiang,et al. Study on occurrence mechanism and monitoring and early warning of rock burst caused by hard roof[J]. Coal Science and Technology,2019,47(1):166−172.
    [8]
    姜福兴,曲效成,王颜亮,等. 基于云计算的煤矿冲击地压监控预警技术研究[J]. 煤炭科学技术,2018,46(1):199−206,244.

    JIANG Fuxing,QU Xiaocheng,WANG Yanliang,et al. Study on monitoring & control and early warning technology of mine pressure bump based on cloud computing[J]. Coal Science and Technology,2018,46(1):199−206,244.
    [9]
    何学秋,陈建强,宋大钊,等. 典型近直立煤层群冲击地压机理及监测预警研究[J]. 煤炭科学技术,2021,49(6):13−22.

    HE Xuqiu,CHEN Jianqiang,SONG Dazhao,et al. Study on mechanism of rock burst and early warning of typical steeply inclined coal seams[J]. Coal Science and Technology,2021,49(6):13−22.
    [10]
    潘俊锋,王书文,刘少虹,等. 浅部矿井静载荷主导型冲击地压监测方法与实践[J]. 煤炭科学技术,2016,44(6):64−70,98.

    PAN Junfeng,WANG Shuwen,LIU Shaohong,et al. Practices and monitoring method of static loading dominant type mine strata pressure bump in shallow depth mine[J]. Coal Science and Technology,2016,44(6):64−70,98.
    [11]
    朱斯陶,姜福兴,刘金海,等. 复合厚煤层巷道掘进冲击地压机制及监测预警技术[J]. 煤炭学报,2020,45(5):1659−1670.

    ZHU Sitao,JIANG Fuxing,LIU Jinhai,et al. Mechanism and monitoring and early warning technology of rock burst in the heading face of compound thick coal seam[J]. Journal of China Coal Society,2020,45(5):1659−1670.
    [12]
    马斌文,邓志刚,赵善坤,等. 钻孔卸压防治冲击地压机理及影响因素分析[J]. 煤炭科学技术,2020,48(5):35−40.

    MA Binwen,DENG Zhigang,ZHAO Shankun,et al. Analysis on mechanism and influencing factors of drilling pressure relief to prevent rock burst[J]. Coal Science and Technology,2020,48(5):35−40.
    [13]
    姜福兴,刘 烨,刘 军,等. 冲击地压煤层局部保护层开采的减压机理研究[J]. 岩土工程学报,2019,41(2):368−375.

    JIANG Fuxing,LIU Ye,LIU Jun,et al. Pressure-releasing mechanism of local protective layer in coal seam with rock burst[J]. Chinese Journal of Geotechnical Engineering,2019,41(2):368−375.
    [14]
    曹安业,朱亮亮,杜中雨,等. 巷道底板冲击控制原理与解危技术研究[J]. 采矿与安全工程学报,2021,49(11):93−98.

    CAO Anye,ZHU Liangliang,DU Zhongyu,et al. Control principle and pressure-relief technique of rock burst occurred in roadway floor[J]. Journal of Mining & Safety Engineering,2021,49(11):93−98.
    [15]
    孔令海,邓志刚,梁开山,等. 深部煤巷顶帮控制防治冲击地压研究[J]. 煤炭科学技术,2018,46(10):83−89.

    KONG Linghai,DENG Zhigang,LIANG Kaishan,et al. Study on mine rock burst prevention and control with roof and sidewalls control in mine deep seam gateway[J]. Coal Science and Technology,2018,46(10):83−89.
    [16]
    翟明华,姜福兴,齐庆新,等. 冲击地压分类防治体系研究与应用[J]. 煤炭学报,2017,42(12):3116−3124.

    QU Minghua,JIANG Fuxing,QI Qingxin,et al. Research and practice of rock burst classified control system[J]. Journal of China Coal Society,2017,42(12):3116−3124.
    [17]
    姜耀东,潘一山,姜福兴,等. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报,2014,39(2):205−213.

