LI Mingzhong,ZHAO Wenge,YAN Ruyu,et al. Development status and prospect on key technical equipment of high efficiency fully mechanized mining in super high and super long working face[J]. Coal Science and Technology,2024,52(9):199−209
. DOI: 10.12438/cst.2024-0908Citation: |
LI Mingzhong,ZHAO Wenge,YAN Ruyu,et al. Development status and prospect on key technical equipment of high efficiency fully mechanized mining in super high and super long working face[J]. Coal Science and Technology,2024,52(9):199−209 . DOI: 10.12438/cst.2024-0908 |
As an important energy support for China”s economic development, coal will remain dominant in energy consumption for a period of time in the future. With the continuous development of related technical equipment, some mines in China have achieved a single-well single-side output of more than 10 million tons. Safe and efficient development of coal resources is an important direction for China”s future scientific and technological development. This paper relies on the national key research and development plan project “Key Technologies and Equipment for Efficient Fully Mechanized Mining of Super-high and Super-long Working Faces in Coal Mines”, and takes the efficient mining of super-high and super-long working faces as the core. The rock control theory, technology and fully mechanized mining equipment development status of super-high and super-long high-efficiency fully mechanized mining faces at home and abroad are introduced. This paper focuses on three major scientific issues: “three-dimensional dynamic fracture law of full overburden rock in super-large mining space and instability failure mechanism of super-high coal wall”, “structural transformation and stress regulation mechanism of strong overburden rock in super-large mining space”, “dynamic response and efficient intelligent collaborative operation mechanism of super-high and super-long fully mechanized mining equipment group under multiple dynamic loads”. Five technical breakthroughs are carried out, including “fracture and migration mechanism of full overburden rock in super large mining space and collaborative control theory of surrounding rock”, “fracturing and pressure relief technology and equipment in strong mine pressure area of super large mining space”, “intelligent mining complete equipment of super high and super long working face”, “intelligent collaborative control technology and equipment of equipment group of super high and super long working face”, “high efficiency fully mechanized mining engineering demonstration of super high and super long working face”. Practice shows that some ultra-high and ultra-long coal mining faces in China have formed a complete set of technology and equipment system, which provides a reliable guarantee for the safe, efficient and green mining of coal resources in thick and medium-thick coal seam mining areas with relatively simple geological conditions in China. The development direction of theoretical technology, equipment and control of super-high and super-long high-efficiency fully mechanized mining face in China is pointed out.
[1] |
宋振琪. 实用矿山压力[M]. 徐州:中国矿业大学出版社,1988.
|
[2] |
钱鸣高,石平五. 矿山压力与岩层控制[M]. 徐州:中国矿业大学出版社,2010.
|
[3] |
钱鸣高,缪协兴,许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报,1996(3):2−7.
QIAN Minggao,MIAO Xiexing,XU Jianlin. Theoretical study of key stratum in ground control[J]. Journal of China Coal Society,1996(3):2−7.
|
[4] |
钱鸣高,缪协兴,许家林,等. 岩层控制的关键层理论[M]. 徐州:中国矿业大学出版社,2003.
|
[5] |
王国法,庞义辉. 液压支架与围岩耦合关系及应用[J]. 煤炭学报,2015,40(1):30–34.
WANG Guofa,PANG Yihui. Relationship between hydraulic support and surrounding rock coupling and its application[J]. Journal of China Coal Society,2015,40(1):30–34.
|
[6] |
王国法,庞义辉,李明忠,等. 超大采高工作面液压支架与围岩耦合作用关系[J]. 煤炭学报,2017,42(2):518–526.
WANG Guofa,PANG Yihui,LI Mingzhong,et al. Hydraulic support and coal wall coupling relationship in ultra large height mining face[J]. Journal of China Coal Society,2017,42(2):518–526.
|
[7] |
徐亚军,王国法,任怀伟. 液压支架与围岩刚度耦合理论与应用[J]. 煤炭学报,2015,40(11):2528–33.
XU Yajun,WANG Guofa,REN Huaiwei. Theory of coupling relationship between surrounding rocks and powered support[J]. Journal of China Coal Society,2015,40(11):2528–2533.
|
[8] |
王家臣,王兆会. 高强度开采工作面顶板动载冲击效应分析[J]. 岩石力学与工程学报,2015,34(S2):3987−3997.
