Advance Search
FAN Yinglin,PAN Shuren,DU Song,et al. Application research on identification of rich water space in abandoned coal mine based on semi-airborne transient electromagnetic method[J]. Coal Science and Technology,2023,51(12):79−89. DOI: 10.12438/cst.2023-0775
Citation: FAN Yinglin,PAN Shuren,DU Song,et al. Application research on identification of rich water space in abandoned coal mine based on semi-airborne transient electromagnetic method[J]. Coal Science and Technology,2023,51(12):79−89. DOI: 10.12438/cst.2023-0775

Application research on identification of rich water space in abandoned coal mine based on semi-airborne transient electromagnetic method-A case study of abandoned mines in Longyan City, Fujian Province

Funds: 

National Key Researchand Development Program of China(2022YFC3702200); Science and Technology Innovation Funding Project of China Coal Geology Administration (ZMKJ-2021-ZX02)

More Information
  • Received Date: May 25, 2023
  • Available Online: November 29, 2023
  • Acid mine drainage gushing from unknown source after coal mine closure is the key problem that puzzles the ecological restoration of mining areas. Due to the southern coal mining areas in China generally exist “complex terrain conditions, large mining base, multiple points and wide areas” and other problems, it is difficult to identify large-scale underground pollution sources. In order to investigate and study the water-rich space of coal mines in areas with complex terrain and trace the source of acid mine drainage gushing on the surface, the historical abandoned mine in Yanshi Town, Longyan City, Fujian Province, which is located in the depression zone of southwest Fujian Province was taken as an example. Use the semi-airborne transient electromagnetic method with Unmanned Aerial Vehicle, the low resistivity characteristics surrounded by high resistivity for detecting target and according to the resistivity difference between water-rich area and surrounding rock to detect the abnormal water content area within 300 m below the surface with multi-source data, analyze the water content of the abnormal area, and define the geographical location of the water-rich space, provide a scientific basis for the treatment of acid mine drainage in abandoned coal mines. The results show that: ① The semi-airborne transient electromagnetic detection technology has a high sensitivity to the detection of underground water-rich space, and the low-resistivity anomaly area covered by high resistance can effectively reflect the water content of underground space; ② Historical gob areas are widely distributed in the study area, but not all the historical gob areas are water-rich. Using semi-airborne transient electromagnetic detection technology and geological profiles, a total of 8 water-rich areas, a large number of nearly circular water-rich channels and 3 water-rich areas in fault zones are identified; ③ The historical goaf in the study area is not the main underground water-rich space. Compared with the water content of the goaf, the water content of the near-circular tunnel and the waterlogging zone of the fracture zone is also particularly important for the treatment of water gusher in the surface acidic mine.

  • [1]
    陈宏坪,韩占涛,沈仁芳,等. 废弃矿山酸性矿井水产生过程与生态治理技术[J]. 环境保护科学,2021,47(6):73−80.

    CHEN Hongping,HAN Zhantao,SHEN Renfang, et al. Generation processes and ecological restoration techniques of acid mine drainage from abandoned mines[J]. Environmental Protection Science,2021,47(6):73−80.
    [2]
    顾大钊,李 庭,李井峰,等.我国煤矿矿井水处理技术现状与展望[J].煤炭科学技术, 2021, 49(1):11−18.

    GU Dazhao, LI Ting, LI Jingfeng, et al.Current status and prospects of coal mine water treatment technology in China[J].Coal Science and Technology, 2021, 49(1):11−18.
    [3]
    BIGHAM J M,SCHWERTMANN U,TRAINA S J, et al. Schwertmannite and the chemical modeling of iron in acid sulfate waters[J]. Geochimica et Cosmochimica Acta,1996,60(12):2111−2121. doi: 10.1016/0016-7037(96)00091-9
    [4]
    葛光荣,吴一平,张 全. 高矿化度矿井水纳滤膜适度脱盐技术研究[J]. 煤炭科学技术,2021,49(3):208−214.

