Citation: | CHENG Deqiang,QIAN Jiansheng,GUO Xingge,et al. Review on key technologies of AI recognition for videos in coal mine[J]. Coal Science and Technology,2023,51(2):349−365. DOI: 10.13199/j.cnki.cst.2022-0359 |
The video analysis and identification technology of coal mine safety production is the core technical support to ensure the intelligent construction of our country's coal mines and the high-quality development of the coal industry. In order to carry out real-time monitoring and early warning for potential safety hazards in coal mines, the key technologies of video AI (Artificial Intelligence) identification have become the research hotspot in the field of safety production in coal mines. In this paper, the development status of safety monitoring in the process of intelligent construction of coal mines are first expounded. Then, the problems of low efficiency, slow response and poor effect of the current mine video monitoring and safety hazard identification as well as early warning system are concluded. Combined with advanced technologies such as computer vision, edge computing, big data processing, cloud services, and intelligent terminals, the top-level design of AI recognition for coal mine safety production video is carried out. Furthermore, the “cloud-edge-terminal” collaborative computing system architecture of “human-machine-environment” global video AI perception in coal mines is also proposed, followed with a video recognition end node sensor, edge computing equipment, and video recognition scene cloud service application system constructed. By this way, the intelligent identification and early warning linkage control response mechanism are clarified, and the “cloud-edge-terminal” information interactive perception and linkage control data chain has been dredged, resulting with data sharing linkage and early warning coordination. At the same time, around the construction of the “human-machine-environment” global AI visual information intelligent perception and holographic generalized scene platform, the technical processing process of visual perception and identification and early warning of mine safety hazards has been sorted out. What’s more, the characteristic of the processing-enhancement-reconstruction-detection-recognition method are also summarized, and the mainstream direction and trend of the key technology development of coal mine safety production video AI recognition are also pointed out. Secondly, based on the application cases of representative mines such as Wangjialing Coal Mine and Baodian Coal Mine, the author demonstrates the latest progress and application effects of typical application scenarios in the process of coal mine safety production. Finally, according to the key technology characteristics of coal mine safety production video AI recognition, it is concluded that the existing coal mine safety production video AI recognition system has weak technical theory, different specifications of intelligent terminals, confusing application scenarios, poor data compatibility and linkage closed-loop ability, weak database security, inconsistent evaluation mechanism as well as imperfect application standards, etc. Subsequently, this paper pointed out that the future development direction is to strengthen the research on key technologies and theories of video AI recognition, establish and improve intelligent terminal hardware specifications and applicable systems and build a new coal mine information multi-dimensional active perception model and industrial internet application platform with unified standards, perfect mechanism, real-time interconnection, dynamic prediction, collaborative control, safety and reliability, which gradually form a high-precision intelligent perception field of holographic generalization in the whole mine, so as to realize the precise perception of the underground "human-machine-environment" global video information and the coordinated control of danger sources.
[1] |
王国法,杜毅博. 智慧煤矿与智能化开采技术的发展方向[J]. 煤炭科学技术,2019,47(1):1−10.
WANG Guofa,DU Yibo. Development direction of intelligent coal mine and intelligent mining technology[J]. Coal Science and Technology,2019,47(1):1−10.
|
[2] |
王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34−41.
WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34−41.
|
[3] |
赵洪建. 煤矿综掘工作面视频融合技术研究[D]. 徐州: 中国矿业大学, 2018.
ZHAO Hongjian. Research on video fusion technology of fully mechanized mining face in coal mining[J]. Xuzhou: China University of Mining and Technology, 2018.
|
[4] |
王国法,刘 峰,庞义辉,等. 煤矿智能化-煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349−357.
WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization: the core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349−357.
|
[5] |
刘 峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报,2021,46(1):1−15.
LIU Feng,CAO Wenjun,ZHANG Jianming,et al. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry[J]. Journal of China Coal Society,2021,46(1):1−15.
|
[6] |
范京道. 智能化无人综采技术[M]. 北京: 煤炭工业出版社, 2017.