WANG Jiachen,WANG Zhaohui. Impact effect of dynamic load induced by roof in high-intensity mining face,[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(S2):3987−3997.
|
[9] |
王家臣,王蕾,郭尧. 基于顶板与煤壁控制的支架阻力的确定[J]. 煤炭学报,2014,39(8):1619−1624.
WANG Jiachen,WANG Lei,GUO Yao. Determining the support capacity based on roof and coal wall control[J]. Journal of China Coal Society,2014,39(8):1619−1624.
|
[10] |
黄庆享,钱鸣高,石平五. 浅埋煤层采场老顶周期来压的结构分析[J]. 煤炭学报,1999(6):581−585. doi: 10.3321/j.issn:0253-9993.1999.06.005
HUANG Qingxiang,QIAN Minggao,SHI Pingwu. Structural analysis of main roof stability during periodic weighting in longwall face[J]. Journal of China Coal Society,1999(6):581−585. doi: 10.3321/j.issn:0253-9993.1999.06.005
|
[11] |
吴士良,宋扬,来存良,等. 综放面顶板结构研究[J]. 煤炭科学技术,1999(2):43−46,44.
WU Shiliang,SONG Yang,LAI CunLiang,et al. Study on roof structure in full mechanized coal caving face[J]. Coal Science and Technology,1999(2):43−46,44.
|
[12] |
闫少宏,尹希文,许红杰,等. 大采高综采顶板短悬臂梁–铰接岩梁结构与支架工作阻力的确定[J]. 煤炭学报,2011,36(11):1816−1820.
YAN Shaohong,YIN Xiwen,XU Hongjie,et al. Roof structure of short cantilever-articulated rock beam and calculation of support resistance in full-mechanized face with large mining height[J]. Journal of China Coal Society,2011,36(11):1816−1820.
|
[13] |
庞义辉,王国法,张金虎,等. 超大采高工作面覆岩断裂结构及稳定性控制技术[J]. 煤炭科学技术,2017,45(11):45−50.
PANG Yihui,WANG Guofa,ZHANG Jinhu,et al. Overlying strata fracture structure and stability control technology for ultra large mining height working face[J]. Coal Science and Technology,2017,45(11):45−50.
|
[14] |
张金虎,李明忠,杨正凯,等. 超大采高综采工作面煤壁片帮机理及多维防护措施研究[J]. 采矿与安全工程学报,2021,38(3):487–495.
ZHANG Jinhu,LI Mingzhong,YANG Zhengkai,et al. Mechanism of coal wall spalling in super high fully mechanized face and its multi-dimensional protection measures[J]. Journal of Mining & Safety Engineering,2021,38(3):487–495.
|
[15] |
王家臣,王兆会,唐岳松,等. 千米深井超长工作面顶板分区破断驱动机制与围岩区域化控制研究[J]. 煤炭学报,2023,48(10):3615−3627.
WANG Jiachen,WANG Zhaohui,TANG Yuesong,et al. Regional failure mechanism of main roof and zonal method for ground control in kilometer-deep longwall panel with large face length[J]. Journal of China Coal Society,2023,48(10):3615−3627.
|
[16] |
杨俊哲,刘前进,徐刚,等. 8.8 m支架超大采高工作面矿压规律及覆岩破断结构研究[J]. 采矿与安全工程学报,2021,38(4):655–665.
YANG Junzhe,LlU Qianjin,XU Gang,et al. Strata behavior regularity and overlying strata broken structure of super large mining-height working face with 8.8 m support[J]. Journal of Mining & Safety Engineering,2021,38(4):655–665.
|
[17] |
潘岳,王志强,李爱武. 初次断裂期间超前工作面坚硬顶板挠度、弯矩和能量变化的解析解[J]. 岩石力学与工程学报,2012,31(1):32−41. doi: 10.3969/j.issn.1000-6915.2012.01.005
PAN Yue,WANG Zhiqiang,LI Aiwu. Analytic solutions of deflection,bending moment and energy change of tight roof of advanced working surface during initial fracturing[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(1):32−41. doi: 10.3969/j.issn.1000-6915.2012.01.005
|
[18] |
胡千庭,刘继川,李全贵,等. 煤层顶板分段水力压裂应力及裂缝演化试验研究[J]. 中国矿业大学学报,2023,52(6):1084−1995,1202.
HU Qianting,LIU Jichuan,LI Quangui,et al. Study on stress and fracture evolution of sectional hydraulic fracturing of coal seam roof[J]. Journal of China University of Mining & Technology,2023,52(6):1084−1995,1202.
|
[19] |
李云鹏,张宏伟,苏怀瑞,等. 复杂坚硬岩层井上下联合水力压裂控制技术研究[J]. 采矿与安全工程学报,2023,40(4):704−713.
