Citation: | RONG Hai,WEI Shilong,ZHANG Hongwei,et al. Research on quantitative monitoring of underground fault activity and its influence on rock burst[J]. Coal Science and Technology,2024,52(2):10−22. DOI: 10.12438/cst.2023-1140 |
In order to establish a quantitative relationship between fault activity and rock burst, realize the effective prevention and control of rockburst. We analyzed the geological structure environment of rockburst in Yima mining area theoretically, and analyzed the relative position relationship between panel 13200 and fault influence zone in Gengcun coal mine by taking the evaluation method of geo-dynamic conditions of rockburst. We further discussed the macro-control effect of the fault structure on rock burst. On this basis, we calculated the tectonic stress in the minefield and divided the tectonic stress into different zones, and analyzed the control effect of tectonic stress on rockburst. We designed the actual quantitative monitoring method of underground fault, monitored the activity of F16 fault in Gengcun mine field directly, analyzed the changes of fault displacement and stress increase during the preparation and occurrence of high-energy microseismic events quantitatively. We constructed a model of “the scale of coal and rock mass in the focal area is equal to that of the dynamic core area, and the energy of the focal area gradually attenuates with the transmission distance,” which provides an important tool for establishing the relationship between large-energy microseismic events and fault activities, establishes the relationship between high-energy microseismic events and fault activities, and determines the influence of fault activity on rock burst. The research results show that in Yima coalfield, the complex thrust nappe structure system constitutes the geological tectonic background of rockburst in Yima mining area. The width of F16 fault influence zone is 7 000 to 7 600 m, and the whole panel 13200 is within the influence zone of F16 fault, which further increases the risk of rockburst under the influence of mining activities. The areas controlled by Ⅰ-2 fault, Ⅲ-4 fault and Ⅳ-7 fault are the main areas for the occurrence of rockburst and large energy microseismic events in Gengcun Coal Mine. Most of the rockburst and large energy microseismic events are located in stress gradient areas. During the preparation and occurrence of large energy microseismic events, the displacement of F16 fault increased by 50 mm and 45 mm respectively. Before the two large energy microseismic events occur, the increase of fault activity tension are relatively the highest, which are 2.58 kN and 2.93 kN. The rapid increase of fault displacement and higher stress increase constitute the main energy source of large energy microseismic events. The occurrence of large energy microseismic events and rockburst are closely related to the activity of faults. The actual quantitative monitoring method of underground faults can be widely used in the guidance of mine rockburst prediction and prevention and control.
[1] |
JIRI Ptacek,PETR Konicek,JOSEF Holecko,et al. Rockburst in ostrava karvina coalfield[M]. Ostrava,Czech:Institute of Geonics ASCR. 2017:11−22.
|
[2] |
潘一山,王来贵,章梦涛,等. 断层冲击地压发生的理论与试验研究[J]. 岩石力学与工程学报,1998,17(6):642−649. doi: 10.3321/j.issn:1000-6915.1998.06.006
PAN Yishan,WANG Laigui,ZHANG Mengtao,et al. The theoretical and testing study of fault rockburst[J]. Chinese Journal of Rock Mechanics and Engineering,1998,17(6):642−649. doi: 10.3321/j.issn:1000-6915.1998.06.006
|
[3] |
曹安业,刘耀琪,蒋思齐,等. 临地堑开采冲击地压发生机制及主控因素研究[J]. 采矿与安全工程学报,2022,39(1):36−44,53.
CAO Anye,LIU Yaoqi,JIANG Siqi,et al. Occurrence mechanism and main control factors of coal burst near graben mining[J]. Journal of Mining & Safety Engineering,2022,39(1):36−44,53.
|
[4] |
魏世明,靳梦帆,张泽升. 正断层上、下盘开采冲击地压危险性数值模拟研究[J]. 煤炭技术,2022,41(7):1−4.
WEI Shiming,JIN Mengfan,ZHANG Zesheng. Numerical simulation research on rockburst risk of mining in hanging or foot wall of normal fault[J]. Coal Technology,2022,41(7):1−4.
|
[5] |
李一哲. 大型地质体控制下冲击地压发生机制与防治方法研究[D]. 北京:煤炭科学研究总院,2021:21−99.
LI Yizhe. Study on mechanism and prevention method of coal bump controlled by large geological body[D]. Beijing:China Coal Research Institute,2021:21−99.
|
[6] |
王同旭,曹明辉,江东海. 采动影响下断层活化失稳及能量释放规律研究[J]. 煤炭科学技术,2022,50(7):75−83.
WANG Tongxu,CAO Minghui,JIANG Donghai. Study on law of fault activation,failure and enemy release influence of mining[J]. Coal Science and Technology,2022,50(7):75−83.
|
[7] |
苗海周. 正断层对顶板变形规律及冲击地压的影响分析[J]. 煤炭技术,2021,40(5):25−27.
