Advance Search
WANG Tao,DONG Zhe,SHENG Yuhuai,et al. Experiment on the promoting-inhibiting effects on methane explosion by using haloalkanes[J]. Coal Science and Technology,2024,52(4):265−274. DOI: 10.12438/cst.2023-1793
Citation: WANG Tao,DONG Zhe,SHENG Yuhuai,et al. Experiment on the promoting-inhibiting effects on methane explosion by using haloalkanes[J]. Coal Science and Technology,2024,52(4):265−274. DOI: 10.12438/cst.2023-1793

Experiment on the promoting-inhibiting effects on methane explosion by using haloalkanes

Funds: 

National Natural Science Foundation of China(52004208)

More Information
  • Received Date: November 27, 2023
  • Available Online: March 28, 2024
  • Methane explosion is one of the major disasters that seriously threaten the safety of coal mine production, the development of efficient methane explosion suppression technology can effectively improve the prevention and control level of methane explosion accidents, and its focus is on the function of explosion suppression materials. In order to systematically study the effect of typical haloalkanes extinguishing agents on methane explosion, the effects of typical haloalkanes such as heptafluoropropane (C3HF7), hexafluoropropane (C3H2F6) and trifluoromethane (CHF3) on the ignition and explosion characteristics of methane were systematically studied by combining experimental tests and theoretical analysis. The effects of haloalkanes on methane explosion pressure parameters and laminar burning velocity were tested by a 20 L spherical explosive vessel and a self-developed Bunsen burner laminar flame propagation velocity system. The variation laws of peak explosion pressure, maximum pressure rise rate, laminar burning velocity, and laminar flame morphology evolution were obtained. The results show that with the increase of the added volume fraction, the haloalkanes had a double effect of promoting and inhibiting the methane explosion process. Under the chemical equivalent condition, only C3HF7 can first promote and then inhibit the peak explosion pressure and maximum pressure rise rate of methane, while CHF3 and C3H2F6 can inhibit the effect. The three haloalkanes all showed inhibition on the combustion rate of methane laminar flow. In the oxygen-poor condition, the three haloalkanes inhibited the peak explosion pressure, the maximum pressure boost rate, and the laminar burning velocity of methane. In general, C3H2F6 and C3HF7 have better inhibition effects on methane explosion pressure characteristic parameters and laminar burning velocity than CHF3. The theoretical analysis results show that the double effect of promoting and inhibiting the haloalkanes with the increase of the mixture volume fraction can be attributed to the competition between the improvement of the heat release characteristics of the system reaction and the inhibition of the key free radicals such as H, O, and OH by the main intermediates containing F. The results of this paper provide a theoretical basis for the theoretical research and technical development of methane explosion prevention and control.

  • [1]
    邓 军,周佳敏,白祖锦,等. 瓦斯对煤低温氧化过程微观结构及热反应性的影响研究[J]. 煤炭科学技术,2023,51(1):304−312.

    DENG Jun,ZHOU Jiamin,BAI Zujin,et al. Effect of gas on microstructure and thermal reactivity of coal during low temperature oxidation[J]. Coal Science and Technology,2023,51(1):304−312.
    [2]
    裴 蓓,康亚祥,余明高,等. 点火延迟时间对CO2−超细水雾的抑爆特性影响[J]. 化工学报,2022,73(12):5672−5684.

    PEI Pei,KANG Yaxiang,YU Minggao, et al. Effect of ignition delay time on explosion suppression characteristics of CO2-ultra-fine water mist[J]. CIESC Journal,2022,73(12):5672−5684.
    [3]
    程方明,南 凡,罗振敏,等. 瓦斯抑爆材料及机理研究进展与发展趋势[J]. 煤炭科学技术,2021,49(8):114−124.

    CHENG Fangming,NAN Fan,LUO Zhenmin,et al. Research progress and development trend of gas explosion suppression materials and mechanism[J]. Coal Science and Technology,2021,49(8):114−124.
    [4]
    石必明,牛宜辉,张雷林,等. 角联管网瓦斯爆炸超压演化及火焰传播特性研究[J]. 煤炭科学技术,2021,49(1):257−263.

    SHI Biming,NIU Yihui,ZHANG Leilin,et al. Study on methane explosion overpressure evolution law and flame propagation characteristics in diagonal pipe networks[J]. Coal Science and Technology,2021,49(1):257−263.
    [5]
    余明高,阳旭峰,郑 凯,等. 我国煤矿瓦斯爆炸抑爆减灾技术的研究进展及发展趋势[J]. 煤炭学报,2020,45(1):168−188.

