Advance Search
ZHANG Pingsong,CHENG Jinquan,XU Shiang,et al. Study on characteristics of disturbance and deformation of formation altered by grouting in the region below thick loose layers[J]. Coal Science and Technology,2025,53(1):246−258. DOI: 10.12438/cst.2024-1687
Citation: ZHANG Pingsong,CHENG Jinquan,XU Shiang,et al. Study on characteristics of disturbance and deformation of formation altered by grouting in the region below thick loose layers[J]. Coal Science and Technology,2025,53(1):246−258. DOI: 10.12438/cst.2024-1687

Study on characteristics of disturbance and deformation of formation altered by grouting in the region below thick loose layers

More Information
  • Received Date: November 18, 2024
  • Available Online: January 12, 2025
  • Regional treatment through surface high-pressure grouting is one of the primary prevention and control measures for safe coal mining beneath thick and loose confined aquifers. However, the high-pressure grouting process can induce movement and deformation of the overlying strata, leading to local surface uplift and structural deflection in the mining area. This phenomenon is a critical concern in the safety management of regional grouting transformations. Based on the engineering context of grouting transformations in a water-rich sandstone beneath the roof covering at working surface 120501 of a mining area in Anhui Province, this study employs numerical simulations utilizing the COMSOL Multiphysics finite element method. It investigates the process and temporal evolution characteristics of the overlying strata before and after high-pressure grouting. Furthermore, a distributed fiber optic full-section monitoring system is constructed to assess the deformation characteristics of the overlying strata at various depths and their influence on surface disturbances. The findings indicate that the regional high-pressure grouting process can be delineated into three distinct stages: “filling” “diffusion” and “disturbance”. The filling stage exhibits minimal disturbance to the overlying strata, whereas the diffusion stage generates horizontal disturbances. During the disturbance stage, significant vertical displacements are observed in the overlying strata. The influence of grouting on formation disturbance during the reconstruction process follows an increasing trend represented by a Logistic curve. The primary impact of disturbance occurs in the lower sections of the thick loose layer, with vertical arching observed predominantly in the relative water barrier section and compression occurring in the aquifer section. Monitoring results reveal that the deformation characteristics throughout the grouting process are nonlinear, with the sandy clay strata and silty sand strata identified as the primary contributors to deformation. The outcomes of full-section monitoring and numerical simulations align well. The results can offer insights and practical references for ensuring the safe operation of coal mines and effectively preventing and controlling secondary disasters triggered by regional grouting in the eastern thick loose layer covered mining area.

  • [1]
    赵春虎,王皓,靳德武. 煤层开采覆岩预裂–注浆改性失水控制方法探讨[J]. 煤田地质与勘探,2021,49(2):159−167.

    ZHAO Chunhu,WANG Hao,JIN Dewu. Discussion on roof water loss control method of coal seam based on pre-splitting grouting reformation (P-G)[J]. Coal Geology & Exploration,2021,49(2):159−167.
    [2]
    范建国,翟明华,郭信山,等. 深井顶板水害定向钻孔及控域注浆关键技术[J]. 煤矿安全,2015,46(10):97−100.

    FAN Jianguo,ZHAI Minghua,GUO Xinshan,et al. Roof water inrush disaster directional drilling and contour controlled grouting technology in deep mine[J]. Safety in Coal Mines,2015,46(10):97−100.
    [3]
    刘孝孔,绪瑞华,赵艳鹏,等. 邻近厚松散层既有立井井筒地面注浆地层加固技术[J]. 煤炭科学技术,2022,50(7):127−134.

    LIU Xiaokong,XU Ruihua,ZHAO Yanpeng,et al. Ground grouting stratum reinforcement technology for thick loose layer adjacent to existing shaft[J]. Coal Science and Technology,2022,50(7):127−134.
    [4]
    王涛,许大强,胡伟,等. 薄基岩煤层上覆松散含水层注浆效果评价[J]. 煤炭技术,2023,42(6):161−166.

    WANG Tao,XU Daqiang,HU Wei,et al. Grouting effect evaluation of overlying loose aquifer in thin bedrock coal seam[J]. Coal Technology,2023,42(6):161−166.
    [5]
    许延春. 矿区深厚复合含水松散层的工程、力学特性及其应用[D]. 北京:煤炭科学研究总院,2003.

    XU Yanchun. Study on the engineering & mechanical characteristics of the deep and thick unconsolidated water bearing layers and its application in mining field [D]. Beijing:China Coal Research Institute,2003.
    [6]
    张庆松,张连震,张霄,等. 基于浆液黏度时空变化的水平裂隙岩体注浆扩散机制[J]. 岩石力学与工程学报,2015,34(6):1198−1210.