    GE Guangrong,WU Yiping,ZHANG Quan. Research on technology and process for moderate desalination of high-salinity mine water by nanofiltration[J].Coal Science and Technology,2021,49(3):208−214.
    [5]
    赵峰华,孙红福,李文生. 煤矿酸性矿井水中有害元素的迁移特性[J]. 煤炭学报,2007(3):261−266. doi: 10.3321/j.issn:0253-9993.2007.03.009

    ZHAO Fenghua,SUN Hongfu,LI Wensheng. Migration of hazardous elements in acid coal mine drainage[J]. Journal of Coal Science,2007(3):261−266. doi: 10.3321/j.issn:0253-9993.2007.03.009
    [6]
    王 蒙,赵志营,邢 永. 瞬变电磁法在煤矿采空区积水探测中的应用[J]. 能源与环保,2023,45(3):45−49.

    WANG Meng,ZHAO Zhiying,XING Yong. Application of transient electromagnetic method in detecting water accumulation in goaf of coal mines[J]. China Energy and Environmental Protection,2023,45(3):45−49.
    [7]
    薛国强,潘冬明,于景邨. 煤矿采空区地球物理探测应用综述[J]. 地球物理学进展,2022,37(3):1197−1206.

    XUE Guoqiang,PAN Dongming,YU Jingcun. Review the applications of geophysical methods for mapping coal-mine voids[J]. Progress in Geophysics,2022,37(3):1197−1206.
    [8]
    柳顺彬,李文祥,冉军林,等. 半航空瞬变电磁在煤矿隐蔽致灾领域的应用[J]. 新疆地质,2023,41(1):113−117.

    LIU Shunbin,LI Wenxiang,RAN Junlin, et al. Application of S–ATEM for the survey of hidden disaster factors in coal mine[J]. Xinjiang Geology,2023,41(1):113−117.
    [9]
    梁 帅,曾新福. 瞬变电磁法在煤矿采空区及富水性探测中的应用[J]. 华南地震,2021,41(4):102−106.

    LIANG Shuai,ZENG Xinfu. Application of transient electromagnetic method in detection of goaf and water-rich in coal mine[J]. South China Journal of Seismology,2021,41(4):102−106.
    [10]
    李雄伟,高小伟,姜 涛,等. 航空瞬变电磁在煤矿采空区探测中的应用[J]. 中国煤炭地质,2021,33(9):78−81.

    LI Xiongwei,GAO Xiaowei,JIANG Tao, et al. Application of semi-airborne TEM on coalmine gob area detection[J]. Coal Geology of China,2021,33(9):78−81.
    [11]
    TYCHOLIZ C,FERGUSON I J,SHERRIFF B L, et al. Geophysical delineation of acidity and salinity in the Central Manitoba gold mine tailings pile,Manitoba,Canada[J]. Journal of Applied Geophysics,2016,161:29−40.
    [12]
    SHERRIFF B L,SIDENKO N V,SALZSAULER K A. Differential settling and geochemical evolution of tailing’ surface water at the Central Manitoba Gold Mine[J]. Applied Geochemistry,200822(2):342–356.
    [13]
    刘 军. 矿井综合物探技术在探测采空区积水的应用[J]. 能源与节能,2022(7):151−155.

    LIU Jun. Application of mine comprehensive geophysical prospecting technology in detecting accumulated water in goaf[J]. Energy and Energy Conservation,2022(7):151−155.
    [14]
    王振荣,程久龙,宋立兵,等. 地空时间域电磁系统在陕西神木地区煤矿采空区勘查中的应用[J]. 地球科学与环境学报,2020,42(6):776−783.

