Citation: | FANG Xinqiu,WU Yang,SONG Yang,et al. Research on fault monitoring of belt conveyor based on FBG sensor[J]. Coal Science and Technology,2025,53(1):326−340. DOI: 10.12438/cst.2024-1040 |
The fault monitoring of belt conveyors serves as a pivotal tool in preventing safety incidents, enhancing production efficiency, and facilitating the intelligent operation of equipment. This comprehensive study delves into the multi-sensor fault monitoring of belt conveyors utilizing Fiber Bragg Gratings (FBGs), examining aspects such as common fault analysis, the composition of integrated protection systems, the design and analysis of fiber-optic sensor arrays, and the design and material selection of core sensing elements.Firstly, to address the shortcomings of traditional monitoring methods, including the inability to quantify faults, inadequate real-time performance, and weak data fusion capabilities, an FBG-based integrated protection system for belt conveyors is proposed. This system underscores the cruciality of designing a fiber-optic sensor array as a fundamental prerequisite for system establishment.Secondly, building upon an analysis of the root causes and manifestations of common faults in belt conveyors, a series of fault monitoring sensors are devised, with FBG-based equal-strength cantilever beams serving as the core sensing elements. These sensors constitute the fiber-optic sensor array within the integrated protection system, enabling real-time and quantitative fault monitoring.Thirdly, theoretical analyses and Ansys finite element simulations are conducted to thoroughly investigate the dimensional design and material selection of FBG-based equal-strength cantilever beams. The influencing factors on sensitivity and accuracy are analyzed within the sensing model, guiding the determination of the structural dimensions of the sensing elements. Nylon 6 is selected as the optimal material for fabrication.Finally, experimental validation is performed to assess the structural effectiveness, sensitivity, and stability of the FBG-based equal-strength cantilever beams. In sensitivity tests, the sensing elements exhibit exceptional linear response characteristics, with a theoretical sensitivity of
[1] |
王国法,张德生. 煤炭智能化综采技术创新实践与发展展望[J]. 中国矿业大学学报,2018,47(3):459−467.
WANG Guofa,ZHANG Desheng. Innovation practice and development prospect of intelligent fully mechanized technology for coal mining[J]. Journal of China University of Mining & Technology,2018,47(3):459−467.
|
[2] |
王清峰,辛德忠,陈航. 煤矿井下自动化钻探技术概况与智能化发展前瞻[J]. 智能矿山,2020,1(1):71−77.
WANG Qingfeng,XIN Dezhong,CHEN Hang. Overview of automatic drilling technology in underground coal mine and prospect of intelligent development[J]. Journal of Intelligent Mine,2020,1(1):71−77.
|
[3] |
王海军,王洪磊. 带式输送机智能化关键技术现状与展望[J]. 煤炭科学技术,2022,50(12):225−239.
WANG Haijun,WANG Honglei. Status and prospect of intelligent key technologies of belt conveyor[J]. Coal Science and Technology,2022,50(12):225−239.
|
[4] |
GONG X Y,ZHAO M X,WU Y,et al. Study on fuzzy comprehensive evaluation model for the safety of mine belt conveyor[J]. MATEC Web of Conferences,2017,136:02001. doi: 10.1051/matecconf/201713602001
|
[5] |
SALISBURY R,MITCHELL A. System and method for monitoring belt conveyor,FR20160053630[P],FR3035501B1,2020.
|
[6] |
YUAN L M,MAINIERO R J,ROWLAND J H,et al. Numerical and experimental study on flame spread over conveyor belts in a large-scale tunnel[J]. Journal of Loss Prevention in the Process Industries,2014,30:55−62. doi: 10.1016/j.jlp.2014.05.001
|
[7] |
FARIA H D,LIZARRALDE F,COSTA R R,et al. ROSI:A mobile robot for inspection of belt conveyor[J]. IFAC-PapersOnLine,2020,53(2):10031−10036. doi: 10.1016/j.ifacol.2020.12.2723
|
[8] |
方崇全. 煤矿带式输送机巡检机器人关键技术研究[J]. 煤炭科学技术,2022,50(5):263−270.
FANG Chongquan. Research on key technology of inspection robot for coal mine belt conveyor[J]. Coal Science and Technology,2022,50(5):263−270.
|
[9] |
汪楚森. 基于机器视觉的煤矿井下带式输送机故障诊断技术研究[D]. 徐州:中国矿业大学,2023.
WANG Chusen. Research on fault diagnosis technology of belt conveyor in coal mine based on machine vision[D]. Xuzhou:China University of Mining and Technology,2023.
|
[10] |
韩涛,黄友锐,张立志,等. 基于图像识别的带式输送机输煤量和跑偏检测方法[J]. 工矿自动化,2020,46(4):17−22.