MIAO Haizhou. Influence analysis of normal fault on roof deformation and rock burst[J]. Coal Technology,2021,40(5):25−27.
|
[8] |
张宁博,赵善坤,赵 阳,等. 逆冲断层卸载失稳机理研究[J]. 煤炭学报,2020,45(5):1671−1680.
ZHANG Ningbo,ZHAO Shankun,ZHAO Yang,et al. Mechanism of thrust fault rupture causing by unloading effect[J]. Journal of China Coal Society,2020,45(5):1671−1680.
|
[9] |
田雨桐,张平松,吴荣新,等. 煤层采动条件下断层活化研究的现状分析及展望[J]. 煤田地质与勘探,2021,49(4):60−70.
TIAN Yutong,ZHANG Pingsong,WU Rongxin,et al. Research status and prospect of fault activation under coal mining conditions[J]. Coal Geology & Exploration,2021,49(4):60−70.
|
[10] |
CAI Wu,DOU Linming,SI Guangyao,et al. Fault-induced coal burst mechanism under mining-induced static and dynamic stresses[J]. Engineering,2021,7(5):306−334.
|
[11] |
任 政,姜耀东. 采动影响下逆断层冲击地压矿震时空分布规律分析[J]. 矿业科学学报,2020,5(5):482−489.
REN Zheng,JIANG Yaodong. Analysis of spatial and temporal distribution laws of mine earthquake induced by thrust fault coal bumps under mining disturbance[J]. Journal of Mining Science and Technology,2020,5(5):482−489.
|
[12] |
李忠华,梁 影,包思远,等. 断层冲击地压的影响因素分析[J]. 中国地质灾害与防治学报,2020,31(3):126−131.
LI Zhonghua,LIANG Ying,BAO Siyuan,et al. Analysis on influence factors of the fault rock burst[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):126−131.
|
[13] |
曾林生,宋桂红,姚天波. 断层对煤矿冲击地压危险性的影响研究[J]. 土工基础,2020,34(4):502−506.
ZENG Linsheng,SONG Guihong,YAO Tianbo. Study on the effect of fault on rock burst potential in coal mining[J]. Soil Eng and Foundation,2020,34(4):502−506.
|
[14] |
贺志龙. 不同地质构造对冲击地压危险性影响研究[D]. 邯郸:河北工程大学,2019:18−55.
HE Zhilong. Research on the impact of different geological structures on rockburst risk[D]. Handan:Hebei University of Engineering,2019:18−55.
|
[15] |
吕进国,王 涛,丁维波,等. 深部开采逆断层对冲击地压的诱导机制[J]. 煤炭学报,2018,43(2):405−416.
LYU Jinguo,WANG Tao,DING Weibo,et al. Induction mechanisms of coal bumps caused by thrust faults during deep mining[J]. Journal of China Coal Society,2018,43(2):405−416.
|
[16] |
曹明辉,刘 钒,王同旭. 断层活化过程及煤柱失稳机理的数值模拟研究[J]. 山东科技大学学报(自然科学版),2020,39(2):61−68.
CAO Minghui,LIU Fan,WANG Tongxu. Numerical simulation study of fault activation process and coal pillar instability mechanism[J]. Journal of Shandong University of Science and Technology (Natural Science),2020,39(2):61−68.
|
[17] |
廖志恒. 深井巷道断层对冲击地压的影响分析[J]. 矿业安全与环保,2018,45(1):61−64. doi: 10.3969/j.issn.1008-4495.2018.01.014
LIAO Zhiheng. Analysis of the influence on deep rock roadway fault to impact ground pressure[J]. Mining Safety & Environmental Protection,2018,45(1):61−64. doi: 10.3969/j.issn.1008-4495.2018.01.014
|
[18] |
王宏伟,邵明明,王 刚,等. 开采扰动下逆冲断层滑动面应力场演化特征[J]. 煤炭学报,2019,44(8):2318−2327.
WANG Hongwei,SHAO Mingming,WANG Gang,et al. Characteristics of stress evolution on the thrust fault plane during the coal mining[J]. Journal of China Coal Society,2019,44(8):2318−2327.
|
[19] |
张宏伟,李 胜,韩 军,等. 地质动力区划及其在冲击地压研究中的应用[J]. 煤炭科学技术,2023,51(1):191−202.
ZHANG Hongwei,LI Sheng,HAN Jun,et al. Geo-dynamic division and its application in study of rock burst[J]. Coal Science and Technology,2023,51(1):191−202.
|
[20] |
罗 浩,李忠华,王爱文,等. 深部开采临近断层应力场演化规律研究[J]. 煤炭学报,2014,39(2):322−327.
