Advance Search
QI Jian,WEI Weijie,LEI Huicheng,et al. Study on fluidization and separation characteristics of dry heavy medium fluidized bed under different gas distributors[J]. Coal Science and Technology,2024,52(S2):480−488. DOI: 10.12438/cst.2023-1536
Citation: QI Jian,WEI Weijie,LEI Huicheng,et al. Study on fluidization and separation characteristics of dry heavy medium fluidized bed under different gas distributors[J]. Coal Science and Technology,2024,52(S2):480−488. DOI: 10.12438/cst.2023-1536

Study on fluidization and separation characteristics of dry heavy medium fluidized bed under different gas distributors

More Information
  • Received Date: October 23, 2023
  • Available Online: January 09, 2025
  • As an important method in the field of fine-grained coal dry separation, the stability of bed density of gas-solid fluidized bed is a key factor to achieve stable separation. The gas distributor characteristics of gas-solid fluidized bed have direct influence on the uniform distribution of airflow and the critical fluidization characteristics of the bed. A systematic investigation was conducted to evaluate the effects of the pressure drop and the arrangement of the gas distributor on the fluidization characteristics of the fluidized bed. The changing rules of critical fluidization characteristics, density stability and separation characteristics of the bed under different gas distributor are compared. Under the influence of different factors on the pressure drop of the gas distributor, a deep exploration of the change rule of critical fluidization gas velocity and bed density stability was carried out. The results show that with the gradual increase of gas distributor pressure drop, the critical fluidization gas velocity and bed density stability increase at the same time, while the bed expansion rate increases and then decreases. The increase in the number of filter cloth layers leads to an increase in the pressure drop across the gas distributor. By the effect of filter cloth dispersion, the energy of the gas flow into the bed is lower, the bubble size is reduced, the bubble distribution is more uniform, and the chance of merger is reduced, thus the bed stability is strengthened. Under the condition of 3#, the expansion rate is 19.3%, and the appropriate gas distributor arrangement can make the airflow dispersed uniformly and improve the bed stability. At the airflow velocity of 0.15 m/s, the standard deviation of bed density fluctuation was 0.049 kg/cm3 under the condition of 3 layers of filter cloth (3#3) above the distribution plate. Similarly, under the condition of 3#3, the ash content of the clean coal product was 13.47% from 6~13 mm coal separation, and the possibility deviation of E value was 0.087 g/cm3.

  • [1]
    BP Amoco. BP statistical review of world energy 2023[R]. London:BP Amoco,2023.
    [2]
    谢和平,王金华,王国法,等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报,2018,43(5):1187−1197.

    XIE Heping,WANG Jinhua,WANG Guofa,et al. New ideas of coal revolution and layout of coal science and technology development[J]. Journal of China Coal Society,2018,43(5):1187−1197.
    [3]
    袁亮,张农,阚甲广,等. 我国绿色煤炭资源量概念、模型及预测[J]. 中国矿业大学学报,2018,47(1):1−8.

    YUAN Liang,ZHANG Nong,KAN Jiaguang,et al. The concept,model and reserve forecast of green coal resources in China[J]. Journal of China University of Mining & Technology,2018,47(1):1−8.
    [4]
    卫中宽. 空气重介流化床干法选煤技术的研究[J]. 洁净煤技术,2010,16(2):22−25.

    WEI Zhongkuan. Research of dry coal separation technology of air dense medium fluidized bed[J]. Clean Coal Technology,2010,16(2):22−25.
    [5]
    李勃. 红沙梁选煤厂干法选煤工艺研究[J]. 煤炭技术,2022,41(9):236−238.

    LI Bo. Study on dry coal preparation technology in Hongshaliang coal preparation plant[J]. Coal Technology,2022,41(9):236−238.
    [6]
    陈建强,常博,刘昆轮,等. 煤炭干法分选技术应用与展望[J]. 煤炭加工与综合利用,2021(6):24−28.