FAN Jingdao. Intelligent unmanned mechanized mining technology[M]. Beijing: Coal Industry Press, 2017.
|
[7] |
孙继平. 煤矿信息化与智能化要求与关键技术[J]. 煤炭科学技术,2014,42(9):22−25,71.
SUN Jiping. Requirement and key technology on mine informationalization and intelligent technology[J]. Coal Science and Technology,2014,42(9):22−25,71.
|
[8] |
孙继平. 煤矿信息化自动化新技术与发展[J]. 煤炭科学技术,2016,44(1):19−23,83. doi: 10.13199/j.cnki.cst.2016.01.004
SUN Jiping. New technology and development of mine informatization and automation[J]. Coal Science and Technology,2016,44(1):19−23,83. doi: 10.13199/j.cnki.cst.2016.01.004
|
[9] |
孙继平. 煤矿监控新技术与新装备[J]. 工矿自动化,2015,41(1):1−5.
SUN Jiping. New technologies and new equipments of coal mine monitoring[J]. Industry and Mine Automation,2015,41(1):1−5.
|
[10] |
LALATENDU M,DEVI P M,PRASANTA K J. Application of wireless sensor network for environmental monitoring in underground coal mines: a systematic review[J]. Journal of Network and Computer Applications,2018,106:48−67. doi: 10.1016/j.jnca.2017.12.022
|
[11] |
曾 婷,黄东军. 智能视频监控系统异常行为检测算法研究综述[J]. 计算机测量与控制,2021,29(7):1−6.
ZENG Ting,HUANG Dongjun. A survey of detection algorithms for abnormal behaviors in intelligent video surveillance system[J]. Computer Measurement & Control,2021,29(7):1−6.
|
[12] |
杨传印. 基于煤矿视频AI识别技术应用研究[J]. 山东煤炭科技,2022,40(1):181−183,186.
YANG Chuanyin. Research and application of AI recognition technology based on coal mine video[J]. Shandong Coal Science and Technology,2022,40(1):181−183,186.
|
[13] |
张 华,李靖锋,魏红磊,等. 基于智能视频识别技术的智能化煤矿安全管理研究与应用[J]. 工矿自动化,2021,47(S1):10−13.
ZHANG Hua,LI Jingfeng,WEI Honglei,et al. Research and application of intelligent coal mine safety management based on intelligent video recognition technology[J]. Industry and Mine Automation,2021,47(S1):10−13.
|
[14] |
杨超宇,李 策,苏剑臣,等. 基于视频的煤矿安全监控行为识别系统研究[J]. 煤炭工程,2016,48(4):111−113, 117.
YANG Chaoyu,LI Ce,SU Jianchen,et al. Research on video-based system of activity recognition for coal mine safety surveillance[J]. Coal Engineering,2016,48(4):111−113, 117.
|
[15] |
张立亚. 矿山智能视频分析与预警系统研究[J]. 工矿自动化,2017,43(11):16−20.
ZHANG Liya. Research on intelligent video analysis and early warning system for mine[J]. Industry and Mine Automation,2017,43(11):16−20.
|
[16] |
SATYANARAYANAN M. The emergence of edge computing. computer, 2017, 50(1): 30−39.
|
[17] |
OLAGUE G,HERNÁNDEZ D. E,LLAMAS P. Brain programming as a new strategy to create visual routines for object tracking[J]. Multimedia Tools and Applications,2019,78:5881−5918.
|
[18] |
屈世甲,武福生. 基于边缘计算的采煤工作面甲烷监测模式研究[J]. 煤炭科学技术,2020,48(12):161−167.
QU Shijia,WU Fusheng. Research on methane monitoring mode of coal mining face based on edge computing[J]. Coal Science and Technology,2020,48(12):161−167.
|
[19] |
HESCOCK J,NEWMAN C,AGIOUTANTIS Z. Development of a new algorithm for implementing the edge effect offset for subsidence calculations[J]. International Journal of Mining Science and Technology,2018,28(1):61−66. doi: 10.1016/j.ijmst.2017.11.010
|
[20] |
朱晓娟,张 浩. 智慧煤矿中边缘计算任务分配研究[J]. 工矿自动化,2021,47(6):32−39.