HAN Tao,HUANG Yourui,ZHANG Lizhi,et al. Detection method of coal quantity and deviation of belt conveyor based on image recognition[J]. Industry and Mine Automation,2020,46(4):17−22.
|
[11] |
马宏伟,杨文娟,张旭辉. 基于红外热像的带式输送机监测与预警系统[J]. 激光与红外,2017,47(4):448−452. doi: 10.3969/j.issn.1001-5078.2017.04.011
MA Hongwei,YANG Wenjuan,ZHANG Xuhui. Monitoring and warning system of belt conveyor based on infrared thermography[J]. Laser & Infrared,2017,47(4):448−452. doi: 10.3969/j.issn.1001-5078.2017.04.011
|
[12] |
尉婷,乔学光,贾振安,等. 平面圆形膜片式光纤布拉格光栅温度补偿压强传感[J]. 光学学报,2007,27(1):80−84. doi: 10.3321/j.issn:0253-2239.2007.01.016
WEI Ting,QIAO Xueguang,JIA Zhen’an,et al. Temperature-insensitive fiber Bragg grating pressure sensing with plane round metal diaphragm[J]. Acta Optica Sinica,2007,27(1):80−84. doi: 10.3321/j.issn:0253-2239.2007.01.016
|
[13] |
梁敏富,方新秋,薛广哲,等. 光纤光栅测力锚杆的标定试验[J]. 煤矿安全,2015,46(1):44−46.
LIANG Minfu,FANG Xinqiu,XUE Guangzhe,et al. Calibration test of force- measuring bolt based on fiber grating[J]. Safety in Coal Mines,2015,46(1):44−46.
|
[14] |
NARUSE H,UEHARA H,DEGUCHI T,et al. Application of distributed fiber optic strain sensing system to underground mine monitoring[J]. Ieice Technical Report,2006,106(497):71−76.
|
[15] |
柴敬,邱标,李毅,等. 钻孔植入光纤Bragg光栅检测岩层变形的模拟实验[J]. 采矿与安全工程学报,2012,29(1):44−47. doi: 10.3969/j.issn.1673-3363.2012.01.008
CHAI Jing,QIU Biao,LI Yi,et al. Simulation experiment of embedded fiber Bragg grating monitoring in rock deformation through borehole[J]. Journal of Mining & Safety Engineering,2012,29(1):44−47. doi: 10.3969/j.issn.1673-3363.2012.01.008
|
[16] |
梁敏富,方新秋,陈宁宁,等. 正交试验设计的FBG测力锚杆结构封装优化及应用[J]. 煤炭学报,2022,47(8):2950−2960.
LIANG Minfu,FANG Xinqiu,CHEN Ningning,et al. Structure packaging optimization and application of FBG dynamometry bolts based on the orthogonal test design[J]. Journal of China Coal Society,2022,47(8):2950−2960.
|
[17] |
李丽君,张旭,唐斌,等. 一种微型光纤光栅矿压传感器[J]. 煤炭学报,2013,38(11):2084−2088.
LI Lijun,ZHANG Xu,TANG Bin,et al. A kind of mirco-fiber Bragg grating mine pressure sensor[J]. Journal of China Coal Society,2013,38(11):2084−2088.
|
[18] |
张登攀,郑艳,姚新景. 基于光纤光栅的煤矿瓦斯压力传感器的研制[J]. 河南理工大学学报(自然科学版),2018,37(2):8−13.
ZHANG Dengpan,ZHENG Yan,YAO Xinjing. Study on a new gas pressure sensor based on Fiber Bragg Grating[J]. Journal of Henan Polytechnic University (Natural Science),2018,37(2):8−13.
|
[19] |
梁敏富,方新秋,柏桦林,等. 温补型光纤Bragg光栅压力传感器在锚杆支护质量监测中的应用[J]. 煤炭学报,2017,42(11):2826−2833.
LIANG Minfu,FANG Xinqiu,BAI Hualin,et al. Application of temperature compensation fiber Bragg grating pressure sensor for bolting quality monitoring[J]. Journal of China Coal Society,2017,42(11):2826−2833.
|
[20] |
孙丽,王兴业,李闯,等. 基于等强度梁的新型双光纤光栅静力水准仪[J]. 光学学报,2021,41(14):58−66.
SUN Li,WANG Xingye,LI Chuang,et al. New double fiber Bragg grating static level based on equal strength beams[J]. Acta Optica Sinica,2021,41(14):58−66.
|
[21] |
于涛,陈玉璞,王壮,等. 基于等强度梁的光纤光栅顶板离层仪研究与应用[J]. 煤炭技术,2023,42(10):195−199.
YU Tao,CHEN Yupu,WANG Zhuang,et al. Research and application of fiber grating top plate delamination instrument based on equal strength beam[J]. Coal Technology,2023,42(10):195−199.
|
[22] |
方新秋,梁敏富,邢晓鹏,等. 光纤光栅支架压力表的研制及性能测试[J]. 采矿与安全工程学报,2018,35(5):945−952.