    YU Minggao,YANG Xufeng,ZHENG Kai,et al. Progress and development of coal mine gas explosion suppression and disaster reduction technology in China[J]. Journal of China Coal Society,2020,45(1):168−188.
    [6]
    秦波涛,蒋文婕,史全林,等. 矿井粉煤灰基防灭火技术研究进展[J]. 煤炭科学技术,2023,51(1):329−342.

    QIN Botao,JIANG Wenjie,SHI Quanlin,et al. Research progress on fly ash foundation technology to prevent and control spontaneous combustion of coal in mines[J]. Coal Science and Technology,2023,51(1):329−342.
    [7]
    苏 洋,罗振敏,王 涛. CO2/海泡石抑爆剂对氢气/甲烷爆炸特性参数的影响[J]. 化工进展,2022,41(11):5731−5736.

    SU Yang,LUO Zhenmin,WANG Tao. Effect of CO2/sepiolite explosion suppressant on hydrogen/methane deflagration characteristic parameters[J]. Chemical Industry and Engineering Progress,2022,41(11):5731−5736.
    [8]
    裴 蓓,李世梁,韦双明,等. N2/超细水雾抑制甲烷爆炸点火和火焰传播特性[J]. 中国矿业大学学报,2023,52(2):329−341.

    PEI Pei,LI Shiliang,WEI Shuangming,et al. Inhibition effect on the ignition and flame propagation characteristic of methane explosion by N2/ultrafine water mist[J]. Journal of China University of Mining & Technology,2023,52(2):329−341.
    [9]
    罗振敏,苏 彬,王 涛,等. 矿井瓦斯控爆技术及材料研究进展[J]. 中国安全生产科学技术,2019,15(2):17−24.

    LUO Zhenmin,SU Bin,WANG Tao,et al. Research progress on explosion control technology and materials of mining gas[J]. Journal of Safety Science and Technology,2019,15(2):17−24.
    [10]
    张迎新,吴 强,刘传海,等. 惰性气体N2/CO2抑制瓦斯爆炸试验研究[J]. 爆炸与冲击,2017,37(5):906−912.

    ZHANG Yingxin,WU Qiang,LIU Chuanhai,et al. Experimental study on coal mine gas explosion suppression with inert gas N2/CO2[J]. Explosion and Shock Waves,2017,37(5):906−912.
    [11]
    郭成成,王 飞,刘红威,等. 惰性气体−细水雾抑制瓦斯爆炸对比分析[J]. 煤矿安全,2018,49(6):164−167.

    GUO Chengcheng,WANG Fei,LIU Hongwei,et al. Comparative analysis of gas explosion suppression by water mist of lnert gas[J]. Safety in Coal Mines,2018,49(6):164−167.
    [12]
    王 燕, 林 森, 李 忠, 等. 惰性气体对KHCO3冷气溶胶甲烷抑爆性能的影响研究[J]. 煤炭科学技术, 2021, 49(2): 145−152.

    WANG Yan, LIN Sen, LI Zhong, et al. Research on synergistic effect of inert gas on methane explosion suppression performance of KHCO3 cold aerosol.[J]. Coal Science and Technology, 2021, 49(2): 145−152.
    [13]
    余明高,王雪燕,郑 凯,等. 催化型复合粉体抑爆剂抑制瓦斯爆炸压力试验研究[J]. 煤炭学报,2021,46(10):3212−3220.

    YU Minggao,WANG Xueyan,ZHENG Kai,et al. Experimental investigation of gas explosion suppression by catalytic composite powder inhibitor[J]. Journal of China Coal Society,2021,46(10):3212−3220.
    [14]
    丁 超,王信群,徐海顺,等. 喷射超细ABC粉体对瓦斯爆炸的抑制与增强作用[J]. 煤炭学报,2021,46(6):1799−1807.

    DING Chao,WANG Xinqun,XU Haishun,et al. Suppression and enhancement of methane/air explosion by discharge of ultrafine ABC powders[J]. Journal of China Coal Society,2021,46(6):1799−1807.
    [15]
    纪文涛,张国涛,杨帅帅,等. 惰性粉体抑制瓦斯/煤尘复合爆炸特性及机理研究[J/OL]. 煤炭科学技术:1−10 [2024−01−30]. DOI: 10.12438/cst.2023-1411.