    CHEN Jianqiang,CHANG Bo,LIU Kunlun,et al. Application and prospect of coal dry separation technology[J]. Coal Processing & Comprehensive Utilization,2021(6):24−28.
    [7]
    CHALAVADI G,SINGH R K,DAS A. Processing of coal fines using air fluidization in an air table[J]. International Journal of Mineral Processing,2016,149:9−17. doi: 10.1016/j.minpro.2016.02.002
    [8]
    任彦卿,任彦东,杨秀红,等. 干法末煤跳汰机分选褐煤的实际效果[J]. 煤炭加工与综合利用,2022(8):52−56.

    REN Yanqing,REN Yandong,YANG Xiuhong,et al. Practical effect of dry slack coal jig on lignite preparation[J]. Coal Processing & Comprehensive Utilization,2022(8):52−56.
    [9]
    张锦龙,樊有林,常艇,等. 低品质煤及煤泥物料高效脱灰脱水提质[J]. 洁净煤技术,2022,28(7):202−209.

    ZHANG Jinlong,FAN Youlin,CHANG Ting,et al. Water occurrence characteristics and dehydration of low quality coal and slime[J]. Clean Coal Technology,2022,28(7):202−209.
    [10]
    陈建强,李功民,夏云凯,等. 黑山露天矿薄煤层煤炭干法分选[J]. 洁净煤技术,2021,27(5):1−9.

    CHEN Jianqiang,LI Gongmin,XIA Yunkai,et al. Dry separator of thin coal seam in Heishan Open-pit Mine[J]. Clean Coal Technology,2021,27(5):1−9.
    [11]
    姜永宁,齐健,巴玉龙,等. 干法重介质流化床多元加重质流化特性与低质煤高效分选[J]. 洁净煤技术,2021,27(5):10−16.

    JIANG Yongning,QI Jian,BA Yulong,et al. Fluidization characteristics of multiple dense medium and efficient separation of low-quality coal in dry dense medium fluidized bed[J]. Clean Coal Technology,2021,27(5):10−16.
    [12]
    戴林,房淑海,李思维,等. 干法重介质流化床煤炭颗粒受力特性与分选研究[J]. 洁净煤技术,2021,27(5):17−24.

    DAI Lin,FANG Shuhai,LI Siwei,et al. Investigation on force characteristics and separation of coal in dry dense medium fluidized bed[J]. Clean Coal Technology,2021,27(5):17−24.
    [13]
    FAN Xuchen,ZHANG Gansu,ZHAO Yuemin,et al. Effect of middling coal on separation efficiency in air dense gas–solid fluidized bed[J]. International Journal of Coal Preparation and Utilization,2021,41(9):628−644. doi: 10.1080/19392699.2018.1498847
    [14]
    JIA Ying,ZHANG Yong,XU Ji,et al. Coarse-grained CFD-DEM simulation to determine the multiscale characteristics of the air dense medium fluidized bed[J]. Powder Technology,2021,389:270−277. doi: 10.1016/j.powtec.2021.05.014
    [15]
    张赣苏,董良,周恩会,等. 干法重介质流化床压力多尺度分析与流化质量表征[J]. 煤炭科学技术,2023,51(4):215−223.

    ZHANG Gansu,DONG Liang,ZHOU Enhui,et al. Multi-scale pressure analysis and fluidization quality characterization of dry dense medium fluidized bed[J]. Coal Science and Technology,2023,51(4):215−223.
    [16]
    段晨龙,刘锡波,周晨阳,等. 基于电容层析成像技术(ECT)对干法重介流化床中分离机制的研究[J]. 煤炭学报,2022,47(2):945−957.

    DUAN Chenlong,LIU Xibo,ZHOU Chenyang,et al. Research on the separation mechanism of dry dense medium separation fluidized bed based on electrical capacitance tomography[J]. Journal of China Coal Society,2022,47(2):945−957.
    [17]
    李国丰,段晨龙,陆俊宇,等. 深型空气重介流化床密度均匀性研究[J]. 石油学报(石油加工),2018,34(5):987−994.