    WANG Zhenrong,CHENG Jiulong,SONG Libing, et al. Application of ground-airborne time domain electromagnetic system in goaf exploration of coal mine in Shenmu area of Shaanxi,China[J]. Journal of Earth Sciences and Environment,2020,42(6):776−783.
    [15]
    MASROM S N,SAMSUDIN A R. Application of airborne transient electromagnetic(Sky TEM) technique for buried valley detection in part of Hadsten,AARHUS County,Denmark[J]. Bulletin of the Geological Society of Malaysia,2012,58:59−65. doi: 10.7186/bgsm58201210
    [16]
    HESHAM E K,OSMAN A. Application of time-domain electromagnetic method in mapping saltwater intrusion of a coastal alluvial aquifer,North Oman[J]. Journal of Applied Geophysics,2015,115:59−64. doi: 10.1016/j.jappgeo.2015.02.003
    [17]
    何怡原,梁盛军,连 晟. 基于航空瞬变电磁法的宝清地区含水体分布特征研究[J]. 地球物理学进展,2018,33(5):2126−2133. doi: 10.6038/pg2018BB0422

    HE Yiyuan,LIANG Shengjun,LIAN Sheng. Distribution characteristics of water bodies in Baoqing Region based on airborne transient electromagnetic method[J]. Progress in Geophysics,2018,33(5):2126−2133. doi: 10.6038/pg2018BB0422
    [18]
    张迪硕,于长春,吴成平,等. 航空瞬变电磁法在内蒙古巴林左旗地区圈定含水地层中的应用[J]. 地质通报,2022,41(Z1):436−445.

    ZHANG Dishuo,YU Changchun,WU Chengping, et al. Application of airborne transient electromagnetic method in the delineation of aquifer stratum in Balinzuoqi,Inner Mongolia[J]. Geological Bulletin of China,2022,41(Z1):436−445.
    [19]
    嵇艳鞠,王 远,徐 江,等. 无人飞艇长导线源时域地空电磁勘探系统及其应用[J]. 地球物理学报,2013,56(11):3640−3650. doi: 10.6038/cjg20131105

    JI Yanju,WANG Yuan,XU Jiang, et al. Development and application of the grounded long wire source airnorne electromagnetic exploration system based on an unmanned airship[J]. Chinese Journal of Geophysics,2013,56(11):3640−3650. doi: 10.6038/cjg20131105
    [20]
    朱文杰,刘丽华,柯 振,等. 半航空瞬变电磁探测能力及影响因素研究[J]. 电子测量技术,2022,45(9):14−19. doi: 10.19651/j.cnki.emt.2208792

    ZHU Wenjie,LIU Lihua,KE Zhen, et al. Research on the response of semi-airborne transient electromagnetic[J]. Electronic Measurement Technology,2022,45(9):14−19. doi: 10.19651/j.cnki.emt.2208792
    [21]
    王仕兴,易国财,王绪本,等. 基于分段二分搜索算法的半航空瞬变电磁电导率深度快速成像方法研究[J]. 地球物理学进展,2021,36(3):1317−1324.

    WANG Shixing,YI Guocai,WANG Xuben, et al. Research on the semi-airborne transient electromagnetic conductivity depth rapid imaging method based on segmented binary search algorithm[J]. Progress in Geophysics,2021,36(3):1317−1324.
    [22]
    王善勋,杨文锋,张卫敏,等. 瞬变电磁法在煤矿采空区探测中的应用研究[J]. 工程地球物理学报,2012,9(4):400−405. doi: 10.3969/j.issn.1672-7940.2012.04.006

    WANG Shanxun,YANG Wenfeng,ZhANG Weimin, et al. The application of TEM to detecting coal mining goaf[J]. Chinese Journal of Engineering Geophysics,2012,9(4):400−405. doi: 10.3969/j.issn.1672-7940.2012.04.006
    [23]
    申建平,边祥会,席振铢,等. 煤炭采空区电性特征的定性分析[J]. 地质与勘探,2016,52(6):1147−1151. doi: 10.13712/j.cnki.dzykt.2016.06.015

    SHEN Jianping,BIAN Xianghui,XI Zhenzhu, et al. Qualitative analysis of electric characteristics in coal mined-out areas[J]. Geology and Exploration,2016,52(6):1147−1151. doi: 10.13712/j.cnki.dzykt.2016.06.015

Catalog

    Article views (94) PDF downloads (39) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return