    JI Wentao,ZHANG Guotao,YANG Shuaishuai, et al. Study on the characteristics and mechanism of inert powder inhibition of gas/coal dust compound explosion[J/OL]. Coal Science and Technology:1−10[2024−01−30]. DOI: 10.12438/cst.2023-1411.
    [16]
    张亚平,张拴伟,王建国,等. 热管泡沫复合结构抑爆新技术探讨[J]. 煤炭科学技术,2018,46(7):141−144,177.

    ZHANG Yaping,ZHANG Shuanwei,WANG Jianguo,et al. Discussion on new explosion suppression technology with heat pipe foam composite structure[J]. Coal Science and Technology,2018,46(7):141−144,177.
    [17]
    战 友,朱亚威,孙建华,等. 泡沫金属板腔体添加剂的抑爆效果研究[J]. 煤炭科学技术,2018,46(4):153−157,163.

    ZHAN You,ZHU Yawei,SUN Jianhua,et al. Study on suppression effect of foam blocking device cavity additive[J]. Coal Science and Technology,2018,46(4):153−157,163.
    [18]
    杨 克,纪 虹,邢志祥,等. 含草酸钾的超细水雾抑制甲烷爆炸的特性[J]. 化工学报,2018,69(12):5359−5369.

    YANG Ke,JI Hong,XING Zhixiang,et al. Characteristics on methane explosion suppression by ultrafine water mist containing potassium oxalate[J]. CIESC Journal,2018,69(12):5359−5369.
    [19]
    余明高,吴丽洁,万少杰,等. 含NaCl荷电细水雾对甲烷爆炸火焰传播的抑制特性[J]. 化工学报,2017,68(11):4445−4452.

    YU Minggao,WU Lijie,WAN Shaojie,et al. Inhibition characteristics on methane explosion flame propagation affected by charged water mist containing sodium chloride additive[J]. CIESC Journal,2017,68(11):4445−4452.
    [20]
    范宝春 李鸿志. 惰性颗粒抑爆过程的数值模拟[J]. 爆炸与冲击,2000,20(3):208−214.

    FAN Baochun,LI Hongzhi. Numerical simulations of explosion suppression by inert particles[J]. Explosion and Shock Waves,2000,20(3):208−214.
    [21]
    LU Chang,ZHANG Yunpeng,ZHU Han,et al. Spurting NH4H2PO4 powder to prevent the propagation of gas explosion along the duct[J]. Combustion Science and Technology,2021,193(14):2534−2552. doi: 10.1080/00102202.2020.1748607
    [22]
    LUO Zhenmin,WANG Tao,TIAN Zhihui,et al. Experimental study on the suppression of gas explosion using the gas–solid suppressant of CO2/ABC powder[J]. Journal of Loss Prevention in the Process Industries,2014,30:17−23. doi: 10.1016/j.jlp.2014.04.006
    [23]
    王 健,余靖宇,凡子尧,等. 组合多孔介质与氮气幕协同抑制瓦斯爆炸试验研究[J]. 爆炸与冲击,2023,43(10):185−194.