    LI Guofeng,DUAN Chenlong,LU Junyu,et al. Study on density uniformity in a deep air dense medium fluidized bed[J]. Acta Petrolei Sinica (Petroleum Processing Section),2018,34(5):987−994.
    [18]
    周晨阳,樊旭晨,段晨龙,等. 基于流化床布风板压降调节的细粒煤分选[J]. 中国粉体技术,2018,24(1):1−6.

    ZHOU Chenyang,FAN Xuchen,DUAN Chenlong,et al. Fine coal beneficiation based on regulation pressure drop of air distributor in gas-solid fluidized bed[J]. China Powder Science and Technology,2018,24(1):1−6.
    [19]
    黄歌,赵跃民,王亚男,等. 6~3mm细粒煤在空气重介质流化床中分布规律的研究[J]. 煤炭技术,2016,35(8):280−282.

    HUANG Ge,ZHAO Yuemin,WANG Yanan,et al. Research on 6-3 mm fine coal distribution characteristics in air dense medium fluidized bed[J]. Coal Technology,2016,35(8):280−282.
    [20]
    陈淑云,母长春,张军,等. 加重质选择对气固流态化分选中气泡运动行为的影响研究[J]. 选煤技术,2023,51(1):24−29.

    CHEN Shuyun,MU Changchun,ZHANG Jun,et al. Study of influence of selection of medium solids on motion behavior of air bubbles in gas-solid fluidized-bed separation process[J]. Coal Preparation Technology,2023,51(1):24−29.
    [21]
    牛祯. 重介质干扰床的分选效果研究[J]. 煤炭工程,2022,54(4):172−175.

    NIU Zhen. Separation effect of heavy-medium teetered bed separator[J]. Coal Engineering,2022,54(4):172−175.
    [22]
    周晨阳,贾颖,赵跃民,等. 介尺度视角下干法重介流态化分选过程强化[J]. 化工学报,2022,73(6):2452−2467.

    ZHOU Chenyang,JIA Ying,ZHAO Yuemin,et al. Intensification of dry dense medium fluidization separation process from a mesoscale perspective[J]. CIESC Journal,2022,73(6):2452−2467.
    [23]
    陈增强,张亚东,赵光薪,等. 振动分选流化床气泡动态演变与细粒煤分选特性[J]. 煤炭学报,2023,48(S1):296−304.

    CHEN Zengqiang,ZHANG Yadong,ZHAO Guangxin,et al. Dynamic evolution of bubble and separation characteristics of fine coal in vibrating fluidized bed[J]. Journal of China Coal Society,2023,48(S1):296−304.
    [24]
    苏丁,骆振福. 气固两相流模型及细粒煤振动流化床的模拟应用[J]. 煤炭科学技术,2018,46(12):209−216.

    SU Ding,LUO Zhenfu. Gas-solid two-phase flow model and its application in vibrated fluidized bed of fine coal[J]. Coal Science and Technology,2018,46(12):209−216.
    [25]
    王亚健. 干法重介质流化床选煤工艺的应用研究[J]. 山西冶金,2018,41(5):115−117.

    WANG Yajian. Application of dry heavy-medium fluidized bed coal preparation technology[J]. Shanxi Metallurgy,2018,41(5):115−117.
    [26]
    郑大海,陈增强,周恩会,等. 振动流化床流化特性与细粒煤分选研究[J]. 煤炭技术,2018,37(2):321−323.

    ZHENG Dahai,CHEN Zengqiang,ZHOU Enhui,et al. Research on fluidization characteristics and fine coal separation of vibrated fluidized bed[J]. Coal Technology,2018,37(2):321−323.
    [27]
    谭明兵,贺靖峰,邵换男,等. 次生布风条件下气固重介质流化床褐煤分选提质研究[J]. 中国矿业大学学报,2017,46(2):404−409.