LI Yunpeng,ZHANG Hongwei,SU Huairui,et al. Research on control technology of coordinated hydraulic fracture under complicated hard rock strata condition[J]. Journal of Mining & Safety Engineering,2023,40(4):704−713.
|
[20] |
KANG Hongpu,LIU Huawen,GAO Fuqiang,et al. Understanding mechanisms of destressing mining-induced stresses using hydraulic fracturing[J]. International Journal of Coal Geology,2018,196:19−28. doi: 10.1016/j.coal.2018.06.023
|
[21] |
赵凯凯. 坚硬顶板区域水力压裂裂缝三维扩展机理研究[D]. 北京:煤炭科学研究总院,2021.
ZHAO Kaikai. Three-dimensional propagation of hydraulic fracture from regional fracturing in hard roof[D]. Beijing:China Coal Research Institute,2021.
|
[22] |
冯彦军,康红普. 定向水力压裂控制煤矿坚硬难垮顶板试验[J]. 岩石力学与工程学报,2012,31(6):1148–1155.
FENG Yanjun,KANG Hongpu. Test on hard and stable roof control by means of direction hydraulic fracturing in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(6):1148–1155.
|
[23] |
吴拥政,康红普. 煤柱留巷定向水力压裂卸压机理及试验[J]. 煤炭学报,2017,42(5):1130–1137.
WU Yongzheng,KANG Hongpu. Pressure relief mechanism and experiment of directional hydraulic fracturing in reused coal pillar roadway[J]. Journal of China Coal Socity,2017,42(5):1130–1137.
|
[24] |
程利兴. 千米深井巷道围岩水力压裂应力转移机理研究及应用[D]. 北京:中国矿业大学(北京),2021.
CHENG Lixing. Research and application of hydraulic fracturing stress transfer mechanism of surrounding rock in thousand-meter deep well roadway[D]. Beijing:China University of Mining and Technology-Beijing,2021.
|
[25] |
吕帅,刘建宇,崔东亮,等. 特厚煤层8.8m超大采高综采面切眼放顶技术[J]. 煤炭工程,2023,55(S1):65−69.
LV Shuai,LIU Jianyu,CUI Dongliang,et al. Roof caving technology for open-off cut in 8.8m super-high fully mechanized mining face of extra-thick coal seam[J]. Coal Engineering,2023,55(S1):65−69.
|
[26] |
李然,王初亮,刘波,等. 兆瓦级煤矿井下压裂泵系统的研制及应用[J/OL]. 煤炭科学技术,1−9 [2024-09-09]. http://kns.cnki.net/kcms/detail/11.2402.td.20240613.1636.013.html.
LI Ran,WANG Chuliang,LIU Bo,et al. Research and application on megawatt level intelligent fracturing pump systemin coal mine[J]. Coal Science and Technology,1−9 [2024-09-09]. http://kns.cnki.net/kcms/detail/11.2402.td.20240613.1636.013.html.
|
[27] |
程利兴,张镇,姜鹏飞,等. 基于顶板水力压裂卸压的应力场响应机制研究及应用[J]. 采矿与安全工程学报,2023,40(4):722−729.
CHENG Lixing,ZHANG Zhen,JIANG Pengfei,et al. Research and application of stress field response mechanism based on roof hydraulic fracturing pressure relief[J]. Journal of Mining & Safety Engineering,2023,40(4):722−729.
|
[28] |
康红普,姜鹏飞,冯彦军,等. 煤矿巷道围岩卸压技术及应用[J]. 煤炭科学技术,2022,50(6):1−15.
KANG Hongpu,JANG Pengfei,FENG Yanjun,et al. Destressing technology for rock around coal mine roadways and its applications[J]. Coal Science and Technology,2022,50(6):1−15.
|
[29] |
吴拥政. 回采工作面双巷布置留巷定向水力压裂卸压机理研究及应用[D]. 北京:煤炭科学研究总院,2018.
WU Yongzheng. Study on destressing mechanism of directional hydraulic fracturing to control deformation of reused roadway in longwall mining with two gate road layout and its onsite practices[D]. Beijing:China Coal Research Institute,2018.
|
[30] |
Cutts. A. Monitoring and control of coal face equipment[J]. The Mining Engineer,1993,153(10):1−10.
|
[31] |
冯银辉,崔 耀,旭峰等. 大采高综采工作面设备智能控制系统研究[J]. 煤炭科学技术,2022,50(9):192−199.