FANG Xinqiu,LIANG Minfu,XING Xiaopeng,et al. Development of hydraulic support pressure gauge based on FBG and its performance test[J]. Journal of Mining & Safety Engineering,2018,35(5):945−952.
|
[23] |
方新秋,陈宁宁,冯豪天,等. 刮板输送机直线度光纤精准感知与调直关键技术[J]. 采矿与安全工程学报,2023,40(5):1043−1056.
FANG Xinqiu,CHEN Ningning,FENG Haotian,et al. Key technologies of optical fiber accurate perception and straightening of straightness of the scraper conveyor[J]. Journal of Mining & Safety Engineering,2023,40(5):1043−1056.
|
[24] |
谭跃刚,陈宇佳,李瑞亚,等. 高精度弓型光纤光栅微位移传感器[J]. 光学 精密工程,2018,26(3):556−564. doi: 10.3788/OPE.20182603.0556
TAN Yuegang,CHEN Yujia,LI Ruiya,et al. High-precision bow-shaped fiber Bragg grating micro-displacement sensors[J]. Optics and Precision Engineering,2018,26(3):556−564. doi: 10.3788/OPE.20182603.0556
|
[25] |
周坪,马国庆,周公博,等. 智能化带式输送机健康监测技术研究综述[J]. 仪器仪表学报,2023,44(12):1−21.
ZHOU Ping,MA Guoqing,ZHOU Gongbo,et al. Health monitoring technology for the intelligent belt conveyor:A review[J]. Chinese Journal of Scientific Instrument,2023,44(12):1−21.
|
[26] |
杨鑫,苏乐,程永军,等. 基于多种图结构信息融合的刮板输送机健康状态识别[J]. 煤炭科学技术,2024,52(8):171−181. doi: 10.12438/cst.2023-1557
YANG Xin,SU Le,CHENG Yongjun,et al. Health status identification of scraper conveyer based on fusion of multiple graph structure information[J]. Coal Science and Technology,2024,52(8):171−181. doi: 10.12438/cst.2023-1557
|
[27] |
王伟峰,杨泽,赵轩冲,等. 矿井带式输送机液压拉紧Fuzzy-PID控制技术研究[J]. 煤炭科学技术,2024,52(3):217−224.
WANG Weifeng,YANG Ze,ZHAO Xuanchong,et al. Research on hydraulic tension Fuzzy-PID control technology of mine belt conveyor[J]. Coal Science and Technology,2024,52(3):217−224.
|
[28] |
李天梁,谭跃刚,张翔,等. 受弯件上粘贴型光纤布拉格光栅的应变传递规律[J]. 光学 精密工程,2015,23(5):1254−1264. doi: 10.3788/OPE.20152305.1254
LI Tianliang,TAN Yuegang,ZHANG Xiang,et al. Strain transfer factors of pasted FBG on bending part surface[J]. Optics and Precision Engineering,2015,23(5):1254−1264. doi: 10.3788/OPE.20152305.1254
|
[29] |
权志桥,方新秋,薛广哲,等. 表面粘贴布拉格光纤光栅传感器的应变传递耦合机理研究[J]. 中国激光,2020,47(1):163−172.
QUAN Zhiqiao,FANG Xinqiu,XUE Guangzhe,et al. Strain transfer coupling mechanism of surface-bonded fiber Bragg grating sensor[J]. Chinese Journal of Lasers,2020,47(1):163−172.
|
[30] |
王威. 基于机器视觉的微小振动测量技术研究[D]. 成都:电子科技大学,2023.
WANG Wei. Research on micro vibration measurement technology based on machine vision[D]. Chengdu:University of Electronic Science and Technology of China,2023.
|
[31] |
姜达洲. 小型光纤光栅加速度传感器传感特性研究[D]. 武汉:武汉理工大学,2020.
JIANG Dazhou. Study on sensing characteristics of small fiber grating acceleration sensor[D]. Wuhan:Wuhan University of Technology,2020.
|
[32] |
解鹏,董继军,郭学让,等. 基于光纤光栅的OPGW输电杆塔多参数监测[J]. 光学与光电技术,2023,21(4):107−111.
XIE Peng,DONG Jijun,GUO Xuerang,et al. Multi-parameter monitoring of OPGW transmission tower based on fiber Bragg gratings[J]. Optics & Optoelectronic Technology,2023,21(4):107−111.
|
1. |
韩晓冰,余思淼,梁冰洋,周远国. 基于DNN的矿井超前探测反演方法研究. 煤炭技术. 2023(03): 117-121 .
![]() | |
2. |
吴群英,胡雄武,王宏科. 陕北矿区地下水资源地面瞬变电磁法探查实践. 煤炭科学技术. 2022(05): 208-215 .
![]() | |
3. |
智庆全,武军杰,王兴春,杨毅,张杰,邓晓红. 基于瞬变冲激时刻的地-井TEM快速定量解释方法. 煤田地质与勘探. 2022(07): 44-51 .
![]() |