    WANG Jian,YU Jingyu,FAN Ziyao,et al. Experimental study on the synergistic suppression of gas explosion by combined porous media and nitrogen curtain[J]. Explosion and Shock Waves,2023,43(10):185−194.
    [24]
    LUO Zhenmin,NAN Fan,CHENG Fangming,et al. Experimental study on CO2/CF3I suppression of methane-air explosion and flame propagation[J]. Journal of Loss Prevention in the Process Industries,2023,83:105002. doi: 10.1016/j.jlp.2023.105002
    [25]
    KOPYLOV S N,KOPYLOV P S,ELTYSHEV I P,et al. Characteristics of the Development of a Chain Thermal Explosion when Burning Gas Mixtures under Atmospheric Pressure[J]. Russian Journal of Physical Chemistry B,2020,14:587−591. doi: 10.1134/S1990793120040077
    [26]
    CONG Beihua,QI Fei,LIAO Guangxuan,et al. Experimental study on inhibition of low pressure premixed flat methane-oxygen flames by trifluoromethane[J]. Chinese Science Bulletin,2005,50:1429−1434. doi: 10.1360/982005-402
    [27]
    DONG Zhangqiang,LIU Lijuan,CHU Yanyu,et al. Explosion suppression range and the minimum amount for complete suppression on methane-air explosion by heptafluoropropane[J]. Fuel,2022,328:125331. doi: 10.1016/j.fuel.2022.125331
    [28]
    AZATYAN V V,SHEBEKO Y N,SHEBEKO A Y,et al. Promotion and inhibition of the combustion of methane in oxidative gases with various oxygen concentrations by fluorinated hydrocarbons[J]. Russian Journal of Physical Chemistry B,2010,4:760−768. doi: 10.1134/S1990793110050118
    [29]
    ZHEN H S,LEUNG C W,CHEUNG C S,et al. Characterization of biogas-hydrogen premixed flames using Bunsen burner[J]. International Journal of Hydrogen Energy,2014,39(25):13292−13299. doi: 10.1016/j.ijhydene.2014.06.126
    [30]
    LIU Ling,DU Zhiming,ZHANG Tianwei,et al. The inhibition/promotion effect of C6F12O added to a lithium-ion cell syngas premixed flame[J]. International Journal of Hydrogen Energy,2019,44(39):22282−22300. doi: 10.1016/j.ijhydene.2019.06.120
    [31]
    CHU Huaqiang,XIANG Longkai,MENG Shun,et al. Effects of N2 dilution on laminar burning velocity,combustion characteristics and NO x emissions of rich CH4–air premixed flames[J]. Fuel,2021,284:119017. doi: 10.1016/j.fuel.2020.119017
    [32]
    PAGLIARO J L,LINTERIS G T,SUNDERLAND P B,et al. Combustion inhibition and enhancement of premixed methane–air flames by halon replacements[J]. Combustion and Flame,2015,162(1):41−49. doi: 10.1016/j.combustflame.2014.07.006
    [33]
    XU Wu,JIANG Yong,REN Xingyu. Combustion promotion and extinction of premixed counterflow methane/air flames by C6F12O fire suppressant[J]. Journal of Fire Sciences,2016,34(4):289−304. doi: 10.1177/0734904116645829
    [34]
    DAVIS S G,QUINARD J,SEARBY G. Markstein numbers in counterflow,methane-and propane-air flames:a computational study[J]. Combustion and Flame,2002,130(1-2):123−136. doi: 10.1016/S0010-2180(02)00368-1
    [35]
    PARK O,VELOO P S,LIU N,et al. Combustion characteristics of alternative gaseous fuels[J]. Proceedings of the Combustion Institute,2011,33(1):887−894. doi: 10.1016/j.proci.2010.06.116
    [36]
    HU Erjiang,LI Xiaotian,MENG Xin,et al. Laminar flame speeds and ignition delay times of methane–air mixtures at elevated temperatures and pressures[J]. Fuel,2015,158:1−10. doi: 10.1016/j.fuel.2015.05.010
    [37]
    BOUSHAKI T,DHUE Y,SELLE L,et al. Effects of hydrogen and steam addition on laminar burning velocity of methane–air premixed flame:experimental and numerical analysis[J]. International Journal of Hydrogen Energy,2012,37(11):9412−9422. doi: 10.1016/j.ijhydene.2012.03.037
    [38]
    DIRRENBERGER,LE GALL H,BOUNACEUR R,et al. Measurements of laminar burning velocities above atmospheric pressure using the heat flux method application to the case of n-pentane[J]. Energy & Fuels,2015,29(1):398−404.
    [39]
    AKRAM M,SAXENA P,KUMAR S. Laminar burning velocity of methane–air mixtures at elevated temperatures[J]. Energy & Fuels,2013,27(6):3460−3466.
    [40]
    LIU Z,KIM N I. An assembled annular stepwise diverging tube for the measurement of laminar burning velocity and quenching distance[J]. Combustion and Flame,2014,161(6):1499−1506. doi: 10.1016/j.combustflame.2013.11.020
    [41]
    SHEBEKO Y N,AZATYAN V V,BOLODIAN I A,et al. The influence of fluorinated hydrocarbons on the combustion of gaseous mixtures in a closed vessel[J]. Combustion and Flame,2000,121(3):542−547. doi: 10.1016/S0010-2180(99)00168-6
    [42]
    KOPYLOV S N,KOPYLOV P S,ELTYSHEV I P, et al. Trifluoromethane destruction mechanism in methane-oxygen flame[C]//Materials Science Forum. Trans Tech Publications Ltd,2023,1086:187-192.
    [43]
    PAGLIARO J L,LINTERIS G T. Hydrocarbon flame inhibition by C6F12O (Novec 1230):Unstretched burning velocity measurements and predictions[J]. Fire Safety Journal,2017,87:10−17. doi: 10.1016/j.firesaf.2016.11.002
    [44]
    BABUSHOK V I,LINTERIS G T,MEIER O C. Combustion properties of halogenated fire suppressants[J]. Combustion and Flame,2012,159(12):3569−3575.
    [45]
    MI Hongfu,SHAO Peng,LUO Nan,et al. Determination of CF3CHFCF3 suppression effects on premixed hydrogen-methane deflagration via experiment and simulation[J]. Fuel,2024,358:130190. doi: 10.1016/j.fuel.2023.130190
    [46]
    WANG Tao,SHENG Yuhuai,YU Yingying,et al. Experimental investigation and numerical analysis on the confined deflagration behavior of methane-air mixtures within the suppression of typical haloalkanes[J]. Process Safety and Environmental Protection,2024,183:87−98. doi: 10.1016/j.psep.2024.01.002
    [47]
    ZHOU Xiaomeng,ZHOU Biao. Comprehensive theoretical and experimental studies on the CF3H fire‐extinguishing mechanism[J]. Chinese Journal of Chemistry,2011,29(7):1335−1350. doi: 10.1002/cjoc.201180251
    [48]
    周晓猛,周 彪,陈 涛,等. 六氟丙烷的热解过程及其动力学灭火机理[J]. 燃烧科学与技术,2011,17(5):381−387.