ZHU Xiaojuan,ZHANG Hao. Research on task allocation of edge computing in intelligent coal mine[J]. Industry and Mine Automation,2021,47(6):32−39.
|
[21] |
李敬兆,秦晓伟,汪 磊. 基于边云协同框架的煤矿井下实时视频处理系统[J]. 工矿自动化,2021,47(12):1−7.
LI Jingzhao,QIN Xiaowei,WANG Lei. Real-time video processing system in coal mine based on edge-cloud collaborative framework[J]. Industry and Mine Automation,2021,47(12):1−7.
|
[22] |
陈晓晶. 基于“云−边−端”协同的煤矿火灾智能化防控建设思路探讨[J]. 煤炭科学技术,2022,50(12):136−143.
CHEN Xiaojing. Discussion on the construction of intelligent prevention and control of coal mine fire based on “cloud-edge-end” cooperation[J]. Coal Science and Technology,2022,50(12):136−143.
|
[23] |
屈世甲,武福生,贺耀宜. 煤矿安全监测监控体系中边缘计算模式研究[J]. 煤炭科学技术,2022,50(5):247−252.
QU Shijia,WU Fusheng,HE Yaoyi. Application of edge computing mode in coal mine monitoring and control system[J]. Coal Science and Technology,2022,50(5):247−252.
|
[24] |
姜德义,魏立科,王 翀,等. 智慧矿山边缘云协同计算技术架构与基础保障关键技术探讨[J]. 煤炭学报,2020,45(1):484−492.
JIANG Deyi,WEI Like,WANG Chong,et al. Discussion on the technology architecture and key basic support technology for intelligent mine edge-cloud collaborative computing[J]. Journal of China Coal Society,2020,45(1):484−492.
|
[25] |
YAO Haifei,WANG Haiyan,LI Yanchuan,et al. Three-dimensional spatial and temporal distributions of dust in roadway tunneling[J]. International Journal of Mining Science and Technology,2020,7(1):88−96.
|
[26] |
王诚聪. 基于视频分析的煤矿安全生产典型违规行为识别[D]. 唐山: 华北理工大学, 2021.
WANG Chengcong. Identification of typical violations of coal mine safety production based on video analysis[D]. Tangshan: North China University of Science and Technology, 2021.
|
[27] |
张谢华,张 申,方 帅,等. 煤矿智能视频监控中雾尘图像的清晰化研究[J]. 煤炭学报,2014,39(1):198−204.
ZHANG Xiehua,ZHANG Shen,FANG Shuai,et al. Clearing research on fog and dust images in coalmine intelligent video surveillance[J]. Journal of China Coal Society,2014,39(1):198−204.
|
[28] |
王启明,李 季. 煤矿井下高清图像快速去雾算法研究[J]. 小型微型计算机系统,2018,39(11):2557−2560. doi: 10.3969/j.issn.1000-1220.2018.11.038
WANG Qiming,LI Ji. Study on fast hzae removal algorithm for underground high definition image[J]. Journal of Chinese Computer Systems,2018,39(11):2557−2560. doi: 10.3969/j.issn.1000-1220.2018.11.038
|
[29] |
应东杰,李文节. 煤矿监控图像增强算法的分析与实现[J]. 工矿自动化,2012,38(8):55−58.
YING Dongjie,LI Wenjie. Analysis of enhancement algorithms of coal mine monitoring image and its realization[J]. Industry and Mine Automation,2012,38(8):55−58.
|
[30] |
范凌云,梁修荣. 基于小波分解子带直方图匹配的矿井视频图像增强方法[J]. 金属矿山,2016(6):130−133. doi: 10.3969/j.issn.1001-1250.2016.06.026
FAN Lingyun,LIANG Xiurong. Mine video images enhancement method based on the histogram matching method of the sub-bands of wavelet transform[J]. Metal Mine,2016(6):130−133. doi: 10.3969/j.issn.1001-1250.2016.06.026
|
[31] |
范伟强,刘 毅. 基于自适应小波变换的煤矿降质图像模糊增强算法[J]. 煤炭学报,2020,45(12):4248−4260.