    TAN Mingbing,HE Jingfeng,SHAO Huannan,et al. Lignite separation using agas-solid dense medium fluidized bed with a secondary air distribution layer[J]. Journal of China University of Mining & Technology,2017,46(2):404−409.
    [28]
    高迟明. 振动流化床对细粒煤的分选试验研究[J]. 中州煤炭,2016,38(12):179−182.

    GAO Chiming. Experimental study on fine coal separation by using vibration fluidized bed[J]. Zhongzhou Coal,2016,38(12):179−182.
    [29]
    HE Jingfeng,TAN Mingbing,ZHU Ran,et al. Density-based separation performance of a secondary air-distribution fluidized bed separator (SADFBS) for producing ultra-low-ash clean coal[J]. Fuel,2016,172:178−186. doi: 10.1016/j.fuel.2016.01.006
    [30]
    LYU Bo,LUO Zhenfu,ZHANG Bo,et al. Effect of the secondary air distribution layer on separation density in a dense-phase gas–solid fluidized bed[J]. International Journal of Mining Science and Technology,2015,25(6):969−973. doi: 10.1016/j.ijmst.2015.09.014
    [31]
    董良,张亚东,赵跃民,等. 振动流化床流化特性与细粒煤干法分选[J]. 煤炭学报,2021,46(8):2664−2672.

    DONG Liang,ZHANG Yadong,ZHAO Yuemin,et al. Fluidization characteristics and fine coal separation in a gas-solid vibrated fluidized bed[J]. Journal of China Coal Society,2021,46(8):2664−2672.
    [32]
    付芝杰,周晨阳,赵跃民,等. 宽粒级细粒煤振动流化床分选特性的研究[J]. 煤炭技术,2017,36(8):289−291.

    FU Zhijie,ZHOU Chenyang,ZHAO Yuemin,et al. Study on effect of fine coal with wide size range on separation characteristics of vibrated gas-fluidized bed[J]. Coal Technology,2017,36(8):289−291.
    [33]
    LUO Zhenfu,FAN Maoming,ZHAO Yuemin,et al. Density-dependent separation of dry fine coal in a vibrated fluidized bed[J]. Powder Technology,2008,187(2):119−123. doi: 10.1016/j.powtec.2008.02.001
    [34]
    朱冉,赵跃民,赵鹏飞,等. 空气重介质流化床中细粒煤的流化与分选特性[J]. 煤炭学报,2016,41(3):727−734.

    ZHU Ran,ZHAO Yuemin,ZHAO Pengfei,et al. Bed fluidization characteristics and separating effect of fine coal in an air dense medium fluidized bed[J]. Journal of China Coal Society,2016,41(3):727−734.
    [35]
    邓锋. 振动逆流流化床干法选煤工艺优化研究[J]. 山东化工,2017,46(7):63−67. doi: 10.3969/j.issn.1008-021X.2017.07.021

    DENG Feng. Optimization research on dry coal preparation process of vibrating adverse-flow fluidized bed[J]. Shandong Chemical Industry,2017,46(7):63−67. doi: 10.3969/j.issn.1008-021X.2017.07.021
    [36]
    JIANG Yong,CHEN Zengqiang,SHAO Huannan,et al. The effect of a porous medium on fluidization characteristics in air dense medium fluidized bed[J]. Powder Technology,2016,301:1227−1234. doi: 10.1016/j.powtec.2016.07.066
    [37]
    ZHOU Chenyang,FAN Xuchen,DUAN Chenlong,et al. A method to improve fluidization quality in gas–solid fluidized bed for fine coal beneficiation[J]. Particuology,2019,43:181−192. doi: 10.1016/j.partic.2017.12.012
    [38]
    郭慕孙,李洪钟. 流态化手册[M]. 北京:化学工业出版社,2008.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return