    JIANG Yaodong,PAN Yishan,JIANG Fuxing,et al. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society,2014,39(2):205−213.
    [18]
    潘一山,李忠华,章梦涛. 我国冲击地压分布、类型、机理及防治研究[J]. 岩石力学与工程学报,2003,22(11):1844−1851. doi: 10.3321/j.issn:1000-6915.2003.11.019

    PAN Yishan,LI Zhonghua,ZHANG Mengtao,et al. Distribution, type, mechanism and prevention of rockbrust in China[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(11):1844−1851. doi: 10.3321/j.issn:1000-6915.2003.11.019
    [19]
    齐庆新,陈尚本,王怀新,等. 冲击地压、岩爆、矿震的关系及其数值模拟研究[J]. 岩石力学与工程学报,2003,22(11):1852−1858. doi: 10.3321/j.issn:1000-6915.2003.11.020

    QI Qingxin,CHEN Shangben,WANG Huaixin,et al. Study on the relations among coal bump, rock burst and mining tremor with numerical simulation[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(11):1852−1858. doi: 10.3321/j.issn:1000-6915.2003.11.020
    [20]
    窦林名,曹晋荣,曹安业,等. 煤矿矿震类型及震动波传播规律研究[J]. 煤炭科学技术,2021,49(6):23−31.

    DOU Linming,CAO Jinrong,CAO Anye,et al. Research on types of coal mine tremor and propagation law of shock waves[J]. Coal Science and Technology,2021,49(6):23−31.
    [21]
    杨光宇,姜福兴,李 琳,等. 煤矿冲击地压危险性的工程判据研究[J]. 采矿与安全工程学报,2018,35(6):1200−1207,1216.

    YANG Guangyu,JIANG Fuxing,CAO Anye,et al. Engineering criterion study on coal mining rock burst hazard[J]. Journal of Mining & Safety Engineering,2018,35(6):1200−1207,1216.
    [22]
    姜福兴,刘 懿,翟明华,等. 基于应力与围岩分类的冲击地压危险性评价研究[J]. 岩石力学与工程学报,2017,36(5):1041−1052.

    JIANG Fuxing,LIU Yi,QU Minghua,et al. Evaluation of rock burst hazard on the classification of stress and surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(5):1041−1052.
    [23]
    朱斯陶,刘金海,姜福兴,等. 我国煤矿顶板运动型矿震及诱发灾害分类、预测与防控[J]. 煤炭学报,2022,47(2):807−816. doi: 10.13225/j.cnki.jccs.XR21.1800

    ZHU Sitao,LIU Jinhai,JIANG Fuxing,et al. Classification, prediction, prevention and control of roof movement-type mine earthquakes and induced disasters in China coal mines[J]. Journal of China Coal Society,2022,47(2):807−816. doi: 10.13225/j.cnki.jccs.XR21.1800
    [24]
    刘金海,孙 浩,田昭军,等. 煤矿冲击地压的推采速度效应及其动态调控[J]. 煤炭学报,2018,43(7):1858−1865.

    LIU Jinhai,SUN Hao,TIAN Zhaojun,et al. Effect of advance speed on rock burst in coal mines and its dynamic contral method[J]. Journal of China Coal Society,2018,43(7):1858−1865.
    [25]
    杨光宇,温经林,李 琳,等. 特厚煤层巷道冲击特征及冲击危险性评价方法研究[J]. 中国安全生产科学技术,2019,15(5):92−98. doi: 10.11731/j.issn.1673-193x.2019.05.015

    YANG Guangyu,WEN Jinglin,LI Lin,et al. Study on rock burst characteristics of roadway in extra-thick coal seam and risk assessment method of rock burst[J]. Journal of Safety Science and Technology,2019,15(5):92−98. doi: 10.11731/j.issn.1673-193x.2019.05.015
    [26]
    姜福兴,杨光宇,魏全德,等. 煤矿复合动力灾害危险性实时预警平台研究与展望[J]. 煤炭学报,2018,43(2):333−339.