FAN Weiqiang,LIU Yi. Fuzzy enhancement algorithm of coal mine degradation image based on adaptive wavelet transform[J]. Journal of China Coal Society,2020,45(12):4248−4260.
|
[32] |
谢海波. 提升小波变换域矿井光照不均匀图像双直方图均衡化增强[J]. 金属矿山,2016(5):153−157.
XIE Haibo. Bi-histogram equalization enhancement of the undermine uneven illumination image based on lifting wavelet transform domain[J]. Metal Mine,2016(5):153−157.
|
[33] |
曹陇鑫,马宗方,石 晶. 基于Retinex的自适应非均匀低照度图像增强算法[J]. 计算机测量与控制,2020,28(10):155−159,176.
CAO Longxin,MA Zongfang,SHI Jing. Retinex-based adaptive non-uniform low light image enhancement algorithm[J]. Computer Measurement and Control,2020,28(10):155−159,176.
|
[34] |
LECCA M. STAR: A segmentation-based approximation of point-based sampling milano retinex for color image enhancement[J]. IEEE Transactions on Image Processing,2018,27(12):5802−5812. doi: 10.1109/TIP.2018.2858541
|
[35] |
程铁栋,卢晓亮,易其文,等. 一种结合单尺度Retinex与引导滤波的红外图像增强方法[J]. 红外技术,2021,43(11):1081−1088.
CHENG Tiedong,LU Xiaoliang,YI Qiwen,et al. Research on infrared image enhancement method combined with single-scale Retinex and guided image filter[J]. Infrared Technology,2021,43(11):1081−1088.
|
[36] |
王 彦,谢晓方,肖楚琬等. 基于改进MSR滤波算法的X光图像增强[J]. 计算机工程,2012,38(8):186−188.
WANG Yan,XIE Xiaofang,XIAO Chuwan,et al. X-ray image enhancement based on improved MSR filtering algorithm[J]. Computer Engineering,2012,38(8):186−188.
|
[37] |
WANG J,LU K,XUE J,et al. Single image dehazing based on the physical model and MSRCR algorithm[J]. IEEE Transactions on Circuits and Systems for Video Technology,2018,28(9):2190−2199. doi: 10.1109/TCSVT.2017.2728822
|
[38] |
张 翔,王 伟,肖 迪. 一种改进的具有色彩保护的多尺度Retinex图像增强算法[J]. 计算机科学,2018,45(10):246−249. doi: 10.11896/j.issn.1002-137X.2018.10.045
ZHANG Xiang,WANG Wei,XIAO Di. Improved image enhancement algorithm based on multi-scale retinex with chromaticity preservation[J]. Computer Science,2018,45(10):246−249. doi: 10.11896/j.issn.1002-137X.2018.10.045
|
[39] |
LECCA M,SIMONE G,BONANOMI C,et al. Point-based spatial colour sampling in Milano-Retinex: a survey[J]. IET Image Processing,2018,12(6):833−849. doi: 10.1049/iet-ipr.2017.1224
|
[40] |
阮顺领,刘丹洋,白宝军,等. 基于自适应MSRCP算法的煤矿井下图像增强方法[J]. 矿业研究与开发,2021,41(11):186−192.
RUAN Shunling,LIU Danyang,BAI Baojun,et al. Image enhancement method for underground coal mine based on the adaptive MSRCP algorithm[J]. Mining Research and Development,2021,41(11):186−192.
|
[41] |
程德强,郑 珍,姜海龙. 一种煤矿井下图像增强算法[J]. 工矿自动化,2015,41(12):31−34.