LUO Hao,LI Zhonghua,WANG Aiwen,et al. Study on the evolution law of stress field when approaching fault in deep mining[J]. Journal of China Coal Society,2014,39(2):322−327.
|
[21] |
田富军. 义马煤田冲击矿压分析及防治实践[J]. 煤矿开采,2010,15(4):100−102. doi: 10.3969/j.issn.1006-6225.2010.04.035
TIAN Fujun. Analysis and prevention practice of rock-burst in Yima coal field[J]. Coal Mining Technology,2010,15(4):100−102. doi: 10.3969/j.issn.1006-6225.2010.04.035
|
[22] |
徐胜铭,李松营,李德翔,等. 义马煤田冲击地压发生的地质规律[J]. 煤炭学报,2015,40(9):2015−2020.
XU Shengming,LI Songying,LI Dexiang,et al. Geological laws of rock burst occurrence in Yima coalfield[J]. Journal of China Coal Society,2015,40(9):2015−2020.
|
[23] |
荣 海. 乌东煤矿冲击地压地质动力条件与煤岩动力系统研究[D]. 阜新:辽宁工程技术大学,2016:43−87.
RONG Hai. Research on geodynamic conditions and dynamic system of coal and rock in wudong coal mine[D]. Fuxin:Liaoning Technical University,2016:43−87.
|
[24] |
张宏伟,荣 海,陈建强,等. 近直立特厚煤层冲击地压的地质动力条件评价[J]. 中国矿业大学学报,2015,44(6):1053−1060.
ZHANG Hongwei,RONG Hai,CHEN Jianqiang,et al. Geo-dynamic rockburst condition evaluation method for in suberect and extremely thick coal seam[J]. Journal of China University of Mining & Technology,2015,44(6):1053−1060.
|
[25] |
荣 海,张宏伟,梁 冰,等. 煤岩动力系统失稳机理[J]. 煤炭学报,2017,42(7):1663−1671.
RONG Hai,ZHANG Hongwei,LIANG Bing,et al. Instability mechanism of dynamic system of coal and rock[J]. Journal of China Coal Society,2017,42(7):1663−1671.
|
[26] |
荣 海,张宏伟,陈建强,等. 基于多因素模式识别的急倾斜特厚煤层冲击地压危险性预测[J]. 采矿与安全工程学报,2018,35(1):125−132.
RONG Hai,ZHANG Hongwei,CHEN Jianqiang,et al. Rockburst-risk prediction in steep-inclined and extremely thick coal seams based on the multi-factor pattern recognition method[J]. Journal of Mining & Safety Engineering,2018,35(1):125−132.
|
[27] |
张宏伟,荣 海,陈建强,等. 基于地质动力区划的近直立特厚煤层冲击地压危险性评价[J]. 煤炭学报,2015,40(12):2755−2762.
ZHANG Hongwei,RONG Hai,CHEN Jianqiang,et al. Risk as-sessment of rockburst based on geo-dynamic division in su-berect and extremely thick coal seam[J]. Journal of China Coal Society,2015,40(12):2755−2762.
|
[28] |
彭永伟,蓝 航,王书文,等. 基于地质条件的冲击危险性动态预评价体系[J]. 煤炭学报,2010,35(12):1997−2001.
PENG Yongwei,LAN Hang,WANG Shuwen,et al. Dynamic pre-evaluation system of bursting hazard based on geological conditions[J]. Journal of China Coal Society,2010,35(12):1997−2001.
|
[29] |
吕进国,潘 立. 微震预警冲击地压的时间序列方法[J]. 煤炭学报,2010,35(12):2002−2005.
LYU Jinguo,PAN Li. Microseismic predicting coal bump by time series method[J]. Journal of China Coal Society,2010,35(12):2002−2005.
|
[30] |
中华人民共和国煤炭行业标准MT/T 942—2005. 矿用锚索[S].
|
[31] |
荣 海,于世棋,张宏伟,等. 基于煤岩动力系统能量的冲击地压矿井临界深度判别[J]. 煤炭学报,2021,46(4):1263−1270.
RONG Hai,YU Shiqi,ZHANG Hongwei,et al. Determination of critical depth in rockburst mine based on the energy of coal-rock dynamic system[J]. Journal of China Coal Society,2021,46(4):1263−1270.
|
[32] |
张宏伟,李胜,韩军,等. 地质动力区划及其在冲击地压研究中的应用[J]. 煤炭科学技术,2023,51(1):191−202.
ZHANG Hongwei,LI Sheng,HAN Jun,et al. Geo-dynamic division method and its application in the study of rock burst in coal mines[J]. Coal Science and Technology,2023,51(1):191−202.
|
[33] |
窦林名,曹晋荣,曹安业,等. 煤矿矿震类型及震动波传播规律研究[J]. 煤炭科学技术,2021,49(6):23−31.