FENC Yinhui, CUI Yao, OIN Zeyu, et al. Research on equipment intelligent control system in large mining heightfully-mechanized face[J]. Coal Science and Technology,2022,50(9:192−199.
|
[32] |
李西蒙,刘长友,PENG S S. 美国快速推进长壁工作面开采设备发展现状[J]. 煤炭科学技术,2016,44(1):166–171.
LI Ximmeng,LIU Changyou,PENG S S. Mining equipment development status of fast advance longwall face in US[J]. Coal Science and Technology,2016,44(1):166–171.
|
[33] |
杨俊哲. 8.8 m智能超大采高综采工作面关键技术与装备[J]. 煤炭科学技术, 2019, 47(10): 116−124.
YANG Junzhe. Key technologies and equipments for 8.8 m intelligent super large mining height fully-mechanized mining face mining.[J]. Coal Science and Technology, 2019, 47(10): 116−124.
|
[34] |
李明忠. 大采高综放工作面交叉侧卸配套技术及应用[J]. 煤炭科学技术, 2016, 44(6): 94−98.
LI Mingzhong. Cross side unloading matched technology and application to high cutting fully mechanized top coal caving mining face.[J]. Coal Science and Technology, 2016, 44(6): 94−98.
|
[35] |
韩会军,王国法,李明忠,等. 超大采高综采工作面支护技术及装备研究现状[J]. 煤矿安全,2024,55(5):213−221.
HAN Huijun,WANG Guofa,LI Mingzhong,et al. Present situation of support technology and equipment in fully mechanized mining face with super mining height[J]. Safety in Coal Mines,2024,55(5):213−221.
|
[36] |
王国法. 大采高技术与大采高液压支架的开发研究[J]. 煤矿开采,2009,14(1):1−4. doi: 10.3969/j.issn.1006-6225.2009.01.001
WANG Guofa. Reserch on mining technology with high mining height and development of powered support for high mining height[J]. Coal Mining Technology,2009,14(1):1−4. doi: 10.3969/j.issn.1006-6225.2009.01.001
|
[37] |
王国法. 煤矿高效开采工作面成套装备技术创新与发展[J]. 煤炭科学技术,2010,38(1):63–68,106.
WANG Guofa. Innovation and development of completed set equipment and technology for high efficient coal mining face in underground mine[J]. Coal Science and Technology,2010,38(1):63–68,106.
|
[38] |
王国法,李希勇,张传昌,等. 8 m大采高综采工作面成套装备研发及应用[J]. 煤炭科学技术,2017,45(11):1−8.
WANG Guofa,LI Xiyong,ZHANG Chuanchang,et al. Research and development and application of set equipment of 8m large mining height fully-mechanized face[J]. Coal Science and Technology,2017,45(11):1−8.
|
[39] |
王国法,庞义辉,许永祥,等. 厚煤层智能绿色高效开采技术与装备研发进展[J]. 采矿与安全工程学报,2023,40(5):882−893.
WANG Guofa,PANG Yihui,XU Yongxiang,et al. Development of intelligent green and efficient mining technology and equipment for thick coal seam[J]. Journal of Mining & Safety Engineering,2023,40(5):882−893.
|
[40] |
韩会军,王国法,许永祥,等. 6-10 m厚煤层超大采高液压支架及其工作面系统自适应智能耦合控制[J]. 煤炭科学技术,2024,52(5):276−288. doi: 10.12438/cst.2023-1692
HAN Huijun,WANG Guofa,XU Yongxiang,et al. Adaptive intelligent coupling control of hydraulic support and working face system for 6−10 m super high mining in thick coal seams[J]. Coal Science and Technology,2024,52(5):276−288. doi: 10.12438/cst.2023-1692
|
[41] |
任怀伟,王国法,李首滨,等. 7 m大采高综采智能化工作面成套装备研制[J]. 煤炭科学技术,2015,43(11):116−121.
REN Huaiwei,WANG Guofa,LI Shoubin,et al. Development of intelligent sets equipment for fully-mechanized 7 m height mining face[J]. Coal Science and Technology,2015,43(11):116−121.
|
[42] |
王国法,庞义辉,张传昌,等. 超大采高智能化综采成套技术与装备研发及适应性研究[J]. 煤炭工程,2016,48(9):6−10.