CHENG Deqiang ZHENG Zhen,JIANG Hailong. Image enhancement algorithm for coal mine underground[J]. Industry and Mine Automation,2015,41(12):31−34.
|
[42] |
唐守锋,史 可,仝光明,等. 一种矿井低照度图像增强算法[J]. 工矿自动化,2021,47(10):32−36.
TANG Shoufeng,SHI Ke,TONG Guanming,et al. A mine low illumination image enhancement algorithm[J]. Industry and Mine Automation,2021,47(10):32−36.
|
[43] |
张立亚,郝博南,孟庆勇,等. 基于HSV空间改进融合Retinex算法的井下图像增强方法[J]. 煤炭学报,2020,45(S1):532−540.
ZHANG Liya,HAO Bonan,MENG Qingyong,et al. Method of image enhancement in coal mine based on improved retex fusion algorithm in HSV space[J]. Journal of China Coal Society,2020,45(S1):532−540.
|
[44] |
DU Yuxin,TONG Minming,ZHOU Lingling,et al. Edge detection based on retinex theory and wavelet multiscale product for mine images[J]. Applied Optics,2016,55:9625−9637. doi: 10.1364/AO.55.009625
|
[45] |
钟梦圆,姜 麟. 超分辨率图像重建算法综述[J]. 计算机科学与探索,2022,16(5):972−990. doi: 10.3778/j.issn.1673-9418.2111126
ZHONG Mengyuan,JIANG Lin. A review of super-resolution image reconstruction algorithms[J]. Journal of Frontiers of Computer Science and Technology,2022,16(5):972−990. doi: 10.3778/j.issn.1673-9418.2111126
|
[46] |
WANG L,XIANG S,MENG G,et al. Edge-directed single-image super-resolution via adaptive gradient magnitude self-interpolation[J]. IEEE Transactions on Circuits and Systems for Video Technology,2013,23(8):1289−1299. doi: 10.1109/TCSVT.2013.2240915
|
[47] |
HU X,PENG S,HWANG W L. Learning adaptive interpolation kernels for fast single-image super resolution[J]. Signal, Image and Video Processing,2014,8(6):1077−1086. doi: 10.1007/s11760-014-0634-7
|
[48] |
叶坤涛,刘继锋,郭振龙,等. 基于MCA的压缩感知彩色图像超分辨率重建[J]. 江西理工大学学报,2019,40(3):86−94.
YE Kuntao,LIU Jifeng,GUO Zhenlong,et al. Super-resolution reconstruction of compressed sensing colour image based on MCA[J]. Journal of Jiangxi University of Science and Technology,2019,40(3):86−94.
|
[49] |
REN C,HE X,TENG Q,et al. Single image super-resolution using local geometric duality and non-local similarity[J]. IEEE Transactions on Image Processing,2016,25(5):2168−2183. doi: 10.1109/TIP.2016.2542442
|
[50] |
汪海涛,于文洁,张光磊. 基于在线多字典学习的矿井图像超分辨率重建方法[J]. 工矿自动化,2020,46(9):74−78.
WANG Haitao,YU Wenjie,ZHANG Guanglei. Suoer-resolution reconstruction method of mine image based on online multi-dictionary learning[J]. Industry and Mine Automation,2020,46(9):74−78.
|
[51] |
蔡文郁,张美燕,吴 岩,等. 基于循环生成对抗网络的超分辨率重建算法研究[J]. 电子与信息学报,2022,44(1):178−186. doi: 10.11999/JEIT201046
CAI Wenyu,ZHANG Meiyan,WU Yan,et al. Research on cyclic generation countermeasure network based super-resolution image reconstruction algorithm[J]. Journal of Electronics & Information Technology,2022,44(1):178−186. doi: 10.11999/JEIT201046
|
[52] |
TING Y,SHU JIA,HAO M. Research on the Application of Super Resolution Reconstruction Algorithm for Underwater Image[J]. Computers, Materials & Continua,2020,62(3):1249−1258.
|
[53] |
GAO Rui, CHENG Deqiang, YAO Jie, et al. Low-Rank Representation-Based Image Super-Resolution Reconstruction with Edge-Preserving. KSII Transaction ON Internet and Information Systems, 2020, 14(9): 3745-3761.
|
[54] |
程德强,于文洁,郭 昕,等. 自适应的图像在线字典学习超分辨率重建算法[J]. 激光与光电子学进展,2020,57(6):302−312.