    ZHANG Qingsong,ZHANG Lianzhen,ZHANG Xiao,et al. Grouting diffusion in a horizontal crack considering temporal and spatial variation of viscosity[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(6):1198−1210.
    [7]
    HOU F J,SUN K G,WU Q D,et al. Grout diffusion model in porous media considering the variation in viscosity with time[J]. Advances in Mechanical Engineering,2019,11(1):1687814018819890.
    [8]
    ZHAO J H,BO L,CHEN J T,et al. Mechanism of seepage-stress fault water inrush and grouting seal[J]. Arabian Journal of Geosciences,2020,13(11):404. doi: 10.1007/s12517-020-05319-5
    [9]
    邓皇适,傅鹤林,史越,等. 注浆压力非均匀分布引发的地表沉降计算及其影响因素分析[J]. 中南大学学报(自然科学版),2021,52(10):3550−3558.

    DENG Huangshi,FU Helin,SHI Yue,et al. Calculation and influence factors analysis of surface subsidence caused by non-uniform distribution of grouting pressure[J]. Journal of Central South University (Science and Technology),2021,52(10):3550−3558.
    [10]
    鲍飞翔,杨双锁,杨欢欢,等. 考虑浆液自重的均匀注浆压力引起地表变形[J]. 科学技术与工程,2018,18(36):99−104. doi: 10.3969/j.issn.1671-1815.2018.36.016

    BAO Feixiang,YANG Shuangsuo,YANG Huanhuan,et al. Surface deformation caused by uniform grouting pressure considering gravity of slurry[J]. Science Technology and Engineering,2018,18(36):99−104. doi: 10.3969/j.issn.1671-1815.2018.36.016
    [11]
    李梦天,张霄,李术才,等. 基于数值模拟和模型实验的注浆抬升计算方法[J]. 哈尔滨工业大学学报,2019,51(8):159−166.

    LI Mengtian,ZHANG Xiao,LI Shucai,et al. Grouting lifting numerical methods based on numerical simulation and model experiment[J]. Journal of Harbin Institute of Technology,2019,51(8):159−166.
    [12]
    郑刚,王若展,程雪松,等. 注浆对邻近土体水平变形影响的原位试验研究[J]. 天津大学学报(自然科学与工程技术版),2019,52(9):959−968.

    ZHENG Gang,WANG Ruozhan,CHENG Xuesong,et al. In situ test study of influence of grouting on horizontal deformation of adjacent soil[J]. Journal of Tianjin University (Science and Technology),2019,52(9):959−968.
    [13]
    王雪松. 富水砂层渗透注浆扩散机理及工程应用[D]. 淮南:安徽理工大学,2022.

    WANG Xuesong. Diffusion mechanism and engineering application of penetration grouting in water-rich sand layer [D]. Huainan:Anhui University of Science and Technology,2022.
    [14]
    程刚,王振雪,施斌,等. DFOS在矿山工程安全开采监测中的研究进展[J]. 煤炭学报,2022,47(8):2923−2949.

    CHENG Gang,WANG Zhenxue,SHI Bin,et al. Research progress of DFOS in safety mining monitoring of mines[J]. Journal of China Coal Society,2022,47(8):2923−2949.
    [15]
    张平松,孙斌杨,许时昂,等. 煤系上覆地层移动变形钻孔多参数监测技术[J]. 煤炭学报,2022,47(8):2907−2922.

    ZHANG Pingsong,SUN Binyang,XU Shiang,et al. Multi parameter monitoring technology of borehole for movement and deformation of overlying strata of coal measures[J]. Journal of China Coal Society,2022,47(8):2907−2922.
    [16]
    樊振丽,曹路通,张风达,等. 奥灰顶部注浆改造材料配比优选试验[J/OL]. 煤炭科学技术,1−17[2024−06−14]. DOI: 10.12438/cst.2024-0375.

    FAN Zhenli, CAO Lutong, ZHANG Fengda, et al. Optimal selection test of material ratio in the top of Ordovician limestone grouting reconstruction[J/OL]. Coal Science and Technology, 1−17[2024−06−14]. DOI: 10.12438/cst.2024-0375.
    [17]
    翟明磊,李振华,杜锋,等. 考虑浆液渗流–岩体变形耦合作用的裂隙注浆模拟试验系统研制与应用[J]. 岩石力学与工程学报,2024,43(4):878−889.