    ZHOU Xiaomeng,ZHOU Biao,CHEN Tao,et al. Pyrolysis Process of 1,1,1,3,3,3-Hexafluoropropaneand Its Fire Suppression Mechanism[J]. Journal of Combustion Science and Technology,2011,17(5):381−387.
    [49]
    LEI Baiwei,HE Binbin,XIAO Bowen,et al. Effects of N2 and 1,1,1,3,3,3-hexafluoropropane (C3H2F6) on Inhibition of coal flames[J]. Journal of Energy Resources Technology,2020,142(10):102304. doi: 10.1115/1.4047072
    [50]
    OSORIO C,MORONES A,HARGIS J W,et al. Effect of C2HF5 and C3HF7 on methane and propane ignition and laminar flame speed:experimental and numerical evaluation[J]. Journal of Loss Prevention in the Process Industries,2017,48:21−31. doi: 10.1016/j.jlp.2017.04.003
  • Related Articles

    [1]ZHANG Xiaoyu, LI Bobo, LI Jianhua, JIA Lidan, DING Yunna, SONG Haosheng. Anisotropic permeability model considering gas and water adsorption and stress[J]. COAL SCIENCE AND TECHNOLOGY. DOI: 10.12438/cst.2023-1943
    [2]LI Huiting, CHANG Suoliang, ZHANG Sheng, LIU Bo, ZHAO Xing, YU Pan. Evaluation of coal seam roof water-bearing risk area via anisotropic high-resolution seismic processing[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S1): 192-200. DOI: 10.12438/cst.2023-0376
    [3]LI Zhen, WU Guanyang, SI Shangjin, LIU Guangxu, LI Mingming, ZHANG Chengxiang, XU Rongchao. Differences between reverse and normal shear in failure characteristics of layered rocks[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(7): 37-47. DOI: 10.12438/cst.2024-0222
    [4]ZHU Chuanqi, WANG Lei, CHEN Lipeng, ZHANG Yu, WANG Ancheng. Wave velocity evolution and fracture distribution of soft coal under uniaxial compression[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(4): 288-301. DOI: 10.12438/cst.2023-1388
    [5]CHEN Lichao, WANG Shengwei, ZHANG Diankun. Experimental investigation on fracture behavior of lignite and its fracturing significance:taking Shengli Coalfield as an example[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(5): 63-71. DOI: 10.13199/j.cnki.cst.2021-1313
    [7]LI Qin, ZHAO Bin, MA Suibo. Study on characteristics of seismic wave velocity response in orthotropic fractured coal seams[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(6).
    [8]LIN Baiquan, SONG Haoran, YANG Wei, ZHAO Yang, ZHA Wei. Study on effective gas drainage area based on anisotropic coal seam[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (6).
    [9]Guo Xiaojie Huan Xuan Gong Weidong Zhang Yugui, . Study on coal complex resistivity anisotropy and characteristics of frequency response[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (4).
    [10]Study on Coal Conductive Properties of Different Coal Structure[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (7).
  • Cited by

    Periodical cited type(2)

    1. 李贵山,于振锋,杨晋东,宋新亚,郭琛. 沁水盆地郑庄区块煤层气水平井钻井体系优化. 煤炭科学技术. 2023(04): 118-126 . 本站查看
    2. 刘一楠,吴翔,李勇,徐立富. 古交矿区太原组煤层气开发地质特征及产能优化. 煤炭科学技术. 2022(08): 125-132 . 本站查看

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return