CHENG Deqiang,YU Wenjie,GUO Xin,et al. Research on cyclic generation countermeasure network based super-resolution image reconstruction image[J]. Laser & Optoelectronics Progress,2020,57(6):302−312.
|
[55] |
程德强,陈亮亮,蔡迎春,等. 边缘融合的多字典超分辨率图像重建算法[J]. 煤炭学报,2018,43(7):2084−2090.
CHENG Deqiang,CHEN Liangliang,CAI Yingchun,et al. Image super-resolution reconstruction based on multi-dictionary and edge fusion[J]. Journal of China Coal Society,2018,43(7):2084−2090.
|
[56] |
宋玉龙. 基于反馈残差网络的矿井图像超分辨率重建算法研究[D]. 徐州: 中国矿业大学, 2018.
SONG Yulong. Research on mine image super-resolution reconstruction algorithm based on feedback residual network[D]. Xuzhou: China University of Mining and Technology, 2018.
|
[57] |
CHEN L L,KOU Q Q,CHENG D Q,et al. Content-guided deep residual network for single image super-resolution[J]. Optik,2020,202:163678. doi: 10.1016/j.ijleo.2019.163678
|
[58] |
程德强,郭 昕,陈亮亮,等. 多通道递归残差网络的图像超分辨率重建[J]. 中国图象图形学报,2021,26(3):605−618. doi: 10.11834/jig.200108
CHENG Deqiang,GUO Xin,CHEN Liangliang,et al. Image super-resolution reconstruction from multi-channel recursive residual network[J]. Journal of Image and Graphics,2021,26(3):605−618. doi: 10.11834/jig.200108
|
[59] |
徐金婧,徐熙平. 基于时空显著特征的运动目标检测方法研究[J]. 长春理工大学学报(自然科学版),2020,43(4):43−48.
XU Jinjing,XU Xiping. Research on moving target detection method based on time and space saliency features[J]. Journal of Changchun University of Science and Technology (Natural Science Edition),2020,43(4):43−48.
|
[60] |
YIN Jiale,LIU Lei,LI He,et al. The infrared moving object detection and security detection related algorithms based on W4 and frame difference[J]. Infrared Physics and Technology,2016,77:302−315. doi: 10.1016/j.infrared.2016.06.004
|
[61] |
SATOSHI H,KYOHEI N. Optical flow for real-time human detection and action recognition based on CNN classifiers[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics,2019,23(4):735−742. doi: 10.20965/jaciii.2019.p0735
|
[62] |
程德强,刘 洁,郭 政. 基于分层光流的煤矿井下运动目标跟踪算法[J]. 工矿自动化,2015,41(3):75−79.
CHENG Deqiang,LIU Jie,GUO Zheng. An algorithm for moving targets tracking in coal mine underground based on layered optical flow[J]. Industry and Mine Automation,2015,41(3):75−79.
|
[63] |
朱文杰,王广龙,田 杰. 空时自适应混合高斯模型复杂背景运动目标检测[J]. 北京理工大学学报,2018,38(2):165−172.
ZHU Wenjie,WANG Guanglong,TIE Jie. Spatio-temporal adaptive mixture of gaussians for moving object detection in complex backgrounds scenes[J]. Transactions of Beijing Institute of Technology,2018,38(2):165−172.
|
[64] |
张谢华. 煤矿智能视频监控系统关键技术的研究[D]. 徐州: 中国矿业大学, 2013.