WANG Guofa,PANG Yihui,ZHANG Chuanchang,et al. Intelligent longwall mining technology and equipment and adaptability in super large mining height working face[J]. Coal Engineering,2016,48(9):6−10.
|
[43] |
王国法,潘一山,赵善坤,等. 冲击地压煤层如何实现安全高效智能开采[J]. 煤炭科学技术,2024,52(1):1−14. doi: 10.12438/cst.2023-1656
WANG Guofa,PAN Yishan,ZHAO Shankun,et al. How to realize safe-efficient-intelligent mining of rock burst coal seam[J]. Coal Science and Technology,2024,52(1):1−14. doi: 10.12438/cst.2023-1656
|
[44] |
王国法,杜毅博,徐亚军,等. 中国煤炭开采技术及装备50年发展与创新实践−纪念《煤炭科学技术》创刊50周年[J]. 煤炭科学技术,2023,51(1):1−18.
WANG Guofa,DU Yibo,XU Yajun,et al. Development and innovation practice of China coal mining technology and equipment for 50 years:Commemorate the 50th anniversary of the publication of Coal Science and Technology[J]. Coal Science and Technology,2023,51(1):1−18.
|
[45] |
王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1−27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001
WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1−27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001
|
[46] |
孟祥军, 李明忠, 孙计爽, 等. 千万吨级矿井智能化综采成套装备及关键技术[J]. 煤炭科学技术, 2020, 48(7): 47−54.
MENG Xiangjun, LI Mingzhong, SUN Jishuang, et al. Complete sets of equipment and key technologies for intelligent fully-mechanized mining of ten-million tonnage level mine.[J]. Coal Science and Technology, 2020, 48(7): 47−54.
|
[47] |
王国法,孟令宇. 煤矿智能化及其技术装备发展[J]. 中国煤炭,2023,49(7):1−13.
WANG Guofa,MENG Linyu. Coal mine intelligence and its technical equipment development[J]. Chinese Coal,2023,49(7):1−13.
|
[1] | ZHANG Xiaoyu, LI Bobo, LI Jianhua, JIA Lidan, DING Yunna, SONG Haosheng. Anisotropic permeability model considering gas and water adsorption and stress[J]. COAL SCIENCE AND TECHNOLOGY. DOI: 10.12438/cst.2023-1943 |
[2] | LI Huiting, CHANG Suoliang, ZHANG Sheng, LIU Bo, ZHAO Xing, YU Pan. Evaluation of coal seam roof water-bearing risk area via anisotropic high-resolution seismic processing[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S1): 192-200. DOI: 10.12438/cst.2023-0376 |
[3] | LI Zhen, WU Guanyang, SI Shangjin, LIU Guangxu, LI Mingming, ZHANG Chengxiang, XU Rongchao. Differences between reverse and normal shear in failure characteristics of layered rocks[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(7): 37-47. DOI: 10.12438/cst.2024-0222 |
[4] | ZHU Chuanqi, WANG Lei, CHEN Lipeng, ZHANG Yu, WANG Ancheng. Wave velocity evolution and fracture distribution of soft coal under uniaxial compression[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(4): 288-301. DOI: 10.12438/cst.2023-1388 |
[5] | CHEN Lichao, WANG Shengwei, ZHANG Diankun. Experimental investigation on fracture behavior of lignite and its fracturing significance:taking Shengli Coalfield as an example[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(5): 63-71. DOI: 10.13199/j.cnki.cst.2021-1313 |
[7] | LI Qin, ZHAO Bin, MA Suibo. Study on characteristics of seismic wave velocity response in orthotropic fractured coal seams[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(6). |
[8] | LIN Baiquan, SONG Haoran, YANG Wei, ZHAO Yang, ZHA Wei. Study on effective gas drainage area based on anisotropic coal seam[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (6). |
[9] | Guo Xiaojie Huan Xuan Gong Weidong Zhang Yugui, . Study on coal complex resistivity anisotropy and characteristics of frequency response[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (4). |
[10] | Study on Coal Conductive Properties of Different Coal Structure[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (7). |
1. |
李贵山,于振锋,杨晋东,宋新亚,郭琛. 沁水盆地郑庄区块煤层气水平井钻井体系优化. 煤炭科学技术. 2023(04): 118-126 .
![]() | |
2. |
刘一楠,吴翔,李勇,徐立富. 古交矿区太原组煤层气开发地质特征及产能优化. 煤炭科学技术. 2022(08): 125-132 .
![]() |