    JIANG Fuxing,YANG Guangyu,WEI Quande,et al. Study and prospect on coal mine composite dynamic disaster real-time prewarning platform[J]. Journal of China Coal Society,2018,43(2):333−339.
    [27]
    GB 6722—2014, 爆破安全规程[S]. 北京: 中国标准出版社, 2014.
    [28]
    高明仕,赵一超,温颖远,等. 震源扰动型巷道冲击矿压破坏力能准则及实践[J]. 煤炭学报,2016,41(4):808−814.

    GAO Mingshi,ZHAO Yichao,WEN Yingyuan,et al. Stress and energy criterion of the roadway destruction subjected to disturbance type rock burst and its practice[J]. Journal of China Coal Society,2016,41(4):808−814.
  • Related Articles

    [1]LI Huaizhan, SUN Jingchao, GUO Guangli, TANG Chao, ZHENG Hui, ZHANG Liangui, MENG Fanzhen. Evolution characteristics and development height prediction method of water-conducting crack zone in thick weak cemented overlying strata[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(2): 289-300. DOI: 10.12438/cst.2023-1931
    [2]ZHANG Yujun, LI Youwei, XIAO Jie, ZHANG Zhiwei, LI Jiawei. Pre-splitting weakening failure characteristics of hard overburden and height control mechanism of water-conducting fracture zone[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(4): 105-118. DOI: 10.12438/cst.2023-1618
    [3]LIU Qi, LIU Xianglin, CAO Guangyong, ZHAO Jinhai, JIANG Changbao. Study on rotation angle and three-zone deformation characterization of hinged structure of mining overburden rock based on OFDR[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(3): 63-73. DOI: 10.12438/cst.2023-0893
    [4]WANG Xu, YIN Shangxian, XU Bin, CAO Min, ZHANG Runqi, TANG Zhongyi, HUANG Wenxian, LI Wenlong. Study on height optimization prediction model of overburden water-conducting fracture zone under fully mechanized mining[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(S1): 284-297. DOI: 10.13199/j.cnki.cst.2022-1530
    [5]SUN Yunjiang, XU Chengyi, ZUO Jianping, LI Mengmeng, SHI Yue, ZHOU Yubo. Mechanical model of rock strata continuous bending movement under non-uniform load in backfill mining[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(9): 139-145.
    [6]XU Guosheng, GUAN Jinfeng, LI Huigui, WANG Hongbo. Modeling methods and verification of rock strata movement in coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (5).
    [7]ZUO Jianping, SUN Yunjiang, WEN Jinhao, LI Zhengdai. Theoretical and mechanical models of rock strata movement and their prospects[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (1).
    [8]Fang Jie Xu Huijun Cao Zhiguo Li Peng, . Calculation on height of water conducted zone for fully-mechanized top coal caving mining in thick seam under soft and weak overburden strata[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (8).
    [9]YANG Peng. Similar Simulation of Mining Cracking Evolution Law for Overburden Strata Above Coal Mining Face[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (8).
    [10]YIN Shang-Xian XU Bin XU Hui XIA Xiang-Xue, . Study on Height Calculation of Water Conducted Fractured Zone Caused by Fully Mechanized Mining[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (9).
  • Cited by

    Periodical cited type(5)

    1. 韩飞,魏焕伟,殷海晨. 煤矿KJ1292冲击地压地音监测系统关键参数设置研究. 煤矿现代化. 2024(03): 48-52 .
    2. 陆闯,王元杰,陈法兵,李岩,夏永学,刘宁. 基于地音监测技术的多类型冲击地压前兆特征研究. 采矿与岩层控制工程学报. 2023(01): 89-97 .
    3. 王义锋. 地音监测技术在煤矿冲击地压预警中的应用研究. 当代化工研究. 2023(06): 136-138 .
    4. 袁腾飞,孔震,车景矿,史振,曹丽娜. 钻屑法监测数据自动上传系统的应用研究. 陕西煤炭. 2023(06): 136-139 .
    5. 孟庆锋. 煤矿冲击地压发生条件及防治技术研究. 内蒙古煤炭经济. 2022(20): 154-156 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return