ZHANG Xiehua. Research on key techniques in coalmine intelligent video surveillance system[D]. Xuzhou: China University of Mining and Technology, 2013.
|
[65] |
张小艳,郭海涛. 基于改进混合高斯模型的井下目标检测算法[J]. 工矿自动化,2021,47(4):67−72.
ZHANG Xiaoyan,GUO Haitao. Underground target detection algorithm based on improved Gaussian mixture model[J]. Industry and Mine Automation,2021,47(4):67−72.
|
[66] |
许 鹏. 基于边缘计算的煤矿井下皮带异物检测关键技术研究[D]. 徐州: 中国矿业大学, 2021.
XU Peng. Study on the key technology of foreign object detection of coal mine belt based on edge computing[D]. Xuzhou: China University of Mining and Technology, 2021.
|
[67] |
胡璟皓. 基于深度学习的带式输送机非煤异物视频检测系统[D]. 太原: 太原理工大学, 2021.
HU Jinghao. Video monitoring system for non-coal foreign matter of belt conveyor based on deep learning[D]. Taiyuan: Taiyuan University of Technology, 2021.
|
[68] |
郝 帅,张 旭,马 旭,等. 基于CBAM-YOLOv5的煤矿输送带异物检测[J]. 煤炭学报,2022,47(11):4147−4156. doi: 10.13225/j.cnki.jccs.2021.1644
HAO Shuai,ZHANG Xu,MA Xu,et al. Foreign object detection in coal mine conveyor belt based on CBAM-YOLOv5[J]. Journal of China Coal Society,2022,47(11):4147−4156. doi: 10.13225/j.cnki.jccs.2021.1644
|
[69] |
程德强,徐进洋,寇旗旗,等. 融合残差信息轻量级网络的运煤皮带异物分类[J]. 煤炭学报,2022,47(3):1361−1369.
CHENG Deqiang,XU Jinyang,KOU Qiqi,et al. Lightweight network based on residual information for foreign body classification on coal conveyor belt[J]. Journal of China Coal Society,2022,47(3):1361−1369.
|
[70] |
程德强,张皓翔,江 曼,等. 融合主曲率与颜色信息的彩色图像检索算法[J]. 计算机辅助设计与图形学学报,2021,33(2):223−231.
CHENG Deqiang,ZHANG Haoxiang,JINAG Man,et al. Color image retrieval method fusing principal curvature and color information[J]. Journal of Computer-Aided Design & Computer Graphics,2021,33(2):223−231.
|
[71] |
ZHANG Haoxiang,JIANG Man,KOU Qiqi. Color image retrieval algorithm fusing color and principal curvatures information[J]. IEEE Access,2020(8):184945−184954.
|
[72] |
ZOU Huadong,JIA Ruiqing. Visual positioning and recognition of gangues based on scratch feature detection[J]. Traitement du Signal,2019,36(2):147−153. doi: 10.18280/ts.360204
|
[73] |
王 超,张 强. 基于LBP和GLCM的煤岩图像特征提取与识别方法[J]. 煤矿安全,2020,51(4):129−132.
WANG Chao,ZHANG Qiang. Coal rock image feature extraction and recognition method based on LBP and GLCM[J]. Safety in Coal Mines,2020,51(4):129−132.
|
[74] |
寇旗旗, 程德强, 于文洁, 等. 一种基于颜色和纹理信息的运动目标识别装置及方法 [P]. 中国: ZL110232703A, 2019-09-13.
KOU Qiqi, CHENG Deqiang, YU Wenjie, et al. A moving target recognition device and method based on color and texture information [P]. China: ZL110232703A, 2019-09-13.
|
[75] |
黄 瀚,程小舟,云 霄,等. 基于DA-GCN的煤矿人员行为识别方法[J]. 工矿自动化,2021,47(4):62−66.