    ZHAI Minglei,LI Zhenhua,DU Feng,et al. Development and application of grouting simulation test system considering slurry seepage-rock mass deformation coupling effect[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(4):878−889.
    [18]
    李璐,程鹏达,钟宝昌,等. 黏性浆液在小孔隙多孔介质中扩散的流固耦合分析[J]. 水动力学研究与进展A辑,2011,26(2):209−216. doi: 10.3969/j.issn.1000-4874.2011.02.010

    LI Lu,CHENG Pengda,ZHONG Baochang,et al. Fluid-solid coupling analysis of grout in small porous medium[J]. Chinese Journal of Hydrodynamics,2011,26(2):209−216. doi: 10.3969/j.issn.1000-4874.2011.02.010
    [19]
    程鹏达. 孔隙地层中粘性时变注浆浆液流动特性研究 [D]. 上海:上海大学,2012.

    CHENG Pengda. The characteristic research of time-varying viscous grout in porous stratum [D]. Shanghai:Shanghai University,2012.
    [20]
    孙培德,杨东全,陈奕柏. 多物理场耦合模型及数值模拟导论[M]. 北京:中国科学技术出版社,2007.
    [21]
    郭艳,桂和荣,洪荒,等. 煤层底板含水层区域注浆改造浆液扩散范围现场示踪试验[J]. 煤炭学报,2024,49(4):2045−2056.

    GUO Yan,GUI Herong,HONG Huang,et al. Site tracing experiment on the diffusion range of regional grouting renovation under the coal seam floor aquifer[J]. Journal of China Coal Society,2024,49(4):2045−2056.
    [22]
    黄大维,罗仲睿,罗文俊,等. 地层注浆附加土压力形成及影响因素单元体试验研究[J]. 岩石力学与工程学报,2024,43(S1):3520−3529.

    HUANG Dawei,LUO Zhongrui,LUO Wenjun,et al. Unit test study on formation and influence factors of additional earth pressure during formation grouting[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(S1):3520−3529.
    [23]
    程刚,王振雪,朱鸿鹄,等. 基于分布式光纤感测的岩土体变形监测研究综述[J]. 激光与光电子学进展,2022,59(19):51−70.

    CHENG Gang,WANG Zhenxue,ZHU Honghu,et al. Research review of rock and soil deformation monitoring based on distributed fiber optic sensing[J]. Laser & Optoelectronics Progress,2022,59(19):51−70.
    [24]
    HONG C Y,ZHANG Y F,LI G W,et al. Recent progress of using Brillouin distributed fiber optic sensors for geotechnical health monitoring[J]. Sensors and Actuators A:Physical,2017,258:131−145. doi: 10.1016/j.sna.2017.03.017
    [25]
    KLAR A,LINKER R. Feasibility study of automated detection of tunnel excavation by Brillouin optical time domain reflectometry[J]. Tunnelling and Underground Space Technology,2010,25(5):575−586. doi: 10.1016/j.tust.2010.04.003
    [26]
    许时昂,张平松,程刚,等. 砂土压缩变形传感光缆耦合试验分析与预测模型研究[J]. 岩土力学,2024,45(5):1570−1582.

    XU Shiang,ZHANG Pingsong,CHENG Gang,et al. Analysis and prediction model of sensing fiber optic cable coupling test based on sand compression deformation[J]. Rock and Soil Mechanics,2024,45(5):1570−1582.
    [27]
    张平松,许时昂,傅先杰,等. 煤层采动巨厚松散层全断面监测及内部变形特征[J]. 煤炭学报,2024,49(1):628−644.

    ZHANG Pingsong,XU Shiang,FU Xianjie,et al. Internal deformation characteristics and full section monitoring for extremely thick loose layers under mining conditions[J]. Journal of China Coal Society,2024,49(1):628−644.
    [28]
    苏占东,王鸷文,孙进忠,等. 地质力学模型实验中变形量测方法的应用研究[J]. 地质论评,2024,70(1):287−308.

    SU Zhandong,WANG Zhiwen,SUN Jinzhong,et al. A review of the application of deformation measurement methods in geomechanical model experiments[J]. Geological Review,2024,70(1):287−308.
    [29]
    张平松,许时昂,郭立全,等. 采场围岩变形与破坏监测技术研究进展及展望[J]. 煤炭科学技术,2020,48(3):14−48.

    ZHANG Pingsong,XU Shiang,GUO Liquan,et al. Prospect and progress of deformation and failure monitoring technology of surrounding rock in stope[J]. Coal Science and Technology,2020,48(3):14−48.
    [30]
    ZHANG Z C,TANG X F,LIU K,et al. Large-scale model testing of high-pressure grouting reinforcement for bedding slope with rapid-setting polyurethane[J]. Journal of Mountain Science,2024,21(9):3083−3093. doi: 10.1007/s11629-024-8600-5

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return