DOU Linming,CAO Jinrong,CAO Anye,et al. Research on types of coal mine tremor and propagation law of shock waves[J]. Coal Science and Technology,2021,49(6):23−31.
|
[34] |
李洪涛,卢文波,舒大强,等. 爆破地震波的能量衰减规律研究[J]. 岩石力学与工程学报,2010,29(S1):3364−3369.
LI Hongtao,LU Wenbo,SHU Daqiang,et al. Study of energy attenuation law of blast induced seismic wave[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(S1):3364−3369.
|
[35] |
李顺波,东兆星,齐燕军,等. 爆炸冲击波在不同介质中传播衰减规律的数值模拟[J]. 振动与冲击,2009,28(7):115−117,216-217.
LI Shunbo,DONG Zhaoxing,QI Yanjun,et al. Numerical simulation for spread decay of blasting shock wave in different media[J]. Journal of Vibration And Shock,2009,28(7):115−117,216-217.
|
[36] |
樊自建,沈兆武,马宏昊,等. 空气隔层对水中冲击波衰减效果的实验研究[J]. 中国科学技术大学学报,2007,37(10):1306−1311.
FAN Zijian,SHEN Zhaowu,MA Honghao,et al. Experimental study on attenuation of underwater shock wave by air interlayer. Journal of University of Science and Technology of China,2007,37(10):1306−1311.
|
[37] |
夏永学,蓝 航,毛德兵,等. 基于微震监测的超前支承压力分布特征研究[J]. 中国矿业大学学报,2011,40(6):868−873.
XIA Yongxue,LAN Hang,MAO Debing,et al. Study of the lead abutment pressure distribution base on microseismic monitoring[J]. Journal of China University of Mining & Technology,2011,40(6):868−873.
|
[38] |
孔令海. 煤矿采场围岩微震事件与支承压力分布关系[J]. 采矿与安全工程学报,2014,31(4):525−531.
KONG Linghai. Relationship between microseismic events and abutment pressure distribution in coal mining[J]. Journal of Mining & Safety Engineering,2014,31(4):525−531.
|
[39] |
王德超,王 琦,李术才,等. 基于微震和应力在线监测的深井综放采场支承压力分布特征[J]. 采矿与安全工程学报,2015,32(3):382−388.
WANG Dechao,WANG Qi,LI Shucai,et al. Stress distribution characteristics of deep mine in fully-mechanized sublevel caving face based on microseismic and online stress monitoring system[J]. Journal of Mining & Safety Engineering,2015,32(3):382−388.
|
[40] |
李 磊. 冲击地压矿井综采工作面同时相向回采可行性分析[J]. 能源与环保,2022,44(3):264−269.
LI Lei. Analysis on feasibility of simultaneous opposite coal winning of fully-mechanized working face in rockburst mine[J]. China Energy and Environmental Protection,2022,44(3):264−269.
|
[1] | WANG Tongxu, CAO Minghui, JIANG Donghai. Study on law of fault activation,failure and energy release under influence of mining[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(7): 75-83. |
[2] | ZHOU Junjun, HU Xiangyun, XIAO Tiaojie, BAI Ningbo. Research on regularized inversion algorithms of one-dimensional magnetotelluric data[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(8): 174-180. |
[3] | SHI Haoyu, MA Nianjie, SHI Jianjun, LI Nan, TAN Guowen. Simulation study on energy evolution and release of surrounding rock in stope[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(3). |
[4] | WANG Hongwei, WANG Gang, ZHANG Yue, CUI Shuai, XU Jian. Stress field and energy field distribution characteristics of faults under dynamic pressure[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (10). |
[5] | CHEN Bo, TANG Dazhen, ZHANG Yupan, LI Song, FENG Peng, LI Chenyu, LIU Ding. Logging inversion and three-dimensional geological modeling of coal structure in Hancheng H3 well group[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (7). |
[6] | FAN Tao LU Jingjin WANG Bingchun LIULei ZHAO Zhao, . Inversion method of transient electromagnetic virtual wave-field applied to advance detection in underground mine[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (10). |
[7] | Zhang Kexue He Manchao Jiang Yaodong, . Mechanism research of roadway pressure bump induced by fault slip and activation[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (2). |
[8] | Li Jiang Xue Haijun Fu Bin Guo Dong Zhang Xianghui, . Research on requirement for offset of seismic data about coalbed methane AVO Inversion[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (4). |
[9] | CAO Zu-bao LI Jian-wen WANG Xin-feng, . Study on method of mine water inrush for inverse calculation of hydrogeological parameters[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (5). |
[10] | DENG Zhi-gang QI Qing-xin ZHAO Shan-kun ZHANG Ning-bo WANG Yong-ren, . Inversion Technology of 3D Ground Stress Field Applied to Evaluation of Strata Pressure Bumping Danger[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (5). |