HUANG Han,CHENG Xiaozhou,YUN Xiao,et al. DA-GCN-based coal mine personnel action recognition method[J]. Industry and Mine Automation,2021,47(4):62−66.
|
[76] |
YANG J,PENG J,LI Y,et al. Gangue localization and volume measurement based on adaptive deep feature fusion and surface curvature filter[J]. IEEE Transactions on Instrumentation and Measurement,2021,70:1−13.
|
[77] |
刘 浩,刘海滨,孙 宇,等. 煤矿井下员工不安全行为智能识别系统研究[J]. 煤炭学报,2021:1−13.
LIU Hao,LIU Haibin,SUN Yu,et al. Research on intelligent recognition system of unsafe behavior of coal mine underground employee[J]. Journal of China Coal Society,2021:1−13.
|
[78] |
王伟峰,张宝宝,王志强,等. 基于YOLOv5的矿井火灾视频图像智能识别方法[J]. 工矿自动化,2021,47(9):1−13.
WANG Weifeng,ZHANG Baobao,WANG Zhiqiang,et al. Intelligent identification method of mine fire video images based on YOLOv5[J]. Industry and Mine Automation,2021,47(9):1−13.
|
[79] |
方崇全. 煤矿带式输送机巡检机器人关键技术研究[J]. 煤炭科学技术,2022,50(5):263−270.
FANG Chongquan. Research on key technology of inspection robot for coal mine belt conveyor[J]. Coal Science and Technology,2022,50(5):263−270.
|
[80] |
程德强,王雨晨,寇旗旗,等. 基于改进深度残差网络的矿井图像分类[J]. 计算机应用研究,2021,38(5):1576−1580.
CHENG Deqiang,WANG Yuchen,KOU Qiqi,et al. Classification of mine images based on improved deep residual network[J]. Application Research of Computers,2021,38(5):1576−1580.
|
[81] |
焦 通,申德荣,聂铁铮,等. 区块链数据库: 一种可查询且防篡改的数据库[J]. 软件学报,2019,30(9):2671−2685.
JIAO Tong,SHEN Derong,NIE Tiezhen,et al. BlockchainDB: Querable and immutable database[J]. Journal of Software,2019,30(9):2671−2685.
|
1. |
张晓蕾,高进东,赵开功,李严肃,李长明,谢子彬. 煤矿事故智能应急预案生成方法研究. 矿业安全与环保. 2024(01): 78-85+91 .
![]() | |
2. |
赵中昊,冯彬浩,曾成,杨梦. 基于文本挖掘的煤矿事故案例分析与可视化研究. 电脑与信息技术. 2024(03): 63-67 .
![]() | |
3. |
李长明,赵开功,张晓蕾,王睿迪,李严肃. 煤矿智能化项目风险评价云模型及其应用. 中国安全科学学报. 2024(05): 168-174 .
![]() | |
4. |
王启飞,赵逸涵,刘帅,刘昊霖,孙英峰,李成武. 煤矿事故大数据驱动的风险治理模式研究综述. 中国安全科学学报. 2024(07): 28-37 .
![]() | |
5. |
魏珂. 多功能作业车防倾覆稳定系统关键技术研究. 工矿自动化. 2024(S2): 272-276 .
![]() | |
6. |
李全贵,李建波,胡千庭,吴江杰,郑梦浩,李赏,周俊江. 基于案例推理的煤与瓦斯突出预警模型研究. 矿业安全与环保. 2023(05): 24-29+36 .
![]() | |
7. |
盛伟,关城,张苏,傅炜,王金贵. 基于情景相似的电网企业台风灾害应急决策. 中国安全科学学报. 2023(11): 174-180 .
![]() | |
8. |
霍建军,杨景惠,孙波. 综采辅巷多通道回撤工艺通风系统管理研究. 煤炭科学技术. 2022(S1): 142-146 .
![]() | |
9. |
陈赟,陈玉斌,刘湘慧. 基于CBDT和KNN的地铁施工坍塌事故应急措施生成研究. 长沙理工大学学报(自然科学版). 2021(03): 45-54 .
![]() | |
10. |
庞义辉. 液压支架支护状态感知与数据处理技术. 工矿自动化. 2021(11): 66-